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Abstract: Crawlers are deployed by a Web search engine for collecting information
from different Web servers in order to maintain the currency of its data base of Web
pages. We present studies on the optimization of Web search engines from different
perspectives. We first investigate the number of crawlers to be used by a search engine
so as to maximize the currency of the data base without putting an unnecessary load on
the network. Both the static setting, where crawlers are always active, and the dynamic
setting where, crawlers may be activated/deactivated as a function of the state of the
system, are addressed. We then consider the optimal scheduling of the visits of these
crawlers to the Web pages assuming these pages are modified at different rates. Finally,
we briefly discuss some other optimization issues of Web search engines, including page
ranking and system optimization.
Keywords: Web search engines, web crawlers, scheduling, optimal control, queues;
Markov decision process.

1.1 INTRODUCTION

The role of World Wide Web as a major information publishing and retrieving mech-
anism on the Internet is now predominant and continues to grow extremely fast. The
amount of information on the Web has long since become too large for manually
browsing through any significant portion of its hypertext structure. As a consequence,
a number of Web search engines have been developed in the last decade: starting from
the pioneering search engines such as Alta Vista, Lycos, Infoseek, Magellan, Excite,
to the most successful ones such as Yahoo and Google.
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Search engines have become an indispensable utility for Internet users. According
to a recent Pew Foundation Internet and Project (January 2005), “Search engines are
highly popular among Internet users. Searching the Internet is one of the earliest
activities people try when they first start using the Internet, and most users quickly
feel comfortable with the act of searching. Users paint a very rosy picture of their
online search experiences.”, and as of January 2005, “84% of internet users have used
search engines. On any given day, 56% of those online use search engines.”

Thus, technologies that enhance Web search engines are of high practical interest.
These search engines consist of indexing engines for constructing a data base of Web
pages, and in many cases crawlers for bringing information to the indexing engine.
To maintain currency and completeness of the data base, crawlers periodically make
recursive traversals of the Web’s hypertext structure by accessing pages, then the pages
referenced by these pages, and so on. In the literature one finds other colorful terms for
crawler, such as wanderer, robot or spider, and the notion of a crawler being ‘routed to’
or ‘visiting’ a page. This chapter keeps with the ‘crawler’ and ‘accessing’ terminology
throughout.

Traditionally, crawlers visit and index the Web pages until the data base reaches
certain size. Periodically, this process is repeated through the rebuilding of a brand
new data collection in replacement of the old one. Alternatively, the data base can be
refreshed or updated incrementally. Such an operational mode is sometimes referred
to as incremental crawler, see e.g. Cho and Garcia-Molina (2000b). Throughout this
chapter, we consider the latter mode, i.e. the incremental crawler, although most anal-
yses apply to the former as well.

Due to the critical role that these crawlers play in the Web search engines, the op-
timization issues are topics of a number of research papers. In this chapter we present
some of these research problems. Rather than providing comprehensive, but high-
level, discussions, we present detailed solutions to some of the technical problems.

More precisely, Section 1.2 considers both the issues of optimizing the number
of the crawlers to be deployed when all crawlers are always active (static setting –
Section 1.2.1), and of finding an optimal decision rule for the case where crawlers
may be activated/deactivated as a function of the state of the system (dynamic setting
– Section 1.2.2). Performance of static and dynamic policies are compared in Section
1.2.3. The optimal scheduling of the page visits of these crawlers is studied in Section
1.3. Finally, we provide pointers to some other issues such as page ranking and system
optimization (Section 1.4).

A word on the notation in use: bxc (respectively dxe) denotes the largest (respec-
tively smallest) integer less (respectively greater) than or equal to x. Also for any
mappings f and g, the relation f (x)

x∼g(x) is understood as limx→∞ f (x)/g(x) = 1.

1.2 OPTIMIZING THE NUMBER OF CRAWLERS

We first address in Section 1.2.1 the situation where crawlers are always active, re-
gardless of the state of the system, and we determine the optimal number of crawlers
to be deployed. Then, we move in Section 1.2.2 to the situation where crawlers may
be activated/deactivated as a function of the state of the system, and we find an optimal
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Figure 1.1 Model of search engine with two crawlers

decision rule for the number of active crawlers at any time. In both settings the cost
function is a weighted sum of the starvation probability and loss rate.

The results presented in this section are based on the work of Talim et al. (2001b)
and Talim et al. (2001a). Practical issues of deploying parallel crawlers are discussed
in Cho and Garcia-Molina (2002).

1.2.1 The Static Setting

The search engine is modeled as a single server finite capacity queue. The system
capacity is K ≥ 2 (including the position in the server), see Figure 1.1.

There are N ≥ 1 crawlers: each crawler brings new pages to the queue according
to a Poisson process with rate λ > 0. These N Poisson processes are assumed to be
mutually independent and independent of the indexing (service) times. Hence, new
pages are generated according to a Poisson process with intensity λN. An incoming
page finding a full queue is lost. Indexing times are assumed to be independent and
identically random variables with common distribution F(x). Let 1/µ be the expected
indexing time.
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The search engine is therefore modeled as the well known M/G/1/K queue (see
e.g. Cohen (1982,Chapter III.6)). In this notation we define the cost function as the
weighted sum of two terms:

the fraction of time that the system is empty, hereafter referred to as the starva-
tion probability;

the expected number of times when an arriving crawler finds a full system per
unit time, hereafter referred to as the loss rate.

Let X (resp. X∗) be the stationary queue-length at arbitrary epochs (resp. stationary
queue-length at arrival epochs) in a M/G/1/K queue with arrival rate λN and service
rate µ.

With ρ := Nλ/µ > 0 and for γ > 0 the cost function is then defined as

C(ρ,γ,K) := γ Prob(X = 0)+λN Prob(X∗ = K) (1.1)

with Prob(X = 0) and λN Prob(X∗ = K) the starvation probability and the loss rate,
respectively. Since Prob(X∗ = i) = Prob(X = i) for i = 0,1, . . . ,K from the PASTA
property Wolff (1982), (1.1) rewrites as

C(ρ,γ,K) = γ Prob(X = 0)+ρµ Prob(X = K) (1.2)

where λN in (1.1) has been replaced by ρµ.
Throughout Section 1.2.1 we will assume that indexing times are exponentially

distributed. The general case where the indexing times are arbitrarily distributed is
more involved, due to the lack of closed-form expressions for the M/G/1/K queue, and
is discussed in Talim et al. (2001b).

1.2.1.1 The M/M/1/K Search Engine Model. We assume that the in-
dexing times are exponentially distributed, namely, F(x) = 1− exp(−µx). In other
words, we model the search engine as an M/M/1/K queue.

In the M/M/1/K queue with traffic intensity ρ the stationary queue-length probabil-
ities at arbitrary epochs are given by Kleinrock (1975):

Prob(X = i) =
1−ρ

1−ρK+1 ρi (1.3)

for i = 0,1, . . . ,K. Therefore,

C(ρ,γ,K) =
(1−ρ)(γ+µρK+1)

1−ρK+1 . (1.4)

In particular, C(ρ,γ,K) = (γ+µ)/(K +1) when ρ = 1.
Lemma 1 shows the existence of a unique minimum for C(ρ,γ,K) considered as a

function of ρ. The proof is provided in Talim et al. (2001b).

Lemma 1 For any γ > 0, K ≥ 2, the mapping ρ →C(ρ,γ,K) has a unique minimum
in [0,∞), to be denoted ρ(γ,K). Furthermore, 0 < ρ(γ,K) < 1 if γ < γ(K), ρ(γ,K) = 1
if γ = γ(K) and ρ(γ,K) > 1 if γ > γ(K), with γ(K) := µ(K +2)/K. �
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We now return to the original problem, namely the computation of the number N
of crawlers that minimizes the cost function C(ρ,γ,K) with ρ = λN/µ. The answer is
found in the next result which is a direct corollary of Lemma 1.

Proposition 1 For any γ > 0, K ≥ 2, let N(γ,K) be the optimal number of crawlers to
use.

Then,

N(γ,K) = argminn C(nλ/µ,γ,K) (1.5)

with n ∈ {bρ(γ,K)µ/λc,dρ(γ,K)µ/λe}. Furthermore, N(γ,K) ≤ dµ/λe if γ < γ(K),
N(γ,K) ∈ {bµ/λc,dµ/λe} if γ = γ(K), and N(γ,K) ≥ bµ/λc if γ > γ(K). �

In the next section we investigate the impact of the parameter γ on the optimal
number of crawlers.

1.2.1.2 Impact of γ on the Optimal Number of Crawlers. Recall that
the parameter γ is a positive constant that allows us to stress either the probability of
starvation or the loss rate. Part of the impact of γ on ρ(γ,K), and therefore on N(γ,K),
the optimal number of crawlers, is captured in the following result.

Proposition 2 For any K ≥ 2, the mapping γ → ρ(γ,K) is nondecreasing in (0,∞),
with limγ→∞ ρ(γ,K) = ∞. �

Proof. Pick two constants 0 < γ1 < γ2 and define

∆(ρ,γ1,γ2,K) := C(ρ,γ2,K)−C(ρ,γ1,K)

=
1−ρ

1−ρK+1 (γ2 − γ1).

We assume that ρ(γ2,K) < ρ(γ1,K) and show that this yields a contradiction.
Under the condition γ1 < γ2 the mapping ρ → ∆(ρ,γ1,γ2,K) is decreasing in [0,∞).

Therefore,

0 < ∆(ρ(γ2,K),γ1,γ2,K)−∆(ρ(γ1,K),γ1,γ2,K)

= [C(ρ(γ2,K),γ2,K)−C(ρ(γ1,K),γ2,K)]

+[C(ρ(γ1,K),γ1,K)−C(ρ(γ2,K),γ1,K)]

≤ 0, (1.6)

which contradicts the fact that ρ → ∆(ρ,γ1,γ2,K) is decreasing in [0,∞). Therefore
ρ(γ2,K) ≥ ρ(γ1,K) and the mapping γ → ρ(γ,K) is nondecreasing in [0,∞). We may
then define L := limγ→∞ ρ(γ,K).

From the identity ∂C(ρ,γ,K)/∂ρ = 0 for ρ = ρ(γ,K) (see Lemma 1) we obtain

0 = µρ(γ,K)2(K+1)− (γK +µ(K +2))ρ(γ,K)K+1

+(K +1)(µ+ γ)ρ(γ,K)K − γ. (1.7)
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Figure 1.2 γ → N(γ,K) for 1/λ = 0.6 and µ = 1

Assume that L < ∞. Letting γ → ∞ in (1.7) yields
(

KLK+1 − (K +1)LK +1
)

lim
γ→∞

γ

= µLK (LK+2 − (K +2))L+(K +1)
)

. (1.8)

Since L > 1 (we have shown in Lemma 1 that ρ(γ,K) > 1 for γ > µ(K + 2)/K) it is
easily seen that KLK+1 − (K + 1)LK + 1 > 0, which implies that the l.h.s. of (1.8)
is infinite whereas the r.h.s. is finite. Therefore, (1.8) cannot hold if L < ∞ and
limγ→∞ ρ(γ,K) = ∞. This concludes the proof.

Proposition 2 has a simple physical interpretation. As the parameter γ increases the
probability of starvation becomes the main quantity to minimize. Hence, the mini-
mization is done by increasing the arrival rate or, equivalently, by increasing the num-
ber of crawlers, as shown in Proposition 2. Figure 1.2 provides two numerical exam-
ples illustrating the monotonicity of the optimal number of crawlers as a function of
γ.

1.2.1.3 Impact of K on the Optimal Number of Crawlers. In this
section we examine the behavior of ρ(γ,K) as a function of K.

The following results hold (see Talim et al. (2001b)):

Proposition 3

(a) If 0 < γ ≤ µ then the mapping K → ρ(γ,K) is nondecreasing in [2,∞);

(b) If γ > µ then there exists an integer K0 ≥ b2u/(γ−λ)c such that the mapping
K → ρ(γ,K) is nondecreasing in [2,K0 −1] and non-increasing in [K0,∞). �

The next proposition examines the limiting behavior of ρ(γ,K) as K increases to in-
finity.
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Proposition 4 For any γ > 0,

lim
K→∞

ρ(γ,K) = 1. (1.9)

�

Proof. Let M := limK→∞ ρ(γ,K), where the existence of the limit follows from
Proposition 3.

Letting now K → ∞ in (1.7) we see that the r.h.s. converges to −γ if M < 1 and
converges to infinity if M > 1, thereby showing that necessarily M = 1, which con-
cludes the proof.

Proposition 4 shows that the optimal arrival rate converges to the service capacity
when the buffer size increases to infinity.

The limiting result (1.9) can be used to derive an approximation for the optimal
number of crawlers to be deployed when K is large. Indeed, the relation

lim
K→∞

N(γ,K) = lim
K→∞

arg min
n∈{bµ/λc,dµ/λe}

C(λn/µ,γ,K), (1.10)

which follows from (1.5), suggests the following approximation, for large K

N(γ,K)
K∼







dµ/λe if C(ρ+,γ,∞) ≤C(ρ−,γ,∞)

bµ/λc if C(ρ+,γ,∞) > C(ρ−,γ,∞)
(1.11)

with the notation

C(ρ,γ,∞) := limK→∞ C(ρ,γ,K), ρ+ := (λ/µ)dµ/λe and ρ− := (λ/µ)bµ/λc.

Since C(ρ,γ,∞) = γ(1−ρ) for ρ ≤ 1 and C(ρ,γ,∞) = −µ(1−ρ) for ρ ≥ 1 from
(1.4), we may rewrite (1.11) as

N(γ,K)
K∼







dµ/λe if −µ(1−ρ+) ≤ γ(1−ρ−)

bµ/λc if −µ(1−ρ+) > γ(1−ρ−).
(1.12)

The mapping K → ρ(γ,K) is displayed in Figure 1.3 for γ < µ and in Figure 1.4
for γ > µ. Table 1.1 gives N(γ,K) for different values of K and compare these values
with the approximation (1.12) (last column in Table 1.1). The approximation (1.12)
appears to be fairly sensitive to model parameters; however, in all but one case (1.12)
lies within 10% of the exact value as soon as K ≥ 10. We also observe that the quality
of the approximation increases when γ increases (within 10% of the exact value for
γ = 2 for all K ≥ 2).
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Table 1.1 K → N(γ,K) for λ = 0.01 and µ = 1

K : 2 3 4 5 10 20 30 40 50 ∞

γ = 0.1 20 34 44 52 72 85 89 92 94 100

γ = 0.5 48 63 71 77 89 95 96 97 98 100

γ = 1.2 77 88 93 96 100 101 101 101 100 100

γ = 1.5 86 96 100 102 103 102 102 101 101 100

γ = 2 100 107 109 109 107 104 103 102 102 100

1.2.2 The Dynamic Setting

In this section we assume that the number of active crawlers may vary in time ac-
cording to the backlog in the queue and to the number of crawlers already active. To
address this situation we will cast our model into the Markov Decision Process (MDP)
framework (Bertsekas, 1987; Puterman, 1994; Ross, 1983).

The indexing engine is again modeled as a finite-capacity single-server queue. Ser-
vice times still constitute independent random variables with common negative expo-
nential distribution (with mean 1/µ) and the buffer may accommodate at most K ≥ 2
customers, including the one in service, if any. There are N available crawlers and
each of these crawlers, when activated, brings pages to the server according to a Pois-
son process with rate λ. We assume that these N Poisson processes are mutually
independent and further independent of the service time process.

The new feature in this section is that the number of active crawlers may be mod-
ified at any arrival and at any departure epoch. When an arrival occurs, the incoming
crawler is deactivated at once; the controller may then decide to keep it idle or to re-
activate it. When a departure occurs the controller may either decide to activate one
additional crawler, if any available, or to do nothing (i.e. the number of active crawlers
is not modified).

The objective is to find a policy (to be defined) that minimizes a weighted sum of
the stationary starvation probability and the loss rate.

We now introduce the MDP setting in which we will solve this optimization problem.
Since the time between transitions is variable we will use the uniformization method
(Bertsekas, 1987,Sec. 6.7).

At the n-th decision epoch tn the state of the MDP is represented by the triple xn =
(qn,rn,sn) ∈ {0,1, . . . ,K}×{0,1, . . . ,N}×{0,1,2}, with qn and rn the queue-length
and the number of active crawlers just before the n-th decision epoch, respectively,
and sn the type (arrival, departure, fictitious – see below) of the n-th decision epoch.
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The successive decision epochs {tn,n ≥ 1} are the jump times of a Poisson process
with intensity ν := λN +µ, independent of the service time process. In this setting, the
n-th decision epoch tn corresponds to an arrival in the original system with probability
λrn/ν (in which case sn = 1), to a departure with probability µ/ν provided that qn > 0
(sn = 0) and to a fictitious event with the complementary probability ((N−rn)λ+µ)/ν
(sn = 2).

Let an ∈{0,1} be the action chosen at time tn. We assume that an = 1 if the decision
is made to activate one additional crawler, if any available, and an = 0 if the decision
is made to keep unchanged the number of active crawlers. By convention we assume
that an = 0 if the n-th decision epoch corresponds to a fictitious event (sn = 2).

From the above definitions we see that states of the form (•,0,1) and (0,•,0) are
not feasible, as an arrival cannot occur if all crawlers are inactive and a departure
cannot occur if the queue is empty, respectively. Therefore, the state-space for this
MDP is

{(q,r,s),0 ≤ q ≤ K,0 ≤ r ≤ N,s = 0,1,2}
−{(0,r,0),(q,0,1),0 ≤ q ≤ K,0 ≤ r ≤ N}.

However, this set contains one absorbing state, the “fictitious” state (0,0,2). To re-
move this undesirable state we will only consider policies (see formal definition be-
low) that always choose action a = 1 when the system is in state (1,0,0) so that (0,0,2)
can never be reached. This is not a severe restriction since a policy that never activates
crawlers when the system is empty is of no interest. In conclusion, the state space for
this MDP is

X := {(q,r,s),0 ≤ q ≤ K,0 ≤ r ≤ N,s = 0,1,2}
−{(0,0,2),(0,r,0),(q,0,1),0 ≤ q ≤ K,0 ≤ r ≤ N}

and the set Ax of allowed actions when the system is in state x = (q,r,s) ∈ X is given
by

Ax =







{0} if s = 2
{1} if (q,r,s) = (1,0,0)
{0,1} otherwise.

To complete the definition of the MDP we need to introduce the one-step cost c and
the one-step transition probabilities p. Given that the process is in state x = (q,r,s)
and that action a is made, the one-step cost is defined as

c(x) = γ1(q = 0)+ν1(q = K,s = 1), (1.13)

independent of a. We will show later on in this section that this choice for the one-step
cost will allow us to address, and subsequently to solve, the optimization problem at
hand.
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For x ∈ X, the one-step transition probabilities px,x′(a) are given by

px,x′(a) =







































µ
ν

1(q > 1) if x′ = (q−1,min{r +a,N},0)

λr
ν

if x′ = (q−1,min{r +a,N},1)

1− µ1(q > 1)−λr
ν

if x′ = (q−1,min{r +a,N},2)

(1.14)

if s = 0, a = 0,1;

px,x′(a) =







































µ
ν

if x′ = (min{q+1,K},r +a−1,0)

λ(r +a−1)

ν
if x′ = (min{q+1,K},r +a−1,1)

1− µ+λ(r +a−1)

ν
if x′ = (min{q+1,N},r +a−1,2)

(1.15)

if s = 1, a = 0,1;

px,x′(0) =







































µ
ν

1(q > 0) if x′ = (q,r,0)

λr
ν

if x′ = (q,r,1)

1− µ1(q > 0)+λr
ν

if x′ = (q,r,2)

(1.16)

if s = 2. All other transition probabilities are equal to 0.
Without loss of generality we will only consider pure stationary policies since it

is known that nothing can be gained by considering more general policies (Puterman,
1994,Ch. 8-9). Recall that in the MDP setting a policy π is pure stationary if, at any
decision epoch, the action chosen is a non-randomized and time-homogeneous map-
ping of the current state (Bertsekas, 1987; Puterman, 1994; Ross, 1983). We define an
admissible stationary policy as any mapping π : X →{0,1} such that π(x) ∈ Ax.

For later use introduce P(π) := [px,x′(π(x))](x,x′)∈X×X, the transition probability ma-
trix under the stationary policy π.

Let P be the class of all admissible stationary policies. For any policy π ∈ P
introduce the long-run expected average cost per unit time

Wπ(x) = lim
n→∞

1
n

Eπ

[

n

∑
i=1

c(xi) |x1 = x

]

, x ∈ X. (1.17)

The existence of the limit in (1.17) is a consequence of the fact that π is stationary and
X is countable (Puterman, 1994,Proposition 8.1.1).
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We shall say that a policy π? ∈ P is average cost optimal if

Wπ?(x) = inf
π∈P

Wπ(x) ∀x ∈ X. (1.18)

In order to use results from MDP theory for average cost models we first need
to determine to which class (recurrent, unichain, multichain, communicating, etc.)
the current MDP belongs to. Consider the following example: N = 2 and let π be
any stationary policy that selects action 1 in states (•,r,1) for r ∈ {1,2} and in state
(1,0,0), and action 0 otherwise. It is easily seen that this policy induces a MDP with
two recurrent classes (X∩{(•,1,•)} and X∩{(•,2,•)} and a set of transient states
(X∩{•,0,•}). We therefore conclude from this example that the MDP {xn,n ≥ 1} is
multichain (Puterman, 1994,p. 348).

An MDP is communicating (Puterman, 1994,p.348) if, for every pair of states
(x,x′) ∈ X×X, there exists a stationary policy π such that x′ is accessible from x,
that is, if there exists n ≥ 1 such that Pn

x,x′(π) > 0, where Pn
x,x′(π) is the (x,x′)-entry of

the matrix Pn(π).

Lemma 2 The MDP (xn,n ≥ 1) is communicating. �

The proof of Lemma 2 is given in (Talim et al., 2001a). The next result follows from
Lemma 2 and Proposition 4 in (Bertsekas, 1987,Sec. 7.1):

Proposition 5 There exists a scalar θ and a mapping h : X → IR such that, for all
x ∈ X,

θ+h(x) = c(x)+ min
a∈Ax

∑
x′∈X

px,x′(a)h(x′) (1.19)

with θ = infπ∈P Wπ(x) for all x ∈ X, while if π?(x) attains the minimum in (1.19) for
each x ∈ X, then the stationary policy π? is optimal. �

The optimal average cost θ and the optimal policy π? in Proposition 1.17 can be
computed by using the following recursive scheme, known as the relative value itera-
tion algorithm.

Proposition 6 Let x̂ be a fixed state in X and 0 < τ < 1 be a fixed number. For k ≥ 0,
x ∈ X, define the mappings (hk, k ≥ 0) as

hk+1(x) = (1− τ)hk(x)+ τ(T (hk)(x)−T (hk)(x̂))

with
T (hk)(x) := c(x)+ min

a∈Ax
∑

x′∈X

px,x′(a)hk(x
′),

where h0(x̂) = 0 but otherwise h0 is arbitrary.
Then, the limit h(x) = limk→∞ hk(x) exists for each x ∈ X, θ = τT (h)(x̂), and the

optimal action π?(x) in state x is given by π?(x) ∈ argmina∈Ax ∑x′∈X px,x′(a)h(x′). �

Proof. Since the MDP is communicating (cf. Lemma 2) the proof follows from
Puterman (1994,Sec. 8.5,9.5.3) (see also Bertsekas (1987,Prop. 4, p. 313 )).
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We now return to our initial objective, namely, minimizing a weighted sum of the
stationary starvation probability and the loss rate. To see why the solution to this
problem is given by the solution to the MDP problem formulated in this section, it
suffices to show that the average cost (1.17) is a weighted sum of the stationary star-
vation probability and the loss rate. It should be clear, however, that this result cannot
hold for policies that induce an average cost (1.17) that depends on the initial state x
as, by definition, the stationary starvation probability and the loss rate are independent
of the initial state. We will therefore restrict ourselves to the class P0 ⊂ P of policies
that generate a constant average cost, namely, P0 = {π∈ P : Wπ(x) =Wπ(x′),∀x∈X}.

The set P0 is non-empty as it is well-known that it contains, among others, all
unichain policies (Puterman, 1994,Proposition 8.2.1). Among such policies is the
static policy πN that always maintain N crawlers active, namely, πN(x) = 1 for all
x = (•,•,s) ∈ X with s = 0,1 and πN(x) = 0 for all x = (•,•,2) ∈ X.

We may also note that reducing the search for an optimal policy to policies in
P0 does not yield any loss of generality as it is also known that there always exits
an optimal policy with constant average cost in the case of communicating MDP’s
(Puterman, 1994,Proposition 8.3.2).

Fix π ∈ P0. Introducing (1.13) into (1.17) yields Wπ(x) = γSπ(x)+Lπ(x) with

Sπ(x) = lim
n→∞

1
n

Eπ

[

n

∑
i=1

1(qi = 0) |x1 = x

]

Lπ(x) = ν lim
n→∞

1
n

Eπ

[

n

∑
i=1

1(qi = K,si = 1) |x1 = x

]

.

In the following we will drop the argument x in Sπ(x) and Lπ(x) since these quantities
do not depend on x from the definition of P0.

Let us now interpret Sπ and Lπ. Sπ is the stationary probability that the system
is empty at decision epochs. Since the decision epochs form a Poisson process, we
may conclude from the PASTA property (Wolff, 1982) that Sπ is also equal to the
stationary probability that the system is empty at arbitrary epoch with is nothing but
the stationary starvation probability.

Let us now consider Lπ. Recall that {tn,n ≥ 1}, the successive decision instants, is
a Poisson process with intensity ν and assume without loss of generality that t1 = 0 a.s.
Define A(t) as the total number of customers that have arrived to the queue up to time
t, including customers which have been lost, and let Q(t) be the queue length at time
t. We assume that the sample paths of the processes {A(t), t ≥ 0} and {Q(t), t ≥ 0}
are right-continuous with left limit. With these definitions and the identity E[tn] = n/ν
we may rewrite Lπ as

Lπ = lim
n→∞

Eπ
[
R tn

0 1(Q(t−) = K)dA(t)
]

E[tn]
.

In other words, we have shown that Lπ is the ratio, as n tends to infinity, of the expected
number of losses during the first n decision epochs over the expected occurrence time
of the n-th decision epoch.
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The interpretation of Lπ as a loss rate now follows from the identity

Lπ = lim
n→∞

Eπ
[
R tn

0 1(Q(t−) = K)dA(t)
]

E[tn]

= lim
T→∞

1
T

Eπ

[

Z T

0
1(Q(t−) = K)dA(t)

]

, ∀π ∈ P0, (1.20)

upon noticing that the latter quantity represents the mean number of losses per unit
time or the loss rate. The second identity in (1.20) is a direct consequence of the
theory of renewal reward processes (Ross, 1983,Theorem 7.5) and of the definition of
the set P0.

In summary, we have shown that for any policy π in P0 the average cost is

Wπ = γSπ +Lπ,

with Sπ the starvation probability and Lπ the loss rate.

The optimal policy has been computed for different values of the model parame-
ters. Figures 1.5-1.7 display the optimal policy for N = 16, K = 5, λ = 0.1, µ = 1
and for different values of γ (γ < γ(K) = 1.4, γ = γ(K) and γ > γ(K)). The results
were obtained by running the value iteration algorithm given in Proposition 6 with the
stopping criterion maxx∈X |(hk+1(x)− hk(x))/hk(x)| < 10−5 (254, 255 and 256 iter-
ations were needed to compute the optimal policy displayed in Figures 1.5, 1.6 and
1.7, respectively). We see from these figures that the optimal policy is a monotone
switching curve, namely, there exist two monotone (decreasing here) integer map-
pings fs : {0,1, . . . ,N} → {0,1,2, . . .}, s ∈ {0,1}, such that π?(x) = 1( fs(r) ≥ q) for
all x = (q,r,s)∈ X with s = 0,1 (we must also have f0(0)≥ 1 so that π?(1,0,0) = 1 as
required). We conjecture that the optimal policy always exhibits such a structure but
we have not able been to prove it.
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Figure 1.5 Optimal policy (γ = 1, Cost = 0.20907)
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Figure 1.6 Optimal policy (γ = 1.4, Cost = 0.25924)
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Figure 1.7 Optimal policy (γ = 2, Cost = 0.32211)

1.2.3 Static Versus Dynamic Policies

In this section we compare static and dynamic policies in the case where the indexing
times are exponentially distributed. The results are reported in Tables 1.2 and 1.3.
Throughout the experiments µ = 1. For different sets of parameters λ,K,γ, we first
computed the optimal number of crawlers Ns (given by Proposition 1) and the average
cost Cs (given in (1.4)) in the static setting.

Then, for each set of parameters λ,K,γ, we set the value of the number of available
crawlers N to Ns and determined, via the relative value iteration algorithm given in
Proposition 6 (with τ = 0.99999 – the closer τ is from 1 the faster the algorithm con-
verges), the optimal average cost Cd (given in (1.18)) as well as the minimum (Nmin)
and the expected (N) number of crawlers activated by the optimal dynamic policy.
These results can be found in Table 1.2.

We stopped the numerical procedure when the relative error between two consec-
utive iterates was (uniformly) less than 10−5. The number of iterations (Niter) and the
relative improvement (100%× (Cs −Cd)/Cd) are also reported in Table 1.2.

Last, we computed the overall optimal dynamic policy by removing the restriction
on the number of available crawlers. The optimal average cost Cd as well as the
minimum (Nmin), expected (N) and maximum (Nmax) number crawlers used by the
overall optimal dynamic policy are given in Table 1.3.

We observe that substantial gains may be achieved by dynamically controlling the
activity of the crawlers. When the number of available crawlers is set to Ns (Table 1.2)
the relative improvement w.r.t. to the optimal static policy ranges from 4% to 103%
for the considered model parameters; when the restriction on the number of avail-
able crawlers is removed then the improvement ranges from 6% to 3226%! The gain
appears to be an increasing function of the queue size K and of the arrival rate λ.
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Table 1.2 Static vs. dynamic policies (with µ = 1 and τ = 0.99999)

Static Approach Dynamic Approach
λ K γ Cs Ns Cd Nmin N̄ Niter Rel. Impr.

0.01 5 0.4 0.17541 73 0.16804 57 70.3 1634 4%
- - 1.4 0.40000 100 0.38336 86 95.1 1911 4%
- - 2.4 0.53834 114 0.51746 101 108.4 2051 4%

0.01 10 0.4 0.10207 86 0.09062 60 82.6 1794 13%
- - 1.2 0.20000 100 0.17534 77 94.1 1939 14%
- - 2.4 0.28347 110 0.24798 88 102.3 2039 14%

0.01 15 0.4 0.07177 91 0.05891 58 87.7 1860 22%
- - 1.13 0.13313 100 0.10720 70 94.5 1953 24%
- - 2.4 0.19192 107 0.15342 78 99.7 2024 25%

0.05 5 0.4 0.17578 15 0.15127 7 13.8 338 16%
- - 1.4 0.40000 20 0.34733 12 17.7 391 15%
- - 2.4 0.53841 23 0.46583 15 20.2 422 16%

0.05 10 0.4 0.10220 17 0.08308 5 16.2 369 23%
- - 1.2 0.20000 20 0.14955 8 18.2 402 34%
- - 2.4 0.28347 22 0.20541 10 19.4 423 38%

0.05 15 0.4 0.07184 18 0.05514 4 17.4 401 30%
- - 1.13 0.13313 20 0.09117 6 18.7 426 46%
- - 2.4 0.19372 21 0.13895 8 19.3 438 39%

0.1 5 0.4 0.17600 7 0.15239 1 6.5 167 15%
- - 1.4 0.40000 10 0.32198 4 8.6 200 24%
- - 2.4 0.54067 11 0.44989 5 9.3 211 20%

0.1 10 0.4 0.10403 9 0.06838 0 8.4 204 52%
- - 1.2 0.20000 10 0.13854 2 9.0 218 44%
- - 2.4 0.28347 11 0.18585 3 9.6 227 53%

0.1 15 0.4 0.07184 9 0.05326 0 8.7 312 35%
- - 1.13 0.13313 10 0.08538 1 9.3 359 56%
- - 2.4 0.19458 11 0.09606 1 9.7 376 103%
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Table 1.3 Static vs. dynamic policies (with µ = 1 and τ = 0.99999)

Static Approach Dynamic Approach
λ K γ Cs Ns Cd Nmin N̄ Nmax Rel. Impr.

0.01 5 0.4 0.17541 73 0.16595 58 74.8 82 6%
- - 1.4 0.40000 100 0.37886 88 99.9 115 6%
- - 2.4 0.53834 114 0.51179 103 113.0 133 5%

0.01 10 0.4 0.10207 86 0.08124 62 89.3 105 27%
- - 1.2 0.20000 100 0.15876 78 99.6 123 26%
- - 2.4 0.28347 110 0.22777 89 107.1 137 24%

0.01 15 0.4 0.07177 91 0.04236 59 94.9 118 69%
- - 1.13 0.13313 100 0.07812 71 99.8 131 70%
- - 2.4 0.19192 107 0.11493 79 103.6 143 67%

0.05 5 0.4 0.17578 15 0.13770 7 15.9 20 28%
- - 1.4 0.40000 20 0.31712 13 19.8 27 26%
- - 2.4 0.53841 23 0.43292 16 21.9 32 24%

0.05 10 0.4 0.10220 17 0.04128 5 19.0 29 148%
- - 1.2 0.20000 20 0.12020 8 19.9 33 66%
- - 2.4 0.28347 22 0.20541 10 20.6 36 38%

0.05 15 0.4 0.07184 18 0.00969 2 19.8 35 641%
- - 1.13 0.13313 20 0.01818 4 20.0 38 632%
- - 2.4 0.19372 21 0.02782 6 20.1 41 596%

0.1 5 0.4 0.17600 7 0.11097 2 8.2 12 59%
- - 1.4 0.40000 10 0.25924 4 9.8 16 54%
- - 2.4 0.54067 11 0.35805 6 10.7 18 51%

0.1 10 0.4 0.10403 9 0.01937 0 9.7 18 437%
- - 1.2 0.20000 10 0.03887 1 9.9 20 415%
- - 2.4 0.28347 11 0.05894 2 10.1 22 381%

0.1 15 0.4 0.07184 9 0.00188 0 10.0 24 3721%
- - 1.13 0.13313 10 0.00368 0 10.0 25 3518%
- - 2.4 0.19458 11 0.00585 0 10.0 27 3226%

1.3 OPTIMAL SCHEDULING OF THE CRAWLERS

We now turn to the problems of scheduling a crawler that maintains the currency of
existing pages in search-engine data bases. For sake of arguments, we assume that the
set of Web pages is fixed. However, as we shall see, our results can be promoted as
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heuristics that acquire new pages and drop old pages over time. A specific objective
will be to find crawler schedules that minimize the obsolescence of the data base in
some useful sense. For example, assume there are N Web pages, labeled 1,2, . . . ,N,
which are to be accessed repeatedly by a crawler, the duration of each access being
an independent sample from a given distribution. Assume also that the contents of
page i are modified at times that follow a Poisson process with parameter µi. A page
is considered up-to-date by the indexing engine from the time it is accessed by the
crawler until the next time it is modified, at which point it becomes out-of-date until
the crawler’s next access. Let ri be the fraction of time page i spends out-of-date.
The problem is to find relative page-access frequencies and a sequencing policy that
realizes these frequencies such that the objective function C = ∑1≤i≤N ciri, is mini-
mized, where the ci are given weights. Under simplifying but plausible assumptions
on the weights, page access times, and the class of allowed policies, we obtain explicit
solutions to this problem.

From a theoretical point of view, our problem is closely related to those multiple-
queue single-server systems usually called polling systems in the queueing literature.
Indeed, the crawler can be considered as the server and the pages as the stations in
the polling system. The durations of consecutive page accesses correspond to switch-
over times and the page modifications correspond to customer arrivals. The service
times in this polling system are zero. Our two-stage approach of optimizing crawler
schedules (determining access frequencies and then finding a schedule that realizes
them) is similar to the approach in Borst (1994), Borst et al. (1994) and Boxma et al.
(1993) of optimizing visit sequences in polling systems.

An extensive literature exists on the analysis and control of polling systems. The
interested reader is referred to the book of Takagi (1986) for general references; the
special issue of the journal Queueing Systems, Vol. 11 (1992) on polling models and
the recent thesis of Borst (1994) can be consulted for more recent developments. In
particular, the polling systems with zero service times were motivated by communi-
cation networks such as teletext and videotex where pages of information are to be
broadcast to terminals connected to a computer network (Ammar and Wong, 1987;
Dykeman et al., 1986; Liu and Nain, 1992). However, the problem here has not been
analyzed. Indeed, in the usual analysis of polling systems with unbounded buffers, in-
terest centers on mean waiting times and mean queue lengths, whereas in our problem,
the performance measure of interest, viz., the obsolescence time, corresponds to the
maximum waiting time of a customer during a visit cycle of the server. An alternative
view of our model identifies it with a polling loss system having unit buffers, in which
our obsolescence time becomes the waiting time. With this point of view, our model
has potential use in maintenance applications.

The next subsection is devoted to a precise formulation of our model, and a review
of some useful concepts in stochastic ordering theory. Section 1.3.2 begins by prov-
ing two properties of crawler scheduling policies: (i) expected obsolescence times
increase as the page-access time increases in the increasing-convex-ordering sense,
and (ii), by Schur-convexity results, accesses to any given page should be as evenly
spaced as possible. We then derive a tight lower bound on the cost function C assum-
ing that the weights ci are proportional to the µi. These results yield a formula for
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optimal access frequencies. Our techniques can be extended to general ci, but explicit
formulas are not attainable in general.

To motivate the assumption on weights, note that a useful choice for the ci is the
customer page-access frequency, for in this case the total cost can be regarded as a
customer total error rate. The special case where the customer access frequency ci

is proportional to the page-change rate µ is reasonable under this interpretation - the
greater the interest (access frequency), the greater the frequency of page modification.

Sections 1.3.3 and 1.3.4 deal with the problem of sequencing page accesses opti-
mally, or near optimally, so as to realize a given set of access frequencies. This mate-
rial is prefaced by a discussion at the end of Section 1.3.2 which relates our scheduling
problem to those that come under the heading of generalized round-robin or template-
driven scheduling.

In Section 1.3.3, we introduce randomized page accessing, where each access is
determined by an independent and identically distributed (i.i.d.) sample from a distri-
bution { fi}. We show how to find that choice for this distribution which minimizes C.
In Section 1.3.4, we develop a policy that performs well when N is large. It is based
on work of Itai and Rosberg (1984) (in an entirely different setting) and yields a cost
within 5% of optimal.

Results presented in this section are based on the work of Coffman Jr. et al. (1998).
A related study was conducted in Cho and Garcia-Molina (2000a).

1.3.1 Preliminaries

Let {Xk} be the sequence of durations of consecutive page accesses by the crawler,
each Xk being distributed independently as a random variable X . For scheduling policy
π, let πn ∈ {1,2, . . . ,N} be the scheduling decision for the n-th access, i.e., the index of
the n-th page to be accessed by the crawler under π. Define the inter-access distance
di

j(π) = ni
j(π)− ni

j−1(π), where ni
j(π) is the index of the j-th access of page i, i.e.,

ni
j(π) = inf{n > ni

j−1(π) | πn = i}, and where ni
0(π) ≡ 0. Let X i

j = X i
j(π) be the j-

th inter-access time of page i, i.e., the time between the ( j − 1)-st and j-th page-i

access completion times. We have X i
j = ∑

ni
j

k=ni
j−1+1

Xk, so the random variables X i
j are

mutually independent. Note that, if page access times Xk are exponentially distributed,
then X i

j has an Erlang distribution of d i
j stages.

Hereafter, except in definitions, the policy π will normally be omitted from our
notation; in such cases, the policy will always be clear in context.

Let Zi
j = Zi

j(π) be the time that page i is out-of-date during the j-th inter-access
time of page i. Let mi

n = mi
n(π) be the number of accesses of page i among the first

n accesses: mi
n = ∑n

k=1 1{πk = i}, where 1{·} is the indicator function. Hereafter, we
consider only stationary scheduling policies in the sense that, for each such policy, the
limit

fi = fi(π) = lim
n→∞

mi
n

n
(1.21)

exists and is strictly positive for all i, 1 ≤ i ≤ N. We call fi the access frequency of
page i. We also require that the limits limn→∞ ∑n

j=1 Zi
j/n and limn→∞ ∑n

j=1 E[Zi
j]/n
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exist and be equal. These last assumptions hold under fairly mild conditions, e.g.,
when the sequence {di

j(π)} j is stationary and ergodic (cf. Kingman (1968)).
The obsolescence rate ri = ri(π) of page i is the limiting fraction of time that page

i is out of date; precisely, it is defined as

ri = lim
n→∞

∑mi
n

j=1 Zi
j

∑mi
n

j=1 X i
j

=
lim
n→∞

∑mi
n

j=1 Zi
j

n

lim
n→∞

∑mi
n

j=1 X i
j

n

=
1

E[X ]
· lim

n→∞

∑mi
n

j=1 E[Zi
j]

n
. (1.22)

In particular, when policy π is cyclic with cycle length K, i.e., when πnK+k = π(n−1)K+k
for all 1 ≤ k ≤ K and all n = 1,2, . . ., then

ri =
1

KE[X ]

mi
K

∑
j=1

E[Zi
j], (1.23)

where mi
K is the number of page-i accesses during a cycle. The cost function to be

minimized is the weighted sum of the obsolescence rates:

C = C(π) =
N

∑
i=1

ci ri, (1.24)

where ci are given positive real numbers and the minimization is to be over all station-
ary scheduling policies.

A few basics in stochastic ordering conclude this section. For two m-dimensional
real vectors x and y, x majorizes y, written x � y, if ∑k

i=1 x[i] ≥ ∑k
i=1 y[i], for k =

1, . . . ,m− 1 and ∑m
i=1 x[i] = ∑m

i=1 y[i], where x[i] is the ith largest component of x. In-
tuitively, y is better balanced than x. A function h is said to be Schur-convex if
h(x) ≥ h(y) whenever x � y. See Marshall and Olkin (1979) for more details about
this and related properties.

A random variable Y1 is said to be no greater than a random variable Y2 in the convex
ordering sense, denoted Y1 ≤cx Y2, if E[h(Y1)] ≤ E[h(Y2)] for all convex functions h,
provided the expectations exist. If in this definition ‘convex’ is replaced everywhere
by ‘increasing and convex,’ then we write Y1 ≤icx Y2. As is easily verified, Y1 ≤cx Y2

implies that Y1 has the same mean but smaller variance than Y2. It is also easy to see
that Y1 ≤cx Y2 implies Y1 ≤icx Y2. See Stoyan (1933) for equivalent definitions and
further properties.

1.3.2 Schur Convexity and a Lower Bound

Recall that a page is considered out-of-date from the time it is modified until the next
time it is accessed by the crawler. Thus, if page i is not modified during its j-th inter-
access interval, then the obsolescence time is Z i

j = 0. Otherwise, Zi
j is the time that

elapses from the first moment page i is modified during its j-th inter-access interval
until the end of that interval. Recall also that the modification (or mutation) epochs of
page i follow a Poisson process with parameter µi. By the memoryless property of the
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Poisson process, the time that elapses from the beginning of page i’s j-th inter-access
interval to the first subsequent mutation has an exponential distribution with parameter
µi. Let Ri

1,R
i
2, . . . be an i.i.d. sequence of such random variables, so that

Zi
j

d
=
(

X i
j −Ri

j

)+
, (1.25)

where x+ denotes max(x,0) and
d
= denotes equality in distribution.

As an immediate consequence, we obtain

Proposition 7 If the page access time is decreased in the increasing convex ordering
sense, then the obsolescence rate is decreased for all pages under any scheduling
policy.

Proof. Let {X ′
k} be a sequence of access times distributed independently as X ′, and

define {X′ij} j and {Z′i
j} j as for Xk. Assume that X ′ ≤icx X . Then,

Z′i
j

d
=
(

X ′i
j −Ri

j

)+
≤icx

(

X i
j −Ri

j

)+ d
= Zi

j,

and so E[Z′i
j] ≤ E[Zi

j]. Thus,

r′i =
1

E[X ′]
· lim

n→∞

∑mi
n

j=1 E[Z′i
j]

n
≤ 1

E[X ]
· lim

n→∞

∑mi
n

j=1 E[Zi
j]

n
= ri,

as desired.

Returning to our main problem, where the distribution of page access times is as-
sumed given, we now show that the obsolescence rate is a Schur convex function of
the vector of inter-access distances. For this, we need the following calculation which
will also be useful for later results. Define hi = E[e−µiX ], the Laplace transform of X
evaluated at µi.

Lemma 3 For any page i,

E[Zi
j] = di

jE[X ]− 1
µi

(

1−h
di

j
i

)

.

Proof. Let Gi
j be the probability distribution of X i

j. We have from (1.25) that

E[Zi
j] =

Z ∞

0
P(Zi

j > z)dz

=
Z ∞

0
P(X i

j −Ri
j > z)dz

=
Z ∞

0

Z ∞

z

(

1− e−µi(x−z)
)

·Gi
j(dx)dz

=
Z ∞

0

Z x

0

(

1− e−µi(x−z)
)

dzGi
j(dx)

=
Z ∞

0

(

x− 1− e−µix

µi

)

Gi
j(dx)
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which yields the lemma.

We can conclude from the above proof that the result of Proposition 7 still holds
when the increasing convex ordering is replaced by the weaker Laplace-transform
ordering (see Stoyan (1933)). It follows from a result of Schur (cf. Marshall and
Olkin (1979,Proposition 3.C.1, page 64)) and Lemma 3 that

Proposition 8 For any fixed number n of page-i accesses, the expected total obso-
lescence time of page i, ∑n

i=1 E[Zi
j] is a Schur convex function of the distances d i

j,
j = 1, . . . ,n.

Thus, in order to minimize the expected obsolescence time, the accesses to any
particular page should be as evenly spaced as possible.

An algorithm that computes a schedule of the crawler that implements a given set
of access frequencies in the sense of (1.21) is called an accessing policy. In these
terms, the scheduling policies proposed in this paper consist of two stages; the first
computes a set of access frequencies { fi} and the second is an accessing policy that
implements { fi}. The even-spacing objective of accessing policies yields a lower
bound, as follows.

Proposition 9 The obsolescence rate under any accessing policy implementing the
access frequencies { fi} satisfies for each i,

ri ≥
1

E[X ]

(

E[X ]− fi

µi
+

fi

µi
h1/ fi

i

)

.

Proof.

ri =
1

E[X ]
· lim

n→∞

∑mi
n

j=1 E[Zi
j]

n

=
1

E[X ]
· lim

n→∞

1
n

mi
n

∑
j=1

(

di
jE[X ]− 1

µi

(

1−h
di

j
i

))

=
1

E[X ]
· lim

n→∞

1
n



nE[X ]− mi
n

µi
+

1
µi

mi
n

∑
j=1

h
di

j
i





=
1

E[X ]



E[X ]− fi

µi
+

1
µi

lim
n→∞

1
n

mi
n

∑
j=1

h
di

j
i





≥ 1
E[X ]

(

E[X ]− fi

µi
+

1
µi

lim
n→∞

mi
n

n
hn/mi

n
i

)

=
1

E[X ]

(

E[X ]− fi

µi
+

fi

µi
h1/ fi

i

)

,

where the inequality comes from the Schur convexity of ∑mi
n

j=1 h
di

j
i in the di

j’s (cf.
Proposition 8).
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The above lower bound can be achieved only in special cases. For instance, if the
frequencies are all equal, the policy that accesses pages 1,2, . . . ,N cyclically yields this
optimal obsolescence rate. Another example where we can find a feasible accessing
policy achieving the lower bound is when the frequencies are of the form fi = 1/2ki ,
where ki is an integer for every i. We return to the general case after considering the
cost-minimization theorem. The proof of the following theorem gives a solution tech-
nique applicable to general weights ci and shows that the technique leads to explicit
results in an interesting special case.

Proposition 10 Assume that the weights in the cost function are proportional to the
mutation rates of the pages, i.e., ci = c0µi for all i = 1,2, . . . ,N. Then for any schedul-
ing policy,

C = c0 ·
N

∑
i=1

µiri ≥ c0

(

µ− 1
E[X ]

+
1

E[X ]

N

∏
i=1

hi

)

> 0, (1.26)

where µ = ∑N
i=1 µi.

Proof. For the moment, let the ci be general. Following Proposition 9, we have
C ≥C∗, where C∗ is the solution to the following optimization problem:

C∗ = min
N

∑
i=1

ci

(

1− 1
E[X ]µi

xi +
1

E[X ]µi
xih

1/xi
i

)

(1.27)

subject to xi ≥ 0 and
N

∑
i=1

xi = 1.

To solve the above problem, we use Lagrange multipliers and define

L(x1, . . . ,xN ,λ) =
N

∑
i=1

ci

(

1− 1
E[X ]µi

xi +
1

E[X ]µi
xih

1/xi
i

)

+λ

(

N

∑
i=1

xi −1

)

.

By the convexity of the function

N

∑
i=1

ci

(

1− 1
µiE[X ]

xi +
1

µiE[X ]
xih

1/xi
i

)

in the vector (x1, . . . ,xN), the solution satisfies the necessary and sufficient conditions:

∂L
∂xi

= − ci

µiE[X ]

(

1−h1/xi
i +

lnhi

xi
h1/xi

i

)

+λ = 0 (1.28)

∂L
∂λ

=
N

∑
i=1

xi −1 = 0. (1.29)
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Observe that hi < 1, so that h1/xi
i < 1. One can easily check that the function

1− y + y lny is strictly decreasing in y for y < 1. Thus, under the assumption that ci

is proportional to µi, we conclude from (1.28) that all h1/xi
i are identical and that the

minimum is achieved, by (1.29), when

xi =
lnhi

∑N
i=1 lnhi

=
ln(hi)

−1

∑N
i=1 ln(hi)−1

. (1.30)

This solution is positive so it is also the solution to the minimization problem in (1.27).
Hence,

C∗ =
N

∑
i=1

c0µi −
c0

E[X ]

N

∑
i=1

xi +
c0

E[X ]

N

∑
i=1

xih
1/xi
i

= c0

(

µ− 1
E[X ]

+
1

E[X ]
exp

{

N

∑
i=1

lnhi

})

= c0

(

µ− 1
E[X ]

+
1

E[X ]

N

∏
i=1

hi

)

.

Note that

N

∏
i=1

hi = E

[

exp

{

−
N

∑
i=1

µiXi

}]

> 1−E

[

N

∑
i=1

µiXi

]

= 1−µE[X ],

so

µ− 1
E[X ]

+
1

E[X ]

N

∏
i=1

hi > 0,

and the proof is complete.

When the weights in the cost function are not proportional to the mutation rates of
pages, one can still use Lagrange multipliers to solve the optimization problem. As
noted earlier, however, we do not have closed-form solutions in general.

It is also worthwhile noticing that the optimal access frequencies (cf. (1.30)) in
the above lower bound are not necessarily proportional to the page mutation rates
µi, a fact that has emerged in the context of other polling systems (see, e.g., Borst
et al. (1994) and Boxma et al. (1993)). Rather, they are proportional to ln(hi)

−1 =

ln
(

E[e−µiX ]
)−1

. Proportionality to the µi occurs only when X is a constant. Note also

that the magnitude of the difference between µiE[X ] and ln
(

E[e−µiX ]
)−1

is large if

Var(X) is large (or X is large in the convex ordering sense).
To summarize, the results of this section show that, if the weights in the cost func-

tion are proportional to the mutation rates of the pages, then an accessing policy that
comes close to the lower bound in Proposition 9 with the fi nearly proportional to the
ln(hi)

−1 will come close to minimizing C.
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Finding good accessing policies that realize a given set of access frequencies is the
subject of the next two sections. In Section 5, we develop an optimal randomized
accessing policy, and in Section 6, we adapt the well-studied golden-ratio policy to
our problem, primarily as a candidate for good asymptotic performance; we will see
that this policy gives an obsolescence rate within 5% of the lower bound, in the limit
of large N.

We remark that this problem is closely related to the design and analysis of polling/
splitting sequences in the context of queueing (and in particular, communication) sys-
tems (Andrews et al., 1997; Arian and Levy, 1992; Borst et al., 1994; Boxma et al.,
1994; 1993), where algorithms are described as template driven or generalized round
robin. With future research in mind, we note that these studies suggest other ap-
proaches worth investigating, e.g., extensions of the mathematical programming tech-
niques in Borst et al. (1994) and the algorithms (Arian and Levy, 1992) derived from
Hajek’s results on regular binary sequences (Hajek, 1985). Although the latter lack
the established performance bounds of the golden-ratio policy, simulations in the ear-
lier queueing models show they are superior algorithms. Thus, they make promising
candidates for our page-accessing model.

1.3.3 Randomized Accessing and Its Optimal Solution

Let f1, f2, . . . , fN be given access frequencies. According to the randomized schedul-
ing policy, at each decision point, the crawler chooses to access page i with probability
fi; the decision is made independently of all previous decisions. One can easily see
that {di

j} j, {X i
j} j and {Zi

j} j are three sequences of i.i.d. random variables for all i.

Moreover, di
j has a geometric distribution: P(d i

j = n) = fi(1− fi)
n−1. Thus, we have

Lemma 4 For given frequencies f1, f2, . . . , fN ,

ri =
1

E[X ]

(

E[X ]− fi

µi
+

fi

µi
· fihi

1−hi + fihi

)

.

Proof. As di
j has a geometric distribution, we obtain

E[X i
j] =

∞

∑
n=1

fi(1− fi)
n−1nE[X ] =

E[X ]

fi
,

and by Lemma 3 we have,

E[Zi
j] =

∞

∑
n=1

fi(1− fi)
n−1
(

nE[X ]− 1
µi

+
1
µi

hn
i

)

=
E[X ]

fi
− 1

µi
+

1
µi

fihi

1−hi + fihi
,

so elementary renewal theory and (1.22) imply

ri(ρ) =
E[Zi

j(ρ)]

E[X i
j(ρ)]

=
1

E[X ]

(

E[X ]− fi

µi
+

fi

µi
· fihi

1−hi + fihi

)

.
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It is interesting to compare the lower bound of Proposition 9 with the obsolescence
rate of the randomized policy. One can see that when fi is small (close to 0) or large
(close to 1), the difference between ri and the lower bound tends to 0. More precisely,
this difference is

hi

µiE[X ]
f 2
i +o(( fi)

2)

when fi goes to 0, and is

hi

µiE[X ]
(1+ lnhi)( fi −1)+o(1− fi)

when fi goes to 1.
We now consider the problem of finding the optimal access frequencies under the

randomized policy. First, we have the following lower bound over all frequencies.

Proposition 11 Assume that the weights in the cost function are proportional to the
mutation rates of the pages, i.e., ci = c0µi for all i = 1,2, . . . ,N. Then

C = c0 ·
N

∑
i=1

µiri ≥ c0

(

µ− 1
E[X ]

· ∑N
i=1(h

−1
i −1)

1+∑N
i=1(h

−1
i −1)

)

. (1.31)

Moreover, this lower bound is achieved when the access frequencies are proportional
to h−1

i −1.

The proof uses again Lagrange multipliers and can be found in Coffman Jr. et al.
(1998). Note that if the weights in the cost function are not proportional to the mutation
rates of the pages, the bound is still valid, see discussions in Coffman Jr. et al. (1998),
provided

min
1≤i≤N

√

ci

µi
≥

∑N
i=1

√

ci
µi

(

h−1
i −1

)

1+∑N
i=1

(

h−1
i −1

) .

1.3.4 Asymptotic Optimality and the Golden Ratio Policy

In this section we consider the asymptotic large-N behavior of scheduling policies. A
similar study was carried out by Itai and Rosberg (1984) in the context of the control
of a multiple-access channel. Some of the results here are analogous to theirs.

We define asymptotically optimal policies with respect to the lower bound in Propo-
sition 10. Hence, we assume throughout this section that the weights in the cost
function are proportional to the mutation rates of the pages, i.e., ci = c0µi for all
i = 1,2, . . . ,N. We say that a policy π is asymptotically optimal if

lim
N→∞

C(π)−C∗ = 0.

Note first that if the total mutation rate µ tends to zero, then all cyclic policies are
asymptotically optimal. Indeed, consider an arbitrary cyclic policy with cycle length
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K. It follows from (1.23) and Lemma 3 that

C = c0 ·
N

∑
i=1

µiri

=
c0

KE[X ]
·

N

∑
i=1

µi

mi
K

∑
j=1

{

di
jE[X ]− 1

µi

(

1−h
di

j
i

)}

= c0µ− c0

KE[X ]
·

N

∑
i=1

mi
K

∑
j=1

(

1− (1−di
jµiE[X ]+O(µ2

i ))
)

= c0µ− c0

KE[X ]
·

N

∑
i=1

mi
K

∑
j=1

(

di
jµiE[X ]+O(µ2

i )
)

= O(µ2),

so if µ → 0, then C → 0.
Thus, we assume that when N →∞, the total mutation rate µ, as well as the expected

access time E[X ], is fixed. However, for any i, 1≤ i≤N, we have µi → 0 when N →∞.
Under such assumptions, the lower bound C∗ in Proposition 10 becomes

lim
N→∞

C∗ = c0µ− c0

E[X ]

(

1− lim
N→∞

N

∏
i=1

hi

)

= c0

(

µ− 1
E[X ]

+
1

E[X ]
e−µE[X ]

)

, (1.32)

where we used the facts that E[e−µiX ] = e−µiE[X ] +o(µα
i ) and that ∑N

i=1 µα
i → 0 for all

1 < α < 2.
Now consider the following cyclic scheduling policy, called the Golden Ratio pol-

icy, and studied in Itai and Rosberg (1984) for the control of a multiple-access channel.
The policy is defined in terms of the Fibonacci numbers

Fk =
φk − (1−φ)k

√
5

, k = 0,1, . . . ,

where φ = (
√

5 + 1)/2, and where φ−1 = (
√

5− 1)/2 ' 0.6180339887 is the golden
ratio.

For any fixed k, let γ(k,N) denote the golden ratio policy with Fk the cycle length,
and N the total number of pages. It is assumed that Fk ≥ N. Let Mi

k,N be the number
of page-i accesses in each cycle of γ(k,N); these numbers satisfy

b fiFkc ≤ Mi
k,N ≤ d fiFke

and ∑N
i=1 Mi

k,N = Fk, where fi are the optimal access frequencies given by (1.30)

fi =
lnhi

∑N
i=1 lnhi

.
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Thus,

lim
k→∞

Mi
k,N

Fk
= fi.

Let frac(y)= y−byc be the fractional part of y. Define the set Ak = {frac( jφ−1) | j =
0,1, . . . ,Fk−1}. The s-th access of the crawler is identified with the s-th smallest point
of Ak. In the golden ratio policy γ(k,N), the points

{

frac( jφ−1) |
i−1

∑
m=1

Mm
k,N ≤ j <

i

∑
m=1

Mm
k,N

}

correspond to the accesses of page i. As an example, let us suppose N = 4 and f1 =
2/13, f2 = 3/13, f3 = 3/13 and f4 = 5/13. Let k = 8 so that Fk = 13. Then, the golden
ratio policy γ(k,N) defines the access sequence {4,2,4,1,3,4,2,4,1,3,4,2,3}.

Thus, again from (1.23) and Lemma 3,

C(γ(k,N)) = c0µ− c0

FkE[X ]

N

∑
i=1

Mi
k,N

∑
m=1

(

1−hdi
m

i

)

,

where the inter-access distance d i
m ∈ {Fji ,Fji+1,Fji+2}, where ji = dlnφ fie (cf. Itai

and Rosberg (1984)). Moreover, it can be shown by mimicking the proofs in Itai and
Rosberg (1984) that

C(γ(N)) := lim
k→∞

C(γ(k,N))

= c0µ− c0

E[X ]

{

1−
N

∑
i=1

[

(

fi −φ− ji
)

h
Fji
i

+
(

fi −φ− ji−1)h
Fji+1
i −

(

fi −φ− ji+1)h
Fji+2
i

]

}

.

Proposition 12 Assume for all i that µi → 0 as N → ∞ and that ∑N
i=1 µi = µ > 0. Then,

limsup
N→∞

C(γ(N)) ≤ c0

{

µ− 1
E[X ]

+
1−φ−1

E[X ]
e
− µφ√

5
E[X ]

+
φ−1

E[X ]
e
− µφ2

√
5

E[X ]
}

. (1.33)

Proof. By mimicking the proof of Theorem 5.3 in Itai and Rosberg (1984), we can
show that

C(γ(N)) ≤ c0µ− c0

E[X ]

{

1−
N

∑
i=1

fi

[

(

1−φ−1) tφ
i,N +φ−1tφ2

i,N

]

}

,

where ti,N = h1/( fi
√

5)
i . Note that when µi → 0, hi = e−µiE[X ] + o(µi) so that fi =

µi/µ + o(µi). These imply that ti,N → e−µE[X ]/
√

5 when N → ∞. Hence, by noting
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that ∑N
i=1 fi = 1, we obtain

limsup
N→∞

C(γ(N)) ≤ c0µ− c0

E[X ]

×
{

1−
(

1−φ−1)e
− µφE[X ]√

5 −φ−1e
− µφ2E[X ]√

5

}

.

Finally, we compare the right-hand side of (1.33) with (1.32), and obtain the fol-
lowing result. The detailed proof can be found in Coffman Jr. et al. (1998).

O Assume for all i that µi → 0 as N → ∞ and that ∑N
i=1 µi = µ > 0. Then,

limsup
N→∞

C(γ(N))

C∗ ≤ 2φ2

5
=

√
5+3
5

< 1.05 . (1.34)

1.4 OTHER OPTIMIZATION PROBLEMS

In addition to the problems addressed above, there are a number of other optimization
issues that need investigations. Among the most important ones are the page ranking
and system implementations.

1.4.1 Page Ranking

Searching contents on the Web without knowing specific URLs is typically through
querying search engines using key words. There can be thousands or even millions
of Web pages containing the key words of a query. It is therefore crucial for search
engines to rank the pages in such a way that the most relevant pages are presented
to the users. Search engines have developed various methods to this end. The most
influential work so far in this area is that of Brin and Page (1998), the founders of
Google search engine, who developed the PageRank technique. A key element in
this ranking system is the Markovian representation of the Web. The ranking of a
Web page is related to the stationary distribution of the state corresponding to this
Web page. There are ramifications since the publication of this seminal paper, as
exemplified by the work of Kamvar et al. (2003), which consists in accelerating the
computation of PageRank through a novel algorithm, with the reported performance
improvement of 25–300%.

Another common line of thoughts is the use of learning algorithms. In Chen et al.
(2000) (and a number of other papers by the same authors), building search engines
using learning techniques was explored and implemented. Such approach allows on-
line learning of and adaptation to the user behaviors.

Recently, more and more Web pages are generated dynamically. It poses a big
problem to the search engines from indexing (and thus ranking) perspective as such
dynamic pages are invisible to (or, more accurately, unvisited by) these search engines.
Some preliminary work on this issue can be found in Mukherjee (2003), where a
probabilistic model together with a ranking algorithm are proposed.
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1.4.2 Implementation Issues

Web search engines after all are computer systems. The efficiency of such systems
depends quite a lot on the ways they are implemented. It is therefore very important
to consider practical issues.

Developing a crawler to crawl the Web looks simple: fetch a Web page using a
URL; parse it to extract all referenced URLs, and for those URLs that are not yet seen
before, recursively visit these pages. However, due to the big number of available
Web pages, these tasks have to be carried out very efficiently. One research effort
in this regard is reported in Broder et al. (2003), where the authors propose to use
main memory cache to cache the visited pages so as to speed up the operations which
determine whether the URLs are previously visited or not.

In the previous sections we provided theoretical investigations on the number of
crawlers to be deployed, either statically or dynamically. While the deployment of
such parallel crawlers allows search engines to scale up, there is need of coordinating
the page visits of these crawlers in order to avoid page visit overlap. Cho and Garcia-
Molina (2002) investigate such issues and propose and evaluate in particular tradeoffs
between coordination overhead and overlapping degree.

Distributed implementation of Web crawlers increases scalability and resiliency.
Boldi et al. (2002) present such an implementation. They use consistent hashing which
allows a complete decentralized coordination which yields linear scalability.

1.5 CONCLUSIONS

In this chapter, we have discussed various optimization issues arising in Web search
engines. There are still a lot of challenging optimization problems, from both research
and system development perspectives. The interested reader is referred to

http://searchenginewatch.com/
for more up-to-date discussions on search engines. Additional information can be
found in reports Huang (2000) and Boswell (2003).
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