ON OPTIMAL POLLING POLICIES*

Zhen LIU!, Philippe NAIN2, Don TOWSLEY?

LZINRIA, Centre de Sophia Antipolis
06565 Valbonne Cedex, France

3Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003, USA

Published in: QUESTA 11 (1992) 59-83

Abstract

In a single server polling system, the server visits the queues according to a routing policy
and while at a queue serves some or all of the customers there according to a service policy. A
polling (or scheduling) policy is a sequence of decisions on whether to serve a customer, idle the
server, or switch the server to another queue. The goal of this paper is to find polling policies
that stochastically minimize the unfinished work and the number of customers in the system
at all time. This optimization problem is decomposed into three subproblems: determine the
optimal action (i.e., serve, switch, idle) when the server is at a nonempty queue; determine
the optimal action (i.e., switch, idle) when the server empties a queue; determine the optimal
routing (i.e., choice of the queue) when the server empties a queue and decides to switch.

Under fairly general assumptions, we show for the first subproblem that optimal policies are
greedy and exhaustive, i.e., the server should neither idle nor switch when it is at a nonempty
queue. For the second subproblem, we prove that in symmetric polling systems patient policies
are optimal, i.e., the server should stay idling at the last visited queue whenever the system
is empty. When the system is slotted, we further prove that non-idling and impatient policies
are optimal. For the third subproblem, we establish that in symmetric polling systems optimal
policies belong to the class of Stochastically Largest Queue (SLQ) policies. A SLQ policy is
one that never routes the server to a queue known to have a queue length that is stochastically
smaller than that of another queue. This result implies, in particular, that the policy that
routes the server to the queue with the largest queue length is optimal when all queue lengths
are known and that the cyclic routing policy is optimal in the case that the only information
available is the previous decisions.

Keywords: Polling system; Polling Policy; Optimal Stochastic Scheduling; Stochastic
Ordering; Coupling.

“This work was supported in part by NSF under contract ASC-8802764

1 Introduction

In this paper, we consider the problem of scheduling a server in a polling system. We model this
system as N queues attended by a single server. The server visits the queues according to some
rule. While at a queue, the server serves some or all of the customers again according to some rule.
A polling (or scheduling) policy consists of a series of decisions on whether to serve a customer, to
idle the server, or to switch to another queue. These decisions are made based on partial knowledge
of the state of the queue (i.e., queue occupancies, past arrival patterns) and on past scheduling
decisions.

Polling systems are frequently used to model computer and communication networks (cf. Takagi
[7]). The performance analysis of these systems has been the subject of a large number of papers
(more than 450 references are included in Takagi’s survey paper [8]). These analyses have focussed
on a large number of routing policies including cyclic and probabilistic routing and on a large number
of service policies such as exhaustive, gated and limited service.

However, very few papers have focused on the problem of developing optimal scheduling policies,
except for the simple pc rule which minimizes some discounted cost function when there is no switch-
over time. One of the first attempts to optimize polling systems with switch-over times was made
by Hofri and Ross [4]. They show for a two queue model that the policy that minimizes the sum of
discounted switch-over times and the holding cost is exhaustive service in a nonempty queue and
of threshold type for switching from an empty queue to another. Browne and Yechiali [3] provide
a semi-dynamic policy where the server chooses a visiting order of the queues at the beginning of
each cycle in order to minimize the cycle time. A similar approach is presented by Browne and
Yechiali [2] for queues with unit buffer and losses of customers. They show that an index rule policy
minimizes the sum of holding costs and customer loss costs over a cycle. In Levy et al. [5], it is
proved that the exhaustive policy dominates all other service policies, under the assumptions that
the server does not wait idling at a queue and that the server switches to the next queue once a
queue is emptied. In [1] Boxma et al. investigate the optimal polling table (ratios of occurence
of all queues in the table, size of the table, order within the table) that minimizes the mean total
workload in a periodic polling system. In particular, they show that the golden ratio policy for
determining the exact visit order of the queues provides a good heuristic for this problem. In [6] Liu
and Nain consider a particular polling system arising from the videotex system. Depending on the
amount of information available to the controller, they identify optimal scheduling policies under
fairly general assumptions in the case when there are no switch-over times. Last, in [9], Towsley, et
al. prove that the policy that serves the queue with the largest queue length minimizes the number
of customers that are lost when queues have finite and equal buffer cpacities, arrivals to each queue
are governed by a class of statistically identical processes, and switching times are negligible.

In this paper, we study the case where the switch-over times are strictly positive. The aim is to
find polling policies that stochastically minimize the unfinished work and the number of customers
in the system at all time. This optimization problem reduces to answering the following questions:

(1) when the server is at a nonempty queue, should it serve a customer of that queue or not?
(2) when the server empties a queue, should it switch or not?

(3) when the server empties a queue and decides to switch to another queue, which queue should
it switch to?

The paper is organized as follows. Notation and assumptions are introduced in Section 2. The
answer to question (1) is given in Sections 3 and 4. We show, under fairly general assumptions,
that optimal policies are greedy and exhaustive. In other words, when the server is at a nonempty
queue, it should neither idle nor switch until this queue is empty.

Section 5 answers question (3) in the case where the polling system is symmetric. We establish that
the optimal policy is a Stochastically Largest Queue (SLQ) policy. Here a SLQ policy is the one that
never visits a queue known to have a queue length that is stochastically smaller than that of another
queue. From this result, we obtain that the routing policy that moves the server to the queue with
the largest queue length is optimal when all queue lengths are known at all times. In the case that
the only available information is the previous decisions, we show that the cyclic routing policy is
optimal. We also consider other applications where the queue length information is delayed.

Last, in Sections 6 and 7 we address question (2). We prove that in symmetric polling system
patient policies are optimal, i.e., the server always stays idling at the last visited queue whenever
the system is empty. If in addition the system is slotted and the switch-over times are one time
unit, then non-idling as well as impatient policies are shown to be optimal, i.e., the server always
switches whenever it empties a queue.

2 Notation and Assumptions

All of the random variables (r.v.’s) considered in this paper are defined on a fixed probability triple
(Q,F,P). Let IN and IN, be the set of nonnegative integer numbers and strictly positive integer
numbers, respectively. Define R := (—o00,4+00), Ry :=[0,+00) and I := {1,2,... ,N}.

Input sequences. For n > 1,1 € I, let

e a, be the arrival time of the n-th customer, 0 < a1 < ag < --+;
e u, be the index of the queue at which the n-th customer arrives;

e 0 > 0 be the amount of service required by the n-th arriving customer at queue i. We
shall assume throughout this paper that {¢? }5°; is a sequence of independent and identically
distributed (i.i.d.) r.v.’s for all i € I. Further, {o}}32,,...,{ol}>°, are assumed to be

mutually independent sequences;

e 057 > 0 be the duration of the n-th switching period between queue i and queue j for all
jel i#j.

In the sequel, the notation A1, A2, A3, A4 and A5 will be used to denote the following assump-
tions:

A1 The sequences of r.v.’s {an,u,}2,, {08, € I}, and {037, (i,5) € 1%, # j}2, are

n

mutually independent;

A2 The sequences of r.v.’s {an}2 1, {un}q, {08, i € I}, and {67, (i,5) € 12,7 # 5}, are
mutually independent;

A3 Ther.v.’s {o%,i € I}>°; are identically distributed;
A4 The sequence {057, (i,5) € 12,7 # 5}, is an i.i.d. sequence of r.v.’s;

A5 The sequence {u,}5; is an i.i.d. sequence of r.v.’s such that P (u, =) = 1/N for all : € L.

The polling system fulfilling assumptions A2, A3, A4 and A5 is called a symmetric polling system.

Service policy. At every queue the service policy can be arbitrary as long as it is nonpreemptive
and work conserving (i.e., no work can be created or destroyed). Instances of service policies are
the exhaustive, gated and random service policies (see Takagi [7]). Because of our assumption that

the service times at a given queue are i.i.d. r.v.’s, we shall not need to specify the order of service
(e.g., FIFO, random).

Admissible polling policy. At any decision epoch (see below) the polling policy must decide either
to move the server to another queue and to provide the queue index to which the server is sent, or
to ask the server to idle at the queue at which he resides, or to ask the server to serve a customer
at the queue at which he resides (provided it is nonempty) according to the enforced service policy
at that queue.

The decision epochs are the service completion epochs, the epochs where the switching periods end
(or equivalently, the instants when the server arrives at a queue), and the epochs where the idle
periods end.

Define A :={0,1,2} x {1,2,..., N} to be the decision space.

For any polling policy =, let n¢, denote the n-th decision epoch, and let AT := (72, 7d) € A denote
the n-th decision, where

o 72 =0 (resp. 7% = 1, 7% = 2) if the n-th decision is to keep the server idle (resp. serve
a customer provided the queue is nonempty, move the server to another queue). We shall
assume that the first decision takes place at time 0, i.e., 77 = 0;

e 74 is the index of the queue where the server is switching to if 7#¢ = 2; if #¢ € {0,1} then =¥
n q g n 7 n 7 n

indicates the current location of the server (i.e., 74 = 7w ;). Without loss of generality, we

assume that the server is located at queue 1 at time 0.

To complete the definition of a polling policy, we need to specify how the decision epochs {7},
are chosen by the policy. Define

sp= > 1(mp, =1), (2.1)

to be the number of service periods (or departures) in [0, 7%) under policy 7. Note that s includes
the customer that is served in [7¢_;,7¢) if 7¢_; = 1. We also define o7, o7 € {0%,i € I}32,, to

be the m-th service time delivered by the server under policy w, m > 1.

Similarly, let
k=14 > 1(nk =2) (2.2)

be the number of queues visited by the server in the interval of time [0, 7], n > 1. Note that k]
includes the queue to which the server arrives at time 7 (i.e., queue 7i ;) if 7¢_, = 2. We also
define 07, 67 € {057, (i,j) € 12,3 # j}34, to be the m-th switch-over time duration under policy
.

With the above notation, the difference 7j, ,; — 7, when 7, # 0 is given by

vy : a
o if 7@ =1;
e e S 7 n)
s —m, = ntls 2.3
n+1 n { 7kr7r’ if ,n_gl 2. ()

Relation (2.3) directly follow from the definition of the service time and switch-over time processes.
Note that the case 7o = 1 follows from the assumption that the service policy at each queue is
nonpreemptive.

In order to define the duration of an idle period as well as the notion of admissible policies, we

introduce the history of a policy. For all n > 1, let

2,n7

17 = {502 e (@), 5w < Fiie 1), (2.4

be the history of policy 7 up to time ., where Q;r(t) is the number of customers at queue j under
7 at time ¢ including the customer in service, if any, and F7, is the last time in [0,7¢] that the

controller has received queue-length information on queue i. More precisely,

- i o\ kT kT a\kT—1 ¢
Fl = fhn o (GEIvy s (i, (i m) (2.5)

where

e j is the index of the m-th queue that has been visited by the server, m > 1;

e 77 is the time when the m-th visit of the server to a queue has started, m > 1;
e {7 is the time when the m-th visit of the server to a queue has ended, m > 1.

kT—1

n_ ' can be computed from (AT)"" and (x¢,)"

m/m=1"

Note that k™, (7™)* . and (¢7)

m/m=1

In (2.5) ff,n is any mapping IN! x]R?I_l — Ry such that foralli e I, n>1,1>1,v=(v1,...,v3) €

! 21)
IN' X IRY, i1 S vpge < .owgg, vopp1 S vggge <.l Sogge

P1 ff,n(v) is nondecreasing as a function of vy, for allm =1+1,...,3l;

P2 f{(v) < flnn(V);

P3 hi(v) < flin(v) < vg;, where

i maxi<k<i{votk : vk =1}, @ € {v1, -, u};
= =r= 2.
hi(v) { 0, otherwise. (2.6)

In P3, hi(v) gives the time when the last visit of the server to queue i has ended in [0, v3] if the
server has already visited this queue in this time interval; if the server has not visited queue ¢ in
[0,v3] then hi(v) = 0.

In terms of the history (2.4) these properties have the following interpretation: P1 and P2 imply
that at each decision epoch the controller has as least as much information as at the previous
decision epoch (the controller learns more and more about the system when the time goes on). The
first inequality in P3 implies that at any decision epoch the controller knows (at least) the history
of each queue up to the last visit of the server to that queue. The second inequality in P3 ensures
that the policy is nonanticipative in the sense that no information on the future is available at any
decision epoch. Further, P3 also implies that at any decision epoch the server knows the state of

the queue that it is visiting. This follows from the fact that fl’n(v) = vz when h(v) = v3. In

particular, this information will enable the controller not to make the decision to serve an empty
queue.

The mapping fl“;n can describe various types of information structures, including those with:

1. Complete information. flz;n(v) = w3, Vi,l,n. In other words, the queue lengths of all of the

queues are known to the controller at all times.

2. Partial information. f;n(v) = hi(v), Vi,l,n. This corresponds to a system in which the

controller knows the queue length history of each queue only up until the last time the server
visited that queue.

3. Periodic information. fl’;n(v) = max{d|v3;/d|, hi(v)}, Vi,l,n. Here the controller is periodi-

cally updated regarding the queue length history of all queues at intervals of length d.

4. Delayed information. fli,n(v) = max{vy — d, hi(v)}, Vi,l,n. Here the controller knows the

queue length history of each queue up until d time units in the past, or the last time that the
queue was visited, whichever provides more information.

5. Nearest neighbor information. The queues are organized in a logical ring. Whenever the server
switches to queue ¢, the controller becomes aware of the queue length history of queues i — 1

and ¢ + 1 as well as that of 1, fli,n(v) = max{h{" ' (v), hi(v), i1 (v)}, Vi, l,n, where addition

and subtraction on the queue index is modulo N.

We now come back to the duration of an idle period (i.e., value of 7 , | — 7y, when 7 = 0). We shall
not give a formal definition of the process that generates the idle period duration since we shall allow
for rather general idle periods, including interruptible idle periods. Roughly speaking, the duration
of the idle period [y, 7f,) is a r.v. that may depend on the history (H], A7) as well as on the
information that the controller may receive while the server is idling (customer arrivals, typically).
However, the amount of information that the controller receives in [}, 75, 1) must belong to the

history A7, (i.e., the information collected by the controller cannot be lost).
Let IH], be the set of all histories up to time 7,.

We define a randomized polling policy 7 to be a sequence {m,}22; of conditional probability mea-
sures on A given H] satisfying the constraints m,(A|H7) = 1 for all HY € H}, n > 1. A

n?
deterministic polling policy 7 is a sequence of measurable functions {m,}52; from H into .A. Any
polling policy that is either randomized or deterministic is called an admissible policy.

Let II be the set of all admissible policies. A policy « € II is said to be:
e non-idling if the server never idles when the system is nonempty. Let Y C II be the set of all
such policies;
e greedy if the server never idles at a nonempty queue. Let I' C II be the set of all such policies;

o erhaustive if the server never leaves a nonempty queue. Let = C II be the set of all such
policies;

e patient if the server stays at the last visited queue when the system is empty. Let ¥ C II be
the set of all such policies.

e impatient if the server leaves a queue as soon as it is empty. Let A C II be the set of all such
policies.

Performance metrics. The performance metrics to be considered in this paper are:

e U™(t), the total unfinished work in the system at time ¢ under = € II;

o Q7(t) := Y ;1 QF(t), the total number of customers in the system at time ¢ under 7 € II.

We shall say in the sequel that a real-valued r.v. X is stochastically smaller than a real-valued r.v.
if P(X <z)>P (Y <z) for all z € R. In that case the notation X <, Y will be used.

3 Optimality of Greedy Policies

We first compare the decisions between “serving” and “idling” when the server is at a nonempty
queue. Under appropriate assumptions, we show that any policy in II can be improved by a greedy
policy in the sense of stochastic minimization of the unfinished work and the number of customers
in the system at all time. In other words, in order to minimize these criteria, the server cannot idle
at a nonempty queue.

Proposition 3.1 Assume that A1 holds. Then, for any policy m € 11 there exists a policy ¢ € T
such that
UL(t) <o U™ (1), (3.1)

for allt > 0.

Proof. Let us consider a realization I of the input sequence {ay, u,, 0%, 05F, (i,j, k) € I3, j # k}2 ;.
Let 7 be an arbitrary policy in 7 € Il = T' (if 7 € T then take £ = 7) and let 7 run on the input
sequence I.

On the sample path 7 generated by letting 7 run on the input sequence I, let n > 1 be the smallest
integer such that 7} = 0 and Q74 (7;) > 0. Let m be the smallest integer such that n < m, 7, =1,

and ¢ = wl. Note that if m = oo then the server does not serve anymore customers from queue

wd in [n,00). By convention, we shall assume in the sequel that =, ,; = 0o whenever m = oc.

From 7 we construct a new policy ~y as follows (cf. Figure 1):

e v follows 7 in [0, 7)) and v follows 7 in [rf, ;,00) if m < oo, that is

*x v =7fand v =aiforj=1,....,n—1,75 =75 for j =1,2,...,n;

* 7§ =74, 9] = 7] and v§ = 7§ for j > m + 1 if m < oo;

. a .
e =1yl =mnl If m <oothen v, — 7, = 0gr 1q; otherwise v — 7, = oyt1, where v is

the number of customers served at queue 7 in [0, 75];

e Forj=n+1,...,m,~} =77

q9_ 4
i1, 7 =mj_y, and

*x Y5y — 5 =75 — iy if) € {0,2};
vy

€ € __ - a
* V41 TV T OsT 41 if 7§ = 1.

In other words, v behaves like 7 except that during [rf,,nf, 1) v first serves a customer and then
does what 7 has been doing in [75,7¢,) if m < oo (resp. in [75,00) if m = o0). (Note that

Vori1 = g1 if m < 00.)

Policy

| I] 01] 91] 02] 03] 02 | g4 | >

I I I I I I | | =

T Tm an+1

Policy v
| 04] I] 01] 91] 92] 03 | 02 | >
I I I I I I | | =

Tn Vm Vm+1

I: Idle period; 61, 62: Switching periods; o; := 0x;, © = 1,...,4: Service periods.

Figure 1: An example of the behavior of 7 and ~ in [7},, 75, 1).

Let us first show that 7 is admissible. This is true in [0, 7)) since both policies 7 and ~y are identical
in this time interval. In [x{, 7y, ;) this result is a consequence of the properties P1 and P2. Indeed,

the above construction implies that forall [=n,n+1,...,m — 1,7 €1,

1 ¥ kl+1 k7+1 ¥ klﬂ(+1_1 e
fk7+1,l_|_1 (]m)m 17(T)m 17(tm)m:1 7PYl—|—1

: k kY -1
> iy (GBI 0 (e). (32)

lc’r kT k’r—l
= o (A KRN C A KIRN G WIE)

The inequality (3.2) follows from P2. The inequality (3.3) follows from P1 together with the obvious
relations k', = kf', 7/ > 777, t/ > 1] and 7f; > 7] foralll = n,n+1,...,m—1. We may therefore
deduce from (2.4) and (3.3) that at time 47, ; the policy v has always as much information as 7 at
time 77, for all l = n,n +1,...,m — 1. Further, at time 77, ;, the policy 7 is able to retrieve the
history of policy 7 at time 7} (i.e., H]") from its set of information, for all i =n,n+1,...,m — 1.

This explains why 7 is admissible in [7y,, 75, | 1).

To show that the policy v is admissible in [xf,;,00), observe that k] = k[, 77 = «f, 7} = 7] and
t] =17 for all | > m + 1. This yields, forall | > m +1, i € I, ¢f. P1,

i Hol k v k] 2 k-1 e 3 Nk kT ok =1 e
fk:?,l (]m)mzl ’ (Tm)mzl) (tm)mzl ' N Z fk:;’,l ((]m)m:l ’ (Tm)mzl ’ (m)m:l 77Tl) ’

which shows that v always has as much information as 7 in [r,, |, 00), which in turn shows that v

may indeed follow 7 in this time interval.

Let us now prove (3.1). It is easily seen from the construction of y that this policy belongs to II.
Further,

U’Y(t) Uw(t)v fOI‘ te (71-181’ ﬂfn—l—l);
Uity = U™(¢), forte [O’sz] U [ﬂ-ﬁn—f—l’ 00).

IA

Moreover, the policy v is greedy up to v;,;, where 7;,; > m.. In the same manner, we can
construct from v a policy 7" € II that is greedy up to /5., where 45| > ~2,, and such that
UY (t) < U™(t) for all ¢t > 0.

Iterating this procedure we finally end up with a policy ¢ € II that is greedy in [0,00), and such

that US(t) < U™(t) for all t > 0. The proof is then concluded by removing the conditioning on the
input sequence I. g

Proposition 3.2 Assume that A1 and A3 hold. Then, for any policy = € Il there exists a policy
¢ €T such that

Q%(t) <ot Q" (1), (34)
for allt > 0.

Proof. Let us consider a realization I of the input sequence {ay, u,, 0%, 05F, (i,5, k) € I3, # k}S2 4.
Let 7 be an arbitrary policy in 7 € I = T (if 7 € T" then take £ = 7) and let 7 run on the input
sequence I.

On the sample path Z generated by letting 7« run on the input sequence, let n > 1 be the smallest
integer such that 7;; = 0 and Q74 (75,) > 0. Let m be the smallest integer such that n < m, 7, =1,

and 7 = wl. Note that if m = oo then the server does not serve anymore customers from queue

7d in [m),00). By convention, we shall assume in the sequel that =, ; = oo whenever m = oco.

From 7 we construct a new policy ~y as follows (cf. Figure 2):

e 7 follows 7 in [0, 7,) and v follows 7 in [7}, ,1,00) if m < oo, that is

*x vj =77 and'ygzwgforjzl,...,n—l, v =mjtorj=1,2,....m;

*x ¢ =74, 9] =7} and 7§ = 7§ for j > m +1if m < oo;
o 7o =1, =mi and 7§+1_7§:U§g+13
e Forj=n+1,...,m, 7}-1:%?,1,7;1:7@1_1 and

e

* Yjy1 —) =75 — 7w if 9] € {0,2};

€ e __ vy 3 a __
* Vi1~V = O iff =1

Policy
| I] 01] 91] 02] 03] 02 | g4 | >
I I I I I I | | =

T e Tl

Policy ~:

| 91] I] 01] 02] 03] g4 | 02 | >

I I I I I I | | =

Tn Vm Vm+1

I: Idle period; 61, 62: Switching periods; o; := 0 ;, 2 = 1,...,4: Service periods.

Figure 2: An example of the behavior of 7 and ~ in [7},, 75, 1).

In words, y behaves exactly like 7 except that in the time interval [r,, 75, , 1) 7 first serves a customer
(whereas 7 idles) and then does what 7 has been doing in [7&,7t,) if m < oo (resp. in [7f,00)
if m = oo) (observe that the consecutive service times delivered by both policies in [7&,7E,) are

stochastically | but not pathwise | identical; this is allowed because of A3).
The proof that v is admissible is identical to the proof given in Proposition 3.1.

With this construction, it is easily seen that v € II and that vy, ,; = 7, ;. Further,

Q’Y(t) < Qﬂ—(t)a fOI'tE[’Y;_,_l,ﬂ'ﬁn_f_l);
Q'(t) = Q7(¢), fort€[0,7,41)U[mpi1,00).

10

Moreover, the policy v is greedy up to vy, 1, where ;.1 > 7.

Iterating this procedure we finally end up with a policy £ € T' that is greedy in [0, 00), and such
that Q7(t) < Q7 (t) for all t > 0. The proof is then concluded by removing the conditioning on the
input sequence I. g

4 Optimality of exhaustive policies

In view of the above results, it remains to compare the decisions between “serving” and “switching”
in order to determine the optimal decision when the server is at a nonempty queue. We show that
any policy in II can be improved by a greedy and exhaustive policy. In other words, in order to
stochastically minimize the unfinished work and the number of customers in the system at all time,
the server can neither idle at a nonempty queue nor leave the queue before it is empty.

Proposition 4.1 Assume that A1 holds. Then, for any policy © € 11 there exists a policy £ € TNE
such that
Uf(t) Sst Ur(t)a (41)

for allt > 0.

Proof. Owing to Proposition 3.1 we may restrict ourselves to the policies in I'. The proof is

identical to the proof of Proposition 3.1 except that n is now defined to be the first integer such

that 7y =2 and Q7, (77) > 0 (i.e., at time 7, the decision is made to move the server although
n—1

the queue where it is located is not empty). The rest of the proof is analogous to that of the proof
of Proposition 3.1, and it is therefore omitted. g

Proposition 4.2 Assume that A1 and A3 hold. Then, for any policy = € II there exists a policy
¢ € 'N = such that

QY1) <t Q7 (1), (4.2)
for allt > 0.

Proof. The proof is identical to the proof of Proposition 4.1 (simply replace “Proposition 3.1” by

“Proposition 3.2”), and it is therefore omitted. g

5 Optimality of Stochastically Largest Queue Policies

This section focuses on the choices of the queues to be visited when the server leaves a queue.
Specifically, we define the class of Stochastically Largest Queue (SLQ) policies, 3, and prove that

11

for any policy in IT there exists a policy in ¥ that will perform at least as well if the polling system
is symmetric.

In general, it is not easy to identify the best policy within ¥. We will conclude this section with
a number of interesting examples where it is possible to identify the optimal policy within ¥ and,
thus, within II.

With any policy 7 € II, we associate the relations { R} }5% ;, where (j, k) € R} at the n-th decision
epoch if one of the following two conditions holds:

i) Ff, > Ff, and QF(F,) < QF(F(,.);

i) Ff, = Ff, and QF(Ff,) < QF(F{,,)-

Definition 5.1 A policy = € I is a SLQ policy if, at every decision epoch such that ml_, # m,
there ezxists no k € I such that (7d,k) € RJ.

In the remainder of this paper, we shall assume that the polling system under consideration is
totally symmetric, i.e., the assumptions A2-Ab5 are satisfied (in the literature, a symmetric polling
system usually refers to a system where the arrival patterns and the service time distributions are
stochastically identical at all queues; however, the switching times may be different, see Takagi [7]).
As a consequence of A3, we may now assume without loss of generality that the service times are
associated with the server. Let o, be the n-th service time delivered by the server (observe that o,
does not depend on the enforced polling policy). Likewise, because of assumption A4 we may also
assume that the duration of the consecutive switching periods do not depend on the routing policy.
Let 6,, be the duration of the n-th switching period.

The main result in this section is the following.
Proposition 5.1 Assume A2, A3, A4 and A5 hold. Then, for any policy m € 11, there ezists a
policy € € ¥ such that
US(t) <o UT(t); (5.1)
Q) <u Q") (5:2)
for allt > 0.

Before proving this assertion, we state the following lemma :

Lemma 5.1 Let 7 € II be an arbitrary policy. Fiz n > 1 and p,q € {1,2,...,N}. From the

sequences {a;}7°,, {0112, {6152, and {w;}2,, we generate a new sequence {u;}°, as follows:
w = w, foralll such that a; < Fy,; (5.3)

w, = wl(u #pu#q)+plu=q)+ql(u =p), foralll such that a; > Fr.. (54)

12

Then, {u;}52, and {uj}2, are identical in law and {u}}2, is independent of {a;, 01,0}, .

The proof of Lemma 5.1 is given in Appendix A.
Proof of Proposition 5.1.

Let us consider a realization I of the input sequence {an, tn, on,0,}52 1. As a result of Propositions
3.2 and 4.2 we can restrict ourselves to greedy and exhaustive policies. Let m be an arbitrary policy
mIPNENII-%) (if r €e 'NENZX then take £ = 7) such that the SLQ rule is violated on the
input sequence I.

On the sample path Z generated by letting policy 7 run on the input sequence I, let n > 1 be the
smallest integer such that 7¢ = 2 and such that there exists some k € I with (72,k) € R? and
where (k, k') & RT for all k' € I — {k}.

Let j := nd (i.e., the server switches to queue j in the interval of time (7y,, 75 1)). Also define
K = Qr(Ff,) — QF (Ff,)- (5.5)

Observe that K > 0. This follows from the fact that (j,k) € R as well as from the fact that the

mapping z — QF () is nondecreasing in [F,;: ns Fn] because of P3.

Let
M; :=inf{l e N|l > n+1, Qj(n]) = 0}.
In words, 77}3\4- is the first time in [}, |, 00) when queue j is empty (recall that the server arrives at

queue j at time 77, 14). If Q7(¢) > 0 for all ¢ > my,, then we take M; = oco.

Let
M*:=inf{l € N|r{, ,, =k and 7, = 1}. (5.6)

e

. . . . e .
In words, Tt 4 mk 18 the first time when a customer of queue k is served in |7 Mj,oo) under policy

w. In fact, as 7 is greedy and exhaustive, 77, Y is the first time when the server arrives at queue
J

k in [}, 00). We assume that M ¥ = 00 if queue k is not visited by the server in [754,»00) under

policy .

From 7 we construct a new policy ~ as follows (cf. Figure 3):
o For 1 <m<n—1,9% =18, 7% = T, 151 — 16 = Ty — 75

a _ ,.a _ e e _ e e.
d ’)/n_ﬂ-nafygz_ka 7n+1_7n_7rn+1_7rn)

Forn+1<m<M;+K -1, 7%:1,731:]43,’7%4.1—75@:057“;

For M + K <m < M; + K+ M* — 1,

13

* Y = T K
* v = Ul g RN T e U e =5) kA U(nl g = k)
* ’Yren+1 —Tm = W:;H—l—K — T i Y € {0,2};

* Y1~ Vm = 05y i =15
° FormZMj—l-K—FMk,

a __ a.
*'Ym_ﬂ'ma

e __ €.
*’Ym_ﬂ-ma

= 1(rd, & {4, k}) 7l + U(nd, = j) b+ 1(nd, = k) j.

Policy =
q — q
Tn =1 Tayenat = K
(91 g1 092 92 g3 93 04 05
— — | ——t— : -
e € e
e T, T, 4 Mk
Policy ~:
q — q _
=k T+ Mb+1 =)
91 g1 g9 g3 92 g4 93 g5
— —— | —t—— : -
e e e
Tn TM;+1 TM;+MF41
] .] 3 € € 3 —
Figure 3: An example of the behavior of 7 and 7 in [7{, 7er+Mk+K+1) with K = 1.

The policy v operates on the sequences {a;}5°,, {u;}5%g, {01}, and {6;}7°,, where
up, if @y < FJ, or w & {4, k};
=4 k, ifa>Ff, and u = j; (5.7)

J, ifa > F], and u =k,

for all I > 1. Owing to Lemma 5.1, the sequences {a;}°;, {u]}52,, {o1}7°, and {6,}7°, satisfy the
assumptions A2-A5 and have the same joint distribution as {a;};°,, {wi}12, {o:};2, and {6;}2,.

14

e

. K+ arko O0) they are also identical except
J

In words, policies 7 and + are identical in [0, 7%); in [
that the server moves to queue j (resp. k) under policy v each time he switches to queue k (resp.

e

< w}f\/fj LKAM k) policy ~ first serves as many customers at queue k as policy

j) under policy 7. In [«
does at queue j plus the K extra customers that were present at queue k at time FJ,, (see (5.5));
this period terminates at time Wf\/h k- 1D [fyﬁ/[j n K,ﬂfvfj o k) 7y follows what policy 7 has
been doing in [7'(']8\/[],,71'}3\/[], n k) With the exception that the server moves to queue k each time he

moves to queue j under policy « in this time interval.

We are going to show that the following relations are satisfied:

Virrkt 2 Thgan for1=0,1,... M" (5.8)
M KAME = MK ME (5.9)
QL) > 0, ify=1,1>1, (5.10)

which will ensure that v is admissible. Indeed, because of the structure of the information set (2.4),

relation (5.8) ensures that, when v makes its (14 1)-st (I > 0) decision in [fyj/[]_ 4K+ 00) (which occurs
at time v, | g 41); it possesses at least as much information as m when 7 makes the corresponding
decision at time 77}3\/[], 4~ Property (5.10) ensures that v will never make the decision to serve an

empty queue.

Proof of (5.8). Let X; be the total duration of the idling and switching periods in [wf\/fj,w]ewj+l).

Let L; be the number of customers served by policy 7 in the interval of time [ﬂﬁ/[j,wfwj) >0

We have for [= 0,1,...,M*F —1,

L
W?\/Ij—f—l = 7T§3\/[j+Xl+ZUsWMj+i; (5.11)
=1
K+1L;
Yogrk4l = Yy T X1+ > O, +i (5.12)
i=1 7
Subtracting (5.11) from (5.12) yields
K+Ll
VK — T = D 051 4i =W 20, (5.13)
i=L;+1 J

by noting that Vﬁ/[]. = W]e\/fj by construction of vy and that 57\/1]- = SX/IJ- from the definition (2.1).

Proof of (5.9). Since Q (75, _ 1,+) > K by definition of MF*, K and 7, we have
J

K
s =7t + Z O
M;+MF+K — "M;+MF ij+LMk+m7
m=1

15

since 7 is exhaustive and greedy, which in turn implies from (5.13) that

7716\4]-+Mk+K - 716\4j+M’“+K’ (5.14)
which establishes (5.9).

Proof of (5.10). First, it is clear that (5.10) holds for I < M; — 1 by definition of policy 7. That
(5.10) is true for M; <1 < M; + K — 1 comes from the fact that

Q) (m) = QF () + K, (5.15)

which follows from (5.5) and from the definition of the sequence {u],}5°_;. Therefore qu () >
1
K+M;—lforall M; <1< M+ K—1.

It remains to examine (5.10) for I > M; + K. Let A,(t1,t2) denote the number of customers that
arrive at queue s € I in the time interval (¢1,] operating under =, 0 < ¢; < t3. Assume that

Vi1, + K+ = 1 for some r > 0. Define i := ybﬁ_}ﬁ_r.
Then, it is easily seen by definition of v that

Q?(W?Wj-FT) + Ai(ﬂ.]er—F’r’fy?Wj—FK—kr)’ [7& ka

T/ e . . . 5.16
Q] (WMj+r) + Aj(WMj+r77Mj+K+r)v i =k, ()

QZ('VJCM]--FKM) = {
if i # j. Property (5.10) then follows for ¢ # j because QT (7‘('16\/[], 4+1) > 0 (indeed, since 7 is admissible
and mj, ,, = 1 then necessarily Q7 (5, ;) > 0).

We now examine the case where 7 = j. Observe that queue j is never served in [v5,75%,. YK+ ME)
J

under policy . Therefore, (5.10) holds for 7/ = j and for all l = 1,2,...,M; + M¥ + K — 1. The
proof of (5.10) is now concluded by noting that (5.16) and the definition of v yield

Q7 (t) = Qk(1), (5.17)
for all ¢ > 7]’;/[,+K+Mk.

We also deduce from (5.16) that for ¢ > 5, . ..,

Q1) = Q) foriel—{jk}; (5.18)
Q7(t) = QL) (5.19)

that is both systems are again synchronized from time 7%, SMRAK
J

In particular, relations (5.17)-(5.19) indicate that Q7(¢) < Q™(¢) and UY(¢t) < U™(t) for t >

€
TM;+ K+ Mk

16

We now establish that Q7(t) < Q"(t) and U7(t) < U"(¢), for all 0 <t <5, e e
J

Define D”(t) to be the number of departures in [0,¢) under policy p. Recall that s/ is the number
of departures in [0, pf) under p (cf. (2.1)). It suffices to show that

D7(t) > D"(t), forallt < vi/fﬁMkJrK. (5.20)
Proof of (5.20). The inequality (5.20) is clearly true for 0 < t < Vi, +x by definition of v in
[0,77\4j+K). Fix 77wj+K <t< 77\4j+Mk+K’ and let 0 <1 < M* — 1 be such that
Vitj+ K41 S U< VM4 K 4141 (5.21)
From (5.21) and the definition of v in [v§,, Vi, 1 xc+), D7 () and s/, we see that

D’Y(t) = 5’1{/1j+K—|—l’

= shut+K (5.22)

On the other hand, (5.13) and (5.21) yield t < g, +141 T Wit

Therefore,
D™(t) < s"(mhyq141 + Wit1), (5.23)
< sy T K (5.24)
< syt 14K, (5.25)

and so D™(t) < S0 T = D7(t) from (5.22) (note that (5.23) and (5.24) follow from (5.13);

(5.25) follows from the fact that at most one customer may be served between two consecutive

decision epochs).
In summary, we have shown that Q7(t) < Q™(t) and U7(t) < U™(t) for all ¢ > 0.

Although v may not be a greedy policy, arguments used in Propositions 3.1 and 3.2 can be used
to construct a greedy policy 7/ which is a SLQ policy up until at least time 716\4j 1k > ™, such that

U (t) <UY(t) <U™(t) and Q' (t) < QV(t) < Q™(t), for all t > 0.

This procedure can be iterated until we finally obtain a policy ¢ € ¥ such that U$(t) < U™(t) and

Q%(t) < Q™(t), for all t > 0. The proof is then concluded by removing the conditioning on the input
sequence. g

In general, for a given set of functions { fl’;n} we are unable to identify the best SLQ policy. This

is due to the fact that the relation R] may not contain a single maximal element for all n > 1.
However, in the first four information structures described in section 2, we do identify the best SLQ
policies:

17

1. Complete information. Here the SLQ policy is one that always switches the server to the
queue with the largest queue size.

2. Partial information. Here the optimal SLQ policy is the cyclic policy that begins with the
first queue. Observe that this policy requires no information except whether or not the queue
currently being served is empty or not.

3. Periodic information. Here the optimal SLQ policy switches the server to the queue with the
largest queue length at the time of the last update. If all of the queues have been visited since
that update, then the server is switched to the queue visited the farthest in the past.

4. Delayed information. The optimal SLQ policy behaves similarly to that for the system with
periodic updates. The server is switched to the queue with the largest queue length that has
not been visited since the last update and otherwise to the queue visited the farthest in the
past.

Note that in the above four cases, the SLQ policies may not be unique since there may be several
maximal elements in R} for some n > 1. However, such maximal elements j and k£ have the property
that FT,, = F{, and that Q7 (F],,) = Qf(F],). Therefore, all these SLQ policies are optimal.

It is not possible to characterize the optimal SLQ policy for the system in which the controller
obtains information regarding a queue and its neighbors (local information). However, the previous
theorem does reduce the number of decisions that must be considered by the optimal policy.

6 Optimality of Patient Policies

We are now concerned with the optimal decision to be made when the server is at an empty queue.
Should the server idle at the last visited queue or should it move to another queue? Consider first
the case that the system is empty at the decision epoch. We will therefore assume that the controller
has complete (i.e., instantaneous) information on the state of system, i.e., for all 7 € I, n > 1,
=,

for all i € I (cf. (2.5).

For symmetric polling systems, we prove that optimal polling policies are within the class of patient
policies ¥, i.e., policies that decide to idle in the last visited queue when the system is empty.
Proposition 6.1 Assume A2, A3, A4 and A5 hold. Then, for any policy m € 11, there ezists a
policy E eT'NENT such that
US(t) <o U"(t); (6.1)
Q) <u QT(1), (6.2)
for allt > 0.

18

Proof. Consider a realization I of the input sequence {an,un,0n,0,}152 ;. As in the previous
section, we restrict ourselves to greedy and exhaustive policies. Let m be an arbitrary policy in
FNEN(II—-T) (if 7 € TNEN T then take £ = 7) such that 7 is impatient on the input sequence I.

On the sample path Z generated by letting policy 7 run on the input sequence I, let n > 1 be the
smallest integer such that 7% = 2 and Q7 (7¢) =0 forall i € I. Let j = 7 and k = 7} _;. From 7

n—

we construct a new policy ~ as follows:

a __ ._a _ e __ €.
.FOI'].SmSn—].,’)/m—ﬂ'm, %_Wgna’}/m_ﬂ—ma

* T =0, 70 =k, yn = ;s
e Form>n+1;

a _ a.
*PYm_ﬂ—ma
e __ € .
*’Ym_ﬂ-mﬂ

* v = 1w, 44, kY wl, + 1w, = §) k + U(md, = k) J.-
The policy v operates on the sequences {a;}72,, {u;}5%, {01}, and {6;}7°,, where for all [> 1,
w, ifa <mgoru &{jk};
up =14 k, ifa;>7¢ and u; = J;
J, ifa>ng and u; =k,

and
0, ifl < ks

0141, if1>kD.
Recall that k7 is the number of queues visited by the server during [0, 7%].

In words, v follows 7 in [0,7%), keeps the server idling at queue k at time ¢ and follows 7 in
[75 11,00) with the exception that the server moves to queue j (resp. k) each time he moves to

queue k (resp. j) under policy .

It can be shown (cf. Lemma 5.1) that the sequences {a;}7°,, {u;}520, {o:}7°, and {6;}2, satisfy the

assumptions A2-A5 and have the same joint distribution as {a;};°,, {wi}2;, {o:}2; and {6;};°;.

It is easy to see from the definition of v and that of the sequences {a;}7°,, {u]}5%y, {01};°; and
{67372, that

Q) = Qf(t), foral0<t<m,i€el;
Q/(t) = Q7(t), forallt>0,iel—{jk};

19

Q1) = Qi) t>m;
Qi) = Qj(t), t>m,
which imply that 7 is admissible and that Q7(¢t) = Q™(¢) and U"(t) = U™(t) for all ¢ > 0.

Note that v may not be greedy as customers may arrive at queue k during (7,75, ;]. Using the

arguments of Propositions 3.2 and 4.2 yields a polling policy ' which is greedy, exhaustive and
patient until 77, and such that

QW <QRW=Q"(1), t>0
U@ <U#) =U"(t), t>0.

This procedure can be iterated until we finally obtain a policy ¢ € ¥ such that US(t) < U™ (t) and

Q(t) < Q™(t), for all t > 0. The proof is then concluded by removing the conditioning on the input
sequence I. g

7 Optimality of Non-Idling Policies

We now consider the optimal decision to be made when the server is at an empty queue while the
system is not necessarily empty. Recall that a polling policy is an idling policy if the server stays
idling at that empty queue. It is non-idling if the server switches to another queue (even if the
latter is empty).

In general, non-idling policies are not optimal. However, when the polling system is symmetric and

slotted, we show below that optimal policies are within the class of non-idling policies T.

Proposition 7.1 Assume A2, A3, A4 and A5 hold. If 0, = 1 a.s., and o, 7, € INy, then, for
any policy w € 11, there exists a policy E € T NZNTY such that

US(t) <o UT(t); (7.1)
Qf(t) Sst Qw(t)a (72)

for allt > 0.

Proof.
The proof is analogous to the proof of Proposition 5.1.

Consider a realization I of the input sequence {an, un, 0n, 0,152 ;. Owing to Propositions 3.2 and
4.2, we can restrict ourselves to greedy and exhaustive policies. Let m be an arbitrary policy in
FNENII-T7) (if r e TNENT then take £ = 7) such that 7 is idling on the input sequence I.

20

Under the assumptions of the proposition, we can assume without loss of generality that the dura-
tions of idling periods are all equal to one. Therefore, if for some n > 1, m; = 0, then 7} | = 77 +1.

On the sample path 7 generated by letting policy 7 run on the input sequence I, let n > 1 be
the smallest integer such that 7, = 0 and Q"¢ (7)) = 0. Let j = n} and k € T — {j}. Denote

K := Qi(my) 2 0 = Qf (7).
As in the proof of Proposition 5.1, we define

M; = inf{l e N[l >n+1, QF(r;) =0}
Mk‘

inf{l € IN|7f; ;; =k and 73, =1}

In words, Wf\Jj is the first time in [}, ,;,00) when queue j is empty. Note that there may be an
arrival at queue j at time 7, in which case the server has to serve queue j until the queue is

empty, as 7 is greedy and exhaustive. If Q7 (¢) > 0 for all ¢ > m;,, then we take M; = co. The

symbol M* has the interpretation that o k38 the first time when a customer of queue k£ is
J

served in [ﬂf\,[j ,00) under policy 7. We assume that M* = oo if queue k is not visited by the server

in [ﬂf\,[j ,00) under policy .

From Z we construct a new policy v as follows:

For 1 <m < n—1, 4 = T, % = Ty Y1 = W = Torp1 — T

®* =27 =k 1 — M =Tpt1 — T =1

Forn+1<m<M;+K -1, fyﬁn:l,%'%l:k,vf;lﬂ—fyfn:asvﬂ;

e For M; + K <m < M; + K+ MF—1,
* Y = T K
* = Ut IR T H (T, e =9k 4+ Uk = k)
* Yokl — Y = Tmi1—k — Tmei = Lif v € {0,2}5
* V1 V= 05y i =15
° FormZMj—l-K—FMk,
* Vm = T

e _ €.
*'Ym_ﬂ'ma

* Y = Uk, &40, kY mh + U, = g) b+ 1(xd, = k) J.

21

The policy v operates on the sequences {a;}7°, {u;}5%, {o:}7°, and {6;}2,, where
w, ifa <7t oru &{jk};
uy =< k, ifa >n¢andu =j;
j, ifa>nf and u; =k,
for all [> 1.

In words, policy v behaves as policy « in the proof of Proposition 5.1 except that the server moves
to queue k at time w¢ whereas he idles at queue j at time 7 under policy =.

Similar to Lemma 5.1, one can show that the sequences {a;};°,, {u;}>2y, {o1}2; and {6;}°,
satisfy the assumptions A2-A5 and have the same joint distribution as {a;};2;, {wi}i2y, {01},
and {6;}7°,.

It is now immediate (by mimicking the proof of Proposition 5.1) that the policy v is admissible,

and that
Q') <Q™(t), U()<U™(t), t=>0.

Using again the same argument as those in the proof of Proposition 5.1, we obtain a policy £ € T
such that US(¢) < U™(t) and Q¢(t) < Q™ (t), forall t > 0. g

Observe that the above proposition indicates only that the non-idling policies do at least as well as
idling policies. In order to decide which queue to switch to, we have to use Proposition 5.1.

Combining the results of Propositions 6.1 and 7.1 we obtain that patient and impatient policies are

both optimal in slotted systems:

Corollary 7.1 Assume A2, A3, A4 and A5 hold. If 0, =1 a.s., and 0,7, € IN — {0}, then, for
any policy m e T NEN A, there exists a policy v € I NENV, such that

U™ (t) =5 U¥(2), Q™(t) =s: Q¥(t), Vt>0.

A Appendix

Proof of Lemma 5.1.

Let us first show that the sequences {u;};°, and {u}{°, are identical in law. Consider the case
where x1 = p, k9 # p, T9 # q, n1 < ny. We have, cf. (5.3), (5.4),

P (uy,, = x1,uy,, =)

!’ r T r) T
= P(unl = T1,Up, = xQJFp,n < anl) +P(un1 = L1, Up, = T2,0n, < Fp,n < an2)

22

+ P (up,, = 215Uy, = 22,00, < F,),

= P (Un1 ={q,Uny, = I'Z,F;Z:n < an1) +P (unl = L1, Uny = T2,0ny < Fl‘:n < an2)
+ P (un; = @1, Un, = 22, an, < F,,),

= P (un, = o1, Un, = T2),

where we have used the independence assumption between {u;};°; and {a;, 07, 6;}7°,, together with

A5. The general proof is similar and is omitted for sake of conciseness.

It remains to establish that {u;}$°, is independent of {a;, 0y,6;}°,. Let us consider a realization I

of the input sequence {a;, 07,6;}7°;.
For 1 = p, x2 # p, 2 # q, n1 < ng, it is readily seen that, cf. (5.3), (5.4),

P (u,

= T1,Un, = 22| 1)
= P(up, = ¢ uny = 9, F,, < any |I) + P (tny = 21, U, = 32, Fy, > an,y | 1),
= P (un, = ¢ tun, = T2, |F;:n < ap,,I)P (F;n < ap, | 1)
+ P (tUn, = T1,Un, = T2 | F,, > any, P (F,, > any [1),
= P (up, = 1,Un, = T3), (A.1)
where we used A5 and the fact that {u;}{°, is independent of {a;, 0, 6;}7°; (assumption A2). Next,

using the property that {u;}7°, and {u;};°, are identical in law, we get from (A.1),

P (up, = @1,up, = 22| 1) = P (up, = 21,05, = 22).

Again, the general proof is omitted for sake of conciseness. g

References

[1] O. J. Boxma, H. Levy and J. A. Weststrate, “Optimization of polling systems,” Proc. of Per-
formance ’90, P.J.B. King, I. Mitrani and R. J. Pooley, (Eds.), pp. 349-361, North-Holland,
1990.

[2] S. Browne and U. Yechiali, “Dynamic scheduling in single server multi-class service systems
with unit buffers,” Naval Res. Logist. 38, pp. 383-396, 1991.

[3] S. Browne and U. Yechiali, “Dynamic priority rules for cyclic-type queues,” Adv. Appl. Prob.
21, pp. 432-450, 19809.

[4] M. Hofri and K. W. Ross, “On the optimal control of two queues with server set-up times and
its analysis,” SIAM J. on Computing 16, pp. 399-419, 1987.

[5] H. Levy, M. Sidi, and O. J. Boxma, “Dominance relations in polling systems,” Queueing Systems
(QUESTA) 6, pp. 155-172, 1990.

23

[6] Z. Liu and P. Nain, “Optimal scheduling in some multi-queue single server systems,” INRTA
Report No. 1147, Dec. 1989. To appear in IEEE Trans. on Automat. Contr.

[7] H. Takagi, Analysis of Polling Systems. MIT Press, 1986.

[8] H. Takagi, “Queueing analysis of polling models,” Stochastic analysis of computer and commu-
nication Systems, H. Takagi (Ed.), North Holland, 1990.

[9] D. Towsley, S. Fdida, H. Santoso, “Design and analysis of flow control protocols for metropolitan

area networks,” High-Capacity Local and Metropolitan Area Networks (ed. G. Pujolle), Springer
Verlag, pp. 471-492, 1991.

24

