Groupage du trafic

Jean-Claude Bermond et David Coudert

Mascotte, CNRS/I3S/INRIA Sophia-Antipolis

Introduction

- WDM NETWORKS
 - 1 wawelength = up to 40 Gb/s
 - Ifiber = hundred of wawelengths = Tb/s

🧕 Idea

Group (combine, pack,agregate, ...) low speed components (signals,traffics streams,...) into higher components

- Goal
 - Better use of bandwith
 - Minimize the network (in particular equipment) cost

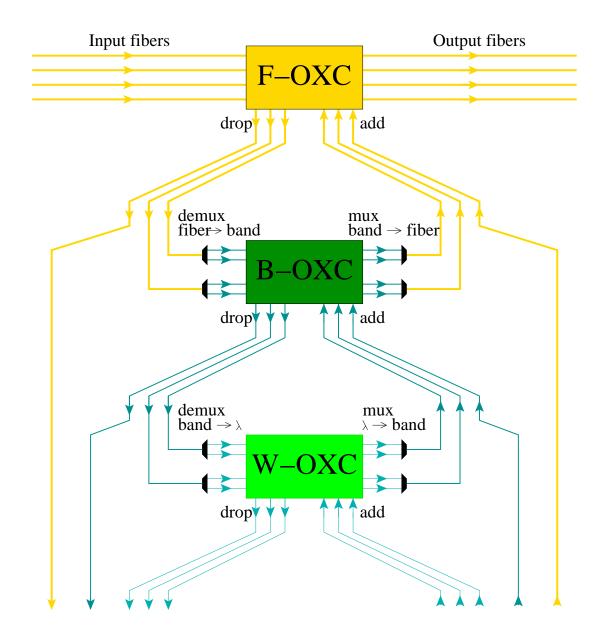
References

- Dutta & Rouskas, Traffic grooming in WDM Networks : past and future, IEEE Network, 16(6) 2002
- Modiano & Lin, Traffic grooming in WDM Networks, IEEE Communications magazine, 39(7) 2001
- Huiban, Pérennes & Syska, IEEE ICC, 2002
- Bermond, Coudert & Muñoz, ONDM, Feb 2003
- Bermond & Céroi, Networks, 41, 2003
- Bermond & Coudert, IEEE ICC, May 2003
- Bermond, De Rivoyre, Pérennes & Syska, submitted to Algotel

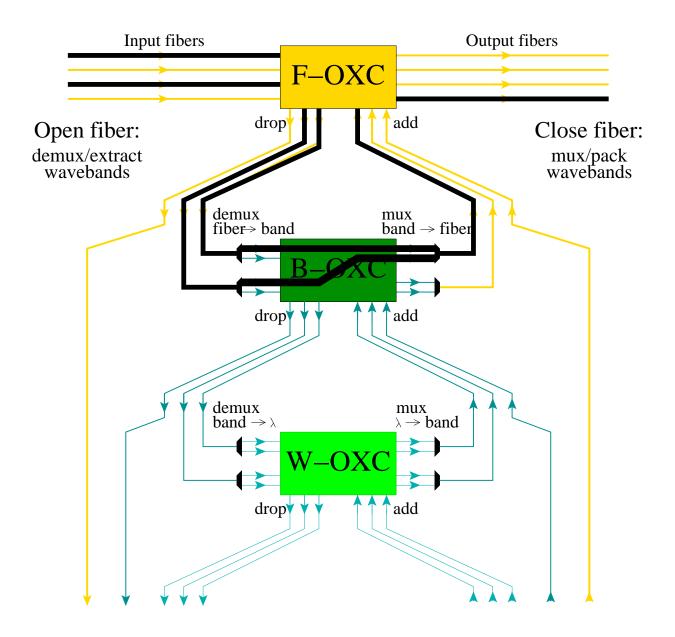
PORTO

- PORTO RNRT project with France Telecom R&D and Alcatel
- PORTO = "Planification et optimisation de réseaux de transport optique"
- group wawelengths into bands (example 8 wawelengths per band)
- group bands into fibers (example 4 bands per fiber)

A node (project PORTO)



Opening a Fiber



SONET/SDH

- SONET = Synchronous Optical NETwork (USA)
- SDH = Synchronous Digital Hierarchy (Europe)
 - STM = Synchronous Transfert Module

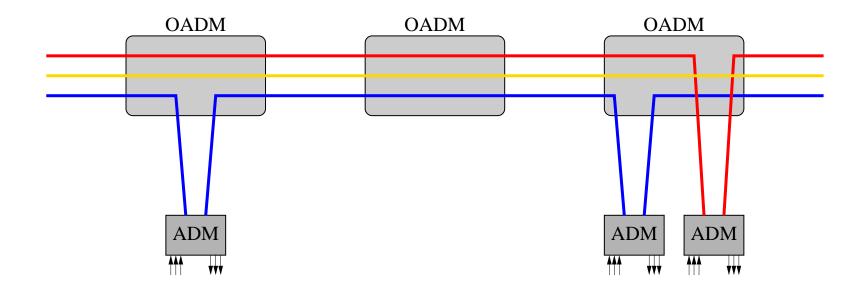
Aggregate low rate traffic streams on one wavelength

SONET/SDH

SONET	OC 1	OC 3	OC 4	OC 12	OC 16
SDH		STM-1		STM-4	
Bandwidth	52 Mb/s	155 Mb/s	\sim 255 Mb/s	655 Mb/s	\sim 1 Gb/s

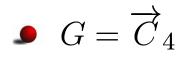
SONET	OC 48	OC 64	OC 192	OC 768
SDH	STM-16		STM-64	STM-256
Bandwidth	2.5 Gb/s	\sim 4 Gb/s	10 Gb/s	40 Gb/s

ADM & OADM

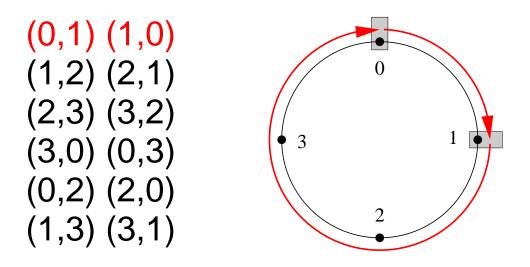


Idea: Use ADM only at initial and terminal nodes of requests (lightpaths)

Without grooming



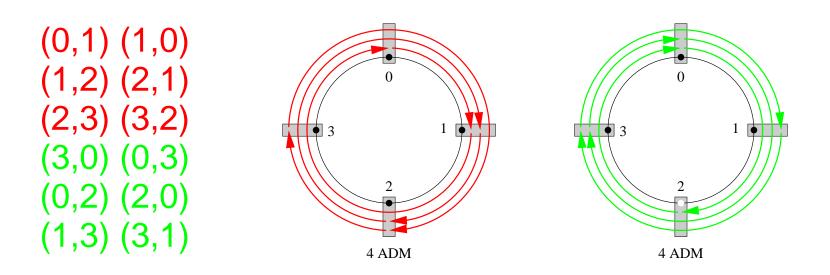
- All-to-all communications
 - All the couples of requests



• 12 requests \Rightarrow 6 wavelengths and 12 ADMs

With grooming

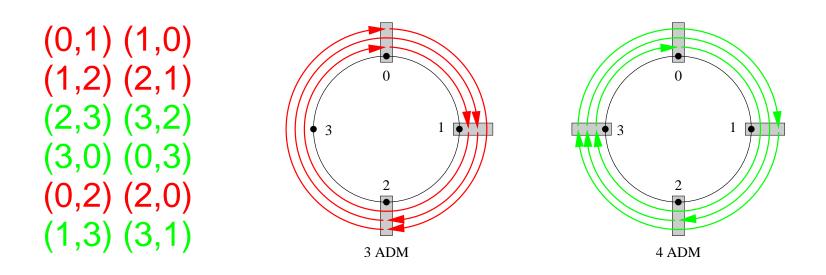
- Grooming factor C = 3
- All-to-all communications
 - All the couples of requests



2 wavelengths and 8 ADMs

With grooming (2)

- Grooming factor C = 3
- All-to-all communications
 - All the couples of requests



2 wavelengths and 7 ADMs

Grooming / Routing / Protection

- Focus on grooming
- But other important problems to be considered
 - Routing and allocation, RWA
 - Protection
- We consider unidirectional rings
 - Unique routing
 - Protection ensured by an opposite ring
 - Requests (A, B) and (B, A) use the same wavelength
 - \Rightarrow undirected requests graph

Grooming problem

- Inputs
 - Unidirectional SONET/WDM ring with N nodes
 - Set of symmetric requests, I
 1 request = 1 STM
 - Grooming factor, C 1 wavelength = C STM (1 request use 1/C of the bandwidth of the wavelength)
- Outputs
 - Aggregation of STM into wavelengths
- Goal:
 - Minimize the total number of ADMs

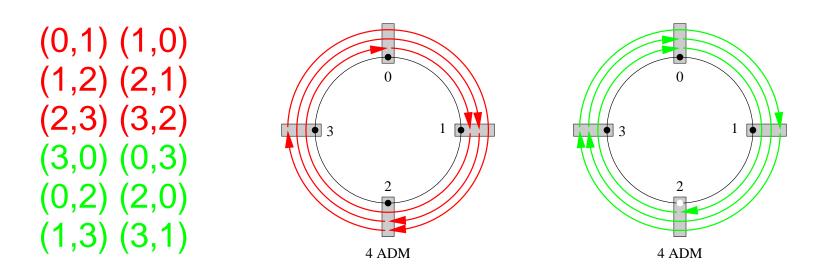
Modelization

- All-to-all unitary case: $I = K_N$
- 1 wavelength = 1 graph $G_i = (V_i, E_i)$, such that $|E_i| \leq C$.
 - An edge of $G_i = 1$ request
 - A node of $G_i = 1$ ADM

Inputs	complete graph K_N and grooming factor C
Outputs	Subgraphs $G_i = (V_i, E_i)$
	such that $ E_i \leq C$ and $\cup_i E_i = E$
Objectif	Minimize $\sum_i V_i $

With grooming

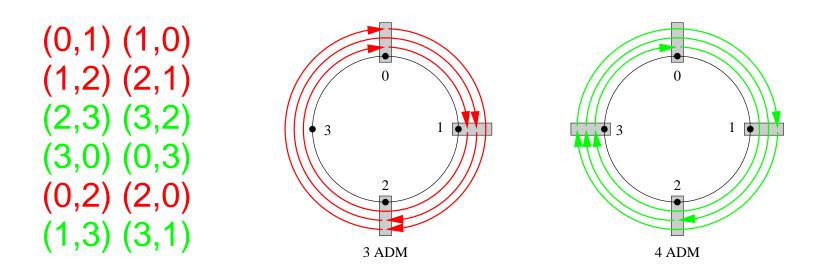
- Grooming factor C = 3
- All-to-all communications
 - All the couples of requests



2 wavelengths and 8 ADMs

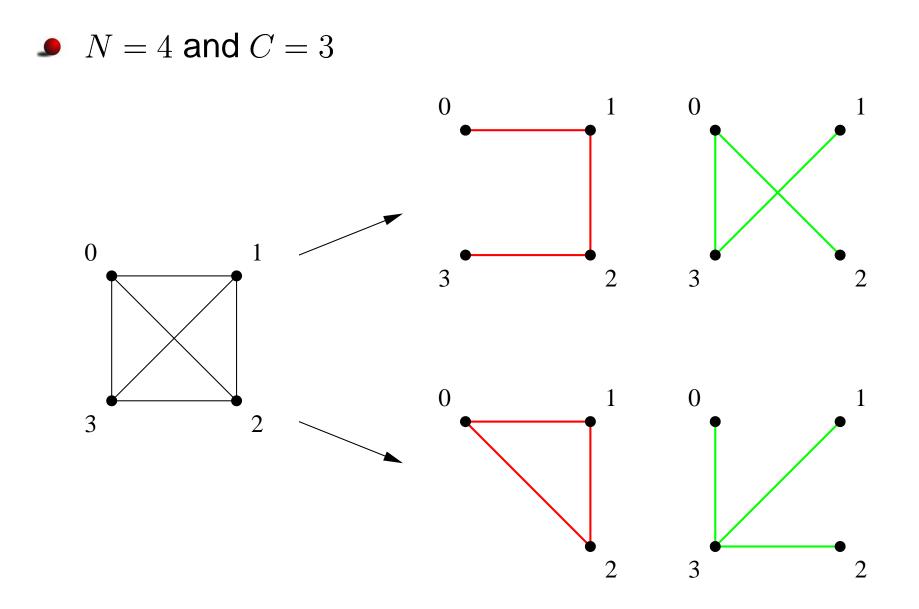
With grooming (2)

- Grooming factor C = 3
- All-to-all communications
 - All the couples of requests



2 wavelengths and 7 ADMs

Example



Objective

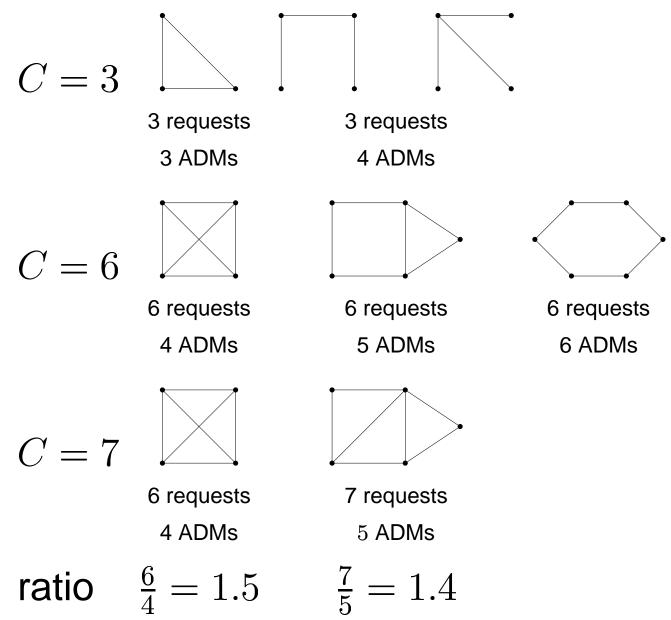
- Minimization of the number of wavelengths
 = put C requests per wavelength
- Minimization of the number of ADMs = find subgraphs G_i with $|E_i| \le C$ such that $\frac{|E_i|}{|V_i|}$ is maximized

Objective

- Minimization of the number of wavelengths
 = put C requests per wavelength
- Minimization of the number of ADMs
 = find subgraphs G_i with $|E_i| \le C$ such that $\frac{|E_i|}{|V_i|}$ is
 maximized
- For general instance I it was known that the objectives are different
- Conjecture (Chiu & Modiano): For All-to-All, the minimum number of ADMs can be obtained using the minimum number of wavelengths

[DISPROVED]

Example



• $\rho_{\max}(C) = \max_{m \le C} \{ \text{ ratio of graphs with } m \text{ edges } \}$

• Theorem:
$$A(C, N) \ge \frac{N(N-1)}{2\rho_{\max}(C)}$$

• $\rho_{\max}(C) = \max_{m \le C} \{ \text{ ratio of graphs with } m \text{ edges } \}$

• Theorem:
$$A(C, N) \ge \frac{N(N-1)}{2\rho_{\max}(C)}$$

- From Design Theory : *G*-Design of order N= partition the edges of K_N into subgraphs isomorphic to *G*
- Theorem: Given C, for an infinite number of values of N, $A(C, N) = \frac{N(N-1)}{2\rho_{\max}(C)}$.

• $\rho_{\max}(C) = \max_{m \le C} \{ \text{ ratio of graphs with } m \text{ edges } \}$

• Theorem:
$$A(C, N) \ge \frac{N(N-1)}{2\rho_{\max}(C)}$$

- From Design Theory : *G*-Design of order N= partition the edges of K_N into subgraphs isomorphic to *G*
- Theorem: Given C, for an infinite number of values of N, $A(C, N) = \frac{N(N-1)}{2\rho_{\max}(C)}$.

•
$$A(3,N) = \frac{N(N-1)}{2}$$
 when $N \equiv 1,3 \pmod{6}$ K_3

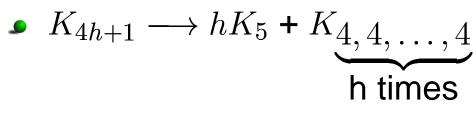
•
$$A(6,N) = A(7,N) = \frac{N(N-1)}{3}$$
 when $N \equiv 1,4 \pmod{12}$ K_4

•
$$A(16, N) = A(15, N) = \frac{N(N-1)}{5}$$
 when $N \equiv 1 \pmod{30}$ K_6

Example C=12

- Optimal graphs: K_5 and $K_{2,2,2}$
- **•** Theorem: If N = 4h + 1, A(12, 4h + 1) = h(4h + 1)

Proof:

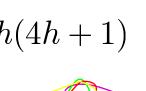


•
$$h \equiv 0 \text{ or } 1 \pmod{3}$$

• replacing each vertex by 2 vertices $\Rightarrow K_{4,4,\dots,4} \longrightarrow K_{2,2,2}$

• $h \equiv 0 \pmod{3}$ use a $K_{4,4,...,4,8}$

$$K_5$$
 K_5 K_5 K_5
 K_5 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5
 K_5 K_5 K_5
 K_5 K_5



Summarize of existing results

- **Small cases:** $N \le 16$ and C = 3, 4, 12, 16, 48, 64
 - Exemple: C = 48, N = 16, A = 32, before $29 \le A \le 34$
- C = 3 for all N [Bermond & Ceroi, Networks 03]
- C = 4 for all N [Hu, OSA JON 02]
- C = 5 for all N [Bermond, Colbourn, Ling & Yu, submitted]

●
$$C = 12$$
 and $N = 4h + 1$

•
$$C \ge \frac{N(N-1)}{6}$$
 for all N

•
$$\frac{k(k-1)}{2} \le C \le \frac{(k+1)(k-1)}{2}$$
 and $\begin{cases} \frac{N(N-1)}{2} \equiv 0 \mod \frac{k(k-1)}{2} \\ N-1 \equiv 0 \mod k-1 \end{cases}$

• Partition of K_N into K_k

Perspectives

- General set of requests
 - $\sim \sqrt{C}$ -approximation [Goldschmidt, Hochbaum, Levin & Olinick, *Networks 03*]
- Other topologies
 - Bidirectionnal ring

• C = 8 [Colbourn & Ling, *Discrete Math 03*]

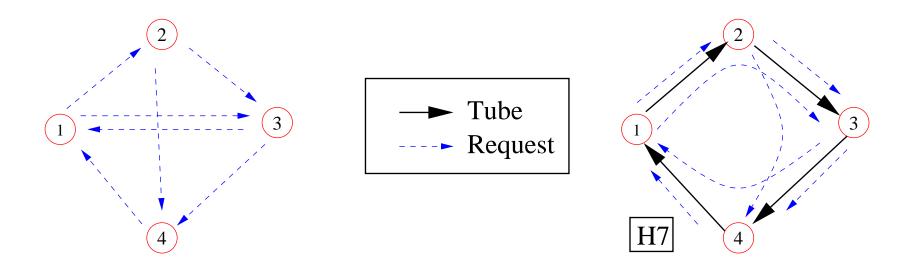
Tree of rings

Another problem

- Group REQUESTS (low speed components) into higher ones called PIPES.
- Here a request is routed via several pipes.
- Objective: Minimize the total number of pipes (only specific equipments like ADMs at the end of the pipes).
- grooming factor C = maximum of requests using the same pipe
- Remarks:
 - Problem different from the VPL (Virtual Path Layout) design problem where pipes can contain as many requests as wanted.
 - Here we don't consider the routing problem associated and the load parameter of the physical links.

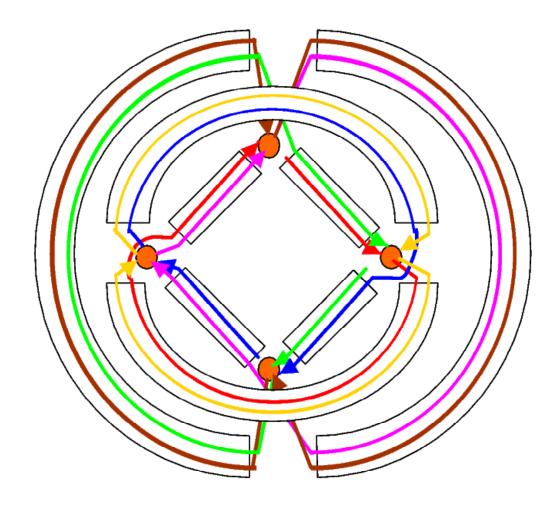
Grooming problem

- Input : traffic = set of directed requests = instance digraph
- Output : a virtual multidigraph H allowing the routing of the requests with at most C requests using one pipe
- Objective : Minimize the total number of pipes
- An example with 7 requests and C= 3 (4 pipes)



A second example

● I = All to All ; C=2 ; number of pipes : 8



- Theorem : The number of pipes T for grooming a simple traffic (at most one request from s to d) with R requests and grooming factor C is at least $\frac{2R}{C+1}$
- Proof : Let R_i be the number of requests using i pipes $R = \sum_i R_i$ and $T \ge R_1$

$$C \cdot T \geq \sum_{i} iR_{i} = 2R - R_{1} + \sum_{i \geq 3} (i-2)R_{i}$$

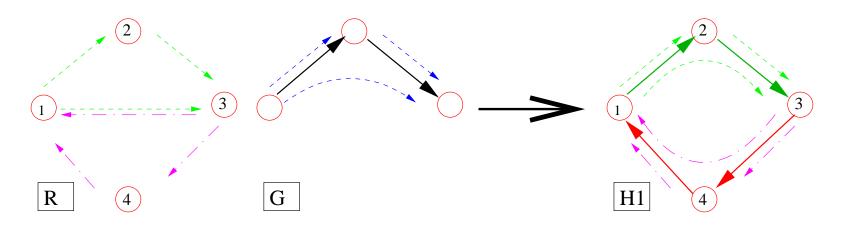
$$\geq 2R - T + \sum_{i \geq 3} (i-2)R_{i}$$

$$T \geq \frac{2R + \sum_{i \geq 3} (i-2)R_{i}}{C+1} \geq \frac{2R}{C+1}$$

- Lower bound attained if
 - all the pipes contain exactly C requests.
 - A request uses at most 2 pipes.
 - A pipe contains the request between its end nodes.

Constructions

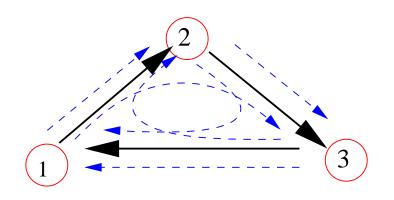
- Idea : Cover the set of requests I (arcs of I) into bricks
- Since I_j has R_j requests which can be groomed with a minimum number of pipes $T_j = \frac{2R_j}{C+1}$.
- example for C=2 using as bricks transitive tournaments TT3

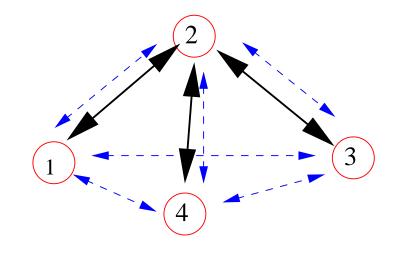


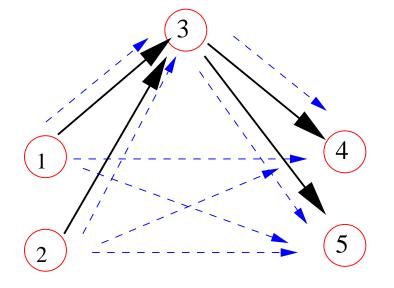
Results

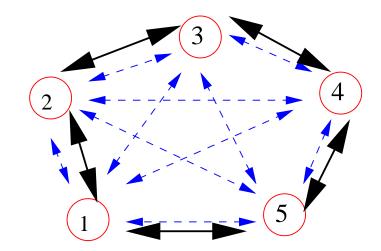
- For C = 2 the grooming problem is NP-complete (reduction to the partition into triangles)
- For C = 2 et n ≠ 2 mod [3], there exists a grooming with
 the minimum number of pipes (T = $\frac{2}{3}n(n-1)$) for I= All
 to All.
- For C = 3 and I = All to All, there exists a grooming with
 the minimum number of pipes T = $\frac{1}{2}n(n-1)$) for
 n ∉ {6,8}
- For general C fand I= All to All grooming with roughly $\frac{2R}{C}$ pipes

Bricks for C=3









Perspectives

- General instance I
 - Approximation algorithms for C=2?
- Influence of the physical network
 - What is the minimum number of pipes if we have to embed them with a given load.
 - Case of the path, the unidirectional ring, etc...
- More than two levels of grooming
 - Example SONET/SDH in wavelengths in bands in fibers.

Merci de votre attention

Ce n'est qu'un début, continuons le groupage !