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Abstract. We evaluate the performance of a class of two-hop relay protocols for
mobile ad hoc networks. The interest is on the multicopy two-hop relay (MTR)
protocol, where the source may generate multiple copies of a packet and use
relay nodes to deliver the packet (or a copy) to its destination, and on the two-
hop relay protocol with erasure coding. Performance metrics of interest are the
time to deliver a single packet to its destination, the number of copies of the
packet at delivery instant, and the total number of copies that the source gener-
ates. The packet copies at relay nodes have limited lifetime (time-to-live TTL).
Via a Markovian analysis, the three performance metrics of the MTR protocol
are obtained in closed-from in the case where the number of the copies in the net-
work is limited. Also, we develop an approximation analysis in the case where the
inter-meeting times between nodes are arbitrarily distributed and the TTLs of the
copies are constant and all equal. In particular, we show that exponential inter-
meeting times yield stochastically smaller delivery delays than hyper-exponential
inter-meeting times, and that exponential TTLs yield stochastically larger deliv-
ery delays than constant TTLs. Finally, we characterize the delivery delay and the
number of transmissions in the two-hop relay protocol with erasure coding and
compare this scheme with the multicopy scheme.

Keywords: Mobile ad hoc network, Two-hop relay protocol, Erasure coding, Mo-
bility model, Analytical model, Markovian analysis, Performance evaluation.

1 Introduction

In mobile ad hoc networks (MANETs), since there is no fixed infrastructure and nodes
are mobile, routes between nodes are set up and turn down dynamically. For this rea-
son, MANETs often experience route failures and network disconnectivity, especially
when the nodes are moving frequently and the network is sparse. Grossglauser and
Tse [9] propose to make the mobile nodes serve as relays in order to increase the net-
work throughput in MANETs. Their relay mechanism, called two-hop relay protocol,
is simple: if there is no direct route between the source node and the destination node,
the source node transmits its packets to the nearest neighbor node (called relay node)
for delivery to the destination. Then, it was shown that with this protocol it is possible
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to schedule Θ(N) concurrent successful transmissions per time-slot, where N is the
number of nodes [9]. After that, it was observed that the delay experienced by the pack-
ets under this protocol is large [7,13,17]. In order to reduce this delay it is proposed in
[5,13] to allow the source transmits the packet to all its neighboring nodes (not only to
the nearest neighbor).

In this paper we evaluate the performance of two variants of the basic two-hop relay
protocol: the multicopy two-hop relay (MTR) protocol and the two-hop relay protocol
with erasure coding when N is finite. Before describing these two variants that aim
at improving the delay, let first introduce the nodes mobility model. All nodes move
independently of each other according to the same random mobility model inside a
two-dimensional bounded region. Two nodes may only communicate at certain points
in time, called meeting times. The time that elapses between two consecutive meeting
times of a given pair of nodes is called the inter-meeting time.

The following will be assumed throughout: (A1) Transmission times are instanta-
neous. (A2) All inter-meeting times are independent and identically distributed (iid)
random variables (rvs) with a common cumulative distribution function (CDF) G(·).

Assumption (A1) will be justified in delay tolerant networks, where the incurred
delay to send a packet may be very large with respect to the transmission times [1].

For Assumption(A2), in [15] it has been shown that when nodes move independently
on a sphere and they have uniform (stationary) spatial distribution, the inter-meeting time
distribution is approximately the exponential distribution with mean 1/λ for λt � 1.
Furthermore, in [8] the exponential approximation of inter-meeting times distribution
was validated for the random mobility models inside a square of non-uniform spatial
distribution such as the random waypoint model [3] and of uniform spatial distribution
such as the random direction model [12]. Moreover, it was observed that assumption
(A2) is “reasonable” as long the node transmission range is not “too large” with respect
to the area where nodes move. On the other hand, if nodes are humans moving in a
conference space it has been found that the inter-meeting times distribution shows a
heavier-than-exponential tail [4]. In this paper, we will show the impact of considering
arbitrary and exponential inter-meeting times distribution on the performance of the
MTR protocol. See Section 3 for more details.

We consider the scenario consisting of N + 1 mobile nodes: one source node, one
destination node, and N − 1 relay nodes. The source has a single packet to transmit to
the destination. We now introduce the two variants.

MTR protocol. In the MTR protocol the source node may either transmit the packet
directly to the destination node when both nodes come within transmission of one an-
other, or use the relay nodes. In the latter case, if the source meets a relay node before
meeting the destination, then it sends a copy of the packet to this relay node; this relay
node will only transmit the packet to the destination when it comes close to it (as op-
posed to the epidemic routing protocol [20], also called the unrestricted relay protocol
[8], where a relay node is allowed to send a copy (of its copy) to another relay node).
Section 2 evaluates the performance of the MTR protocol in the case where the number
of copies in the network is limited.

We define, Td, the (packet) delivery delay as the first time when the destination re-
ceives the original packet or a copy, whichever arrives first to the destination. We assume
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that the packet at the source cannot be dropped before the transmission has taken place,
i.e., before time Td if the packet joins the source at time t = 0. On the other hand, each
copy has a time-to-live (TTL) associated with it: when a TTL expires, the relay node
that holds the copy drops it. This relay node then becomes eligible to receive another
copy. We assume that the source cannot transmit a copy to a relay node that already
holds a copy.

Two-hop relay protocol with erasure coding. The relay protocol is the basic two-hop
relay protocol. A node may only transmit a piece of information either directly to the
destination or to at most one relay node.

In the two-hop relay protocol with erasure coding, the source introduces some re-
dundancy in its transmissions and sends more data than the actual information. Upon
receiving a piece of data (packet), the source produces n blocks of data. The transmis-
sion of the packet is completed when the destination receives the kth block, regardless
of the identity of the k ≤ n blocks it has received [15,19]. More details are provided
in Section 4, where the Laplace-Stieljes transform (LST) of the delivery delay and the
z-transform of the number of transmissions are derived in closed-form.

Note that under the above assumptions, the delivery delay obtained in our setting
gives a lower-bound, as a consequence of the instantaneous transmission time. Second,
the total number of copies per-packet generated gives an upper-bound. This is so be-
cause in the realistic context the source will not systematically transmit a packet to a
relay node that it encounters.

The rest of the paper is organized as follows: Section 2 evaluates the performance
of the MTR protocol with the assumptions that the number of packet copies in the net-
work is limited, and that inter-meeting times and TTLs are distributed exponentially. In
Section 3, we show the impact of considering arbitrary distribution of inter-meeting
times and constant TTLs on the delivery delay of MTR. Section 4 finds the delivery de-
lay and the number of transmissions for the two-hop relay protocol with erasure coding,
and compares with erasure coding scheme.

2 Performance of MTR Protocol with Limited Number of Copies

In this section we consider the MTR protocol, with exponentially distributed node inter-
meeting times with parameter λ (i.e., G(t) = 1−e−λt), exponentially distributed TTLs
with parameter μ, and where the number of copies of a packet in the network may not
exceed K (including the packet at the source), where K is an arbitrary integer less than
or equal to N (in [2, Sec. 3] K = N ). We recall that we only focus on the transmission
of a single packet between a given source and a given destination, and that the packet
at the source has no TTL (only copies have a TTL).

The performance metrics of interest are: Td the time needed to deliver the packet to
the destination, Cd the number of copies of the packet before the delivery to the desti-
nation, and Gd the total number of transmissions before the delivery to the destination.
Note that the latter metric is related to the energy needed to deliver a packet to the des-
tination. In this section we derive closed-form expressions for the E[T n

d ] for all n ≥ 1,
P (Cd = j), and E[Gd]. We conclude this section by showing how these results can be
used to find the value of K that minimizes E[Gd], subject to a constraint on E[Td].
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Under the above assumptions it is easily seen that the system can be modeled as a
finite-state absorbing Markov chain I = {I(t), t ≥ 0}, where I(t) ∈ {1, 2, . . . , K}
gives the number of copies of the packet at time t < Td, and I(t) = a if t ≥ Td. The
states 1, 2, . . . , K are the transient states and the state a is the absorbing state of I. Let
q(i, j) denote the (i,j)-entry of, Q, the infinitesimal generator of I. It is easily found that

q(i, i + 1) = (N − i)λ, i = 1, . . . , K − 1,

q(i, i − 1) = (i − 1)μ, i = 2, . . . , K,

q(i, i) = −[Nλ + (i − 1)μ], i = 1, . . . , K − 1,

q(K, K) = −[Kλ + (K − 1)μ],
q(i, a) = iλ, i = 1, . . . , K,

q(i, j) = 0, otherwise.

The matrix Q can be written as

Q =
(

QK R
0 0

)
, (1)

where QK = [q(i, j)]1≤i,j≤K , R = (q(1, a), . . . , q(K, a))T , and 0 is a K-dimensional
row vector with all entries equal to 0.

We will show below that for any initial state I(0), E[T n
d ], P (Cd = j), and E[Gd]

can be derived in closed-form if one has a closed-form expression for Q−1
K , the inverse

of QK .
We now derive Q−1

K in closed-form. We note that QK can be decomposed as QK =
Q̂K + buuT , where Q̂K is the K-by-K sub-matrix composed of the first K rows and
columns of the matrix QN , u = (0, · · · , 0, 1)T , and b = λ(N − K). By applying the
Sherman-Morrison formula [16, P. 76] we find that

Q−1
K = Q̂−1

K − b

1 + buT Q̂−1
K u

Q̂−1
K uuT Q̂−1

K . (2)

Let qK(i, j) be the (i, j)-entry of Q−1
K and q̂K(i, j) be the (i, j)-entry of Q̂−1

K . Equiv-
alently, (2) rewrites

qK(i, j) = q̂K(i, j) − λ(N − K)q̂K(i, K)q̂K(K, j)
1 + λ(N − K)q̂K(K, K)

. (3)

It remains to find the entries q̂K(i, j) of Q̂−1
K .

The matrix Q−1
N was obtained in closed-form in [2, Appendix I]. On the other hand,

simple algebra shows that the (i, j)-entry of Q̂−1
K is related to Q−1

N through the relation

q̂K(i, j) = qN (i, j) +
λ(N − K)qN(i, K)qN (K + 1, j)

1 − λ(N − K)qN(K + 1, K)
(4)

for 1 ≤ i, j ≤ K . A closed-form expression for qN (i, j) was obtained in [2, Eq. 25] for
any i and j.
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2.1 The Performance Metrics

Given that I(0) = i, the nth order moment of Td, which is by definition equal to the
time to absorption of I, is given by [14, Chap. 2, Eq. 2.2.7]

Ei[T n
d ] = (−1)nn!(αiQ−n

K e) = (−1)nn!
K∑

j=1

q
(n)
K (i, j) (5)

for i = 1, . . . , K , where e is a K-dimensional column vector with all entries equal to
1, αi is a K-dimensional row vector with all entries equal to 0 except the ith one that is
equal to 1, and q

(n)
K (i, j) is the (i, j)-entry of Q−n

K that can be expressed in closed-form
in terms of qK(i, j) which are given in (3)-(4).

Given that I(0) = i, the probability distribution of the number of copies just at
delivery time is [2, Sec. 3.2]

Pi(Cd = j) = −jλqK(i, j), i = 1, . . . , K. (6)

Given that I(0) = i, the expected total number of transmissions before delivery is
given by [2, Sec. 3.3]

Ei[Gd] =
1
2

[
αEi[Td] + Ei[Cd] + bqK(i, K) + δ

]
, (7)

where α := (λN − μ), b = λ(N − K), and δ := 1
ρ − i − 1.

2.2 Minimizing the Consumed Energy

The total number of copies that are transmitted is directly related to the energy con-
sumed to deliver the packet to the destination. Our objective now is to use the above
results to find, Kopt, the optimal value of K which minimizes the expected total number
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Fig. 1. The optimal maximum number of copies (Kopt) as a function of constraint (C) on E[Td]
for N = 100 and C ∈ [E(100)[Td], 2E(100)[Td]]
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of copies that are transmitted before the delivery of the packet to the destination, subject
to a constraint on the expected delivery delay, that is,

min
{K:E(K)[Td]≤C}

E(K)[Gd],

where E(K)[Td] := E1[Td] and E(K)[Gd] := E1[Gd]. The superscript (K) emphasizes
the dependency in the variable K . Since the integer mappings K → E(K)[Td] and K →
E(K)[Gd] are strictly decreasing and strictly increasing, respectively, the solution to this
constrained optimization problem is obtained for the smallest integer K in [1, N ] such
that E(K)[Td] ≤ C if E(N)[Td] ≤ C, and has no solution if E(N)[Td] > C. Figure 1
reports Kopt as a function of C for ρ = 1 and for three values of λ. We observe that
Kopt has a sharp decay as C increases.

3 Impact of Arbitrary Inter-meeting and Constant TTLs on MTR

In [4], it has been observed that the inter-meeting times distribution has heavier-than-
exponential tail. This finding was the motivation to investigate the impact of arbitrary
inter-meeting times distribution on the delivery delay of the MTR protocol.

Throughout this section we assume that for any pair of nodes their inter-meeting
times are iid with distribution G(t), and all inter-meetings are mutually independent.
Let X be a generic rv with distribution G. Also define G∗(s) = E[e−sX ] the LST of
X . We assume that TTLs are constant and all equal to T . As a result, the stochastic
process I is no longer a Markov process and a different approach has to be used in order
to evaluate the delivery delay of the MTR protocol. For sake of simplicity we consider
the case where K = N , i.e., there is no restriction on the number of packet copies in
the network.

For convenience we label the nodes so that node 0 is the source, node N is the
destination, and nodes 1, 2, . . . , N − 1 are the relay nodes. Since K = N , we have

Td
st= min(Xsd, D1, . . . , DN−1), (8)

where Xsd
st= X represents the inter-meeting time between the source and the destina-

tion, and Di is the time needed for relay node i = 1, 2, . . . , N − 1 to deliver a copy
of the packet to the destination. Moreover, the rvs Xsd, D1, . . . , DN−1 are mutually
independent and the rvs D1, . . . , DN−1 are identically distributed. Hence,

P (Td < t) = 1 − (1 − G(t))P (Di > t)N−1. (9)

We need to determine P (Di > t). We shall actually find an approximation formula for
P (Di > t) since finding an exact expression is a very difficult task, unless G(t) is the
exponential distribution that is considered in the end of this section.

From now on i is fixed in {1, . . . , N − 1}. We assume that the source, destination
and relay node i are in steady-state at time t = 0, and that the relay node i does not hold
a copy of the packet at t = 0 (only the source holds the original packet at t = 0).

Let R record the number of times the relay node i has dropped a copy of the packet
before it transmits it to the destination. On the event R = m + 1, let ak > 0 be the
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arrival time of the kth copy to the relay node i for k = 1, . . . , m+1, let dk > ak be the
time where the kth copy is dropped by relay node i for k = 1, . . . , m, and let em+1 be
the time where copy m + 1 reaches the destination. Define X̂ = a1, Zk = ak+1 − dk

for k = 1, . . . , m, and Ẑ = em+1 − am+1. Clearly,

Di = X̂ + Z1 + · · · + Zm + mT + Ẑ (10)

on the event R = m+1. Given that R = m+1, the rvs X̂, Z1, . . . , Zm, Ŷ are mutually
independent; moreover the rvs Z1, . . . , Zm are iid.

Let D∗(s) := E[e−sDi ] be the LST of Di. We have

D∗(s) = E[e−sX̂ ]E[e−sẐ ]
∑
m≥0

(e−sT E[e−sZk ])mP (R = m + 1). (11)

1. Evaluation of Z∗
T (s) := E[e−sZk ]: Recall that X denotes a generic inter-meeting

time and that its density probability is g(·).
Let hT (t) := dP (Zk < t)/dt be the probability density of Zk. The reason why we

indicate the dependency on the parameter T in hT (t) will soon become apparent. If the

source does not meet the relay node i in (ak, ak+T ) then Zk = ak+1−ak−T
st= X−T ,

otherwise Zk = ak+1 −ak −(T −(a′
k −ak)) where a′

k is first time the source meets the

relay node i in (ak, ak + T ). The latter rewrites Zk
st= X1 + X2 − T with Xj

st= X for
j = 1, 2. From this we deduce that Z∗

T (s) =
∫ ∞
0 hT (t)e−stdt satisfies the following

renewal equation

Z∗
T (s) =

∫ ∞

0
e−stg(T + t)dt +

∫ T

0
g(u)Z∗

T−u(s)du. (12)

We have shown that Z∗
T (s) satisfies an integral equation (of Fredholm type) from which

Z∗
T (s) can be obtained numerically using standard techniques [10].

2. Probability distribution of R: Finding the probability distribution of R is difficult. We
will first assume that R is a geometric rv with parameter π = 1 − P (R = 1). It is pos-
sible to find an integral equation for π. However, for sake of simplicity, we will assume
that the destination node is at equilibrium at time a1, so that π = 1−Ge(T ), with Ge(t)
the excess probability distribution of G(t), that is, Ge(t) = (1/E[X ])

∫ t

0 (1−G(u))du.
In summary, P (R = m + 1) ≈ (1 − π)πm, for m ≥ 0. Plugging the approximation of
P (R = m + 1) in (11) gives that

D∗(s) ≈ 1 − π

sE[X ]
(1 − G∗(s))E[e−sẐ ]

1 − πe−sT Z∗
T (s)

, (13)

where Z∗
T (s) is the solution of the integral equation (12), and π = 1 − Ge(T ) (Hint:

E[e−sX̂ ] = (1 − G∗(s))/sE[X ]). It remains to evaluate E[e−sẐ ]. Again, this is not
an easy task. Clearly, e−sT ≤ E[e−sẐ ] ≤ 1. For sake of simplicity, we will replace
E[e−sẐ ] by 1. This gives the final approximation

D∗(s) ≈ 1 − π

sE[X ]
(1 − G∗(s))

1 − πe−sT Z∗
T (s)

. (14)
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Finally, P (Di > t) is obtained by inverting (1 − D∗(s))/s (since (1 − D∗(s))/s =∫ ∞
0 e−stP (Di > t)dt) with the help of the complex inversion formula [18, Chap. 7],

which yields

P (Di > t) =
1

2πi

∫ γ+i∞

γ−i∞
ets 1 − D∗(s)

s
ds, t > 0, (15)

where the integration has to be performed along a line s = γ in the complex plane (in
(15) i denotes the imaginary complex number). The real number γ must be chosen so
that s = γ lies to the right of all singularities. Note that since P (Di > t) is a bounded
function it is sufficient to take γ > 0.

The approximation for FTd
(t) := P (Td > t) has been computed when G(t) is an

hyper-exponential distribution, namely, G(t) = 1 −
∑H

l=1 ple
−νlt, and compared to

simulation results. The evaluation of the integral in (15) has been performed by using
the procedure described in [6].

Numerical results are reported in Figure 2. Two hyper-exponential distributions,
represented by the t-tuple (H, ν1, . . . , νH , p1, . . . , pN), have been considered: (H1)
(3, 0.09, 0.08, 0.07, 0.6, 0.3, 0.1) with mean 22.83sec., and (H2) (3, 0.05, 0.04, 0.03,
0.6, 0.3, 0.1) with mean 11.84sec.. The numerical results of the mathematical model
were done using a C program for a network composed of one source, one destination,
and N − 1 relay nodes.

Let Td(app) and Td(sim) be the approximate and simulated delivery delays, respec-
tively. Let FTd

(app)(.) (resp. FTd
(sim)(.)) denotes the complementary cumulative dis-

tribution function (CCDF) of Td(app) (resp. Td(sim)).
Figure 2.(a) displays the mappings t → FTd(app)(t) and t → FTd(sim)(t) for the

hyper-exponential distributions H1 and H2. We observe that the approximation is accu-
rate for moderate value of N .

Figure 2.(b) compares FTd(sim)(t) with the CCDF of Td in the case where the inter-
meeting times are exponentially distributed, where the latter distribution has been ob-
tained in closed-form. See (16) in the following for details. We conclude from these
results that Td under exponential inter-meeting times is stochastically smaller than Td

under hyper-exponential inter-meeting times. This is related to the fact that the hyper-
exponential distribution has a fatter tail than the exponential distribution.

We conclude this section by briefly addressing the simple case where the inter-
meeting times are distributed exponentially with rate λ, and the TTLs are constant and
all equal to T . In this case we derive the closed-form expression of the delivery delay
of the MTR protocol as follows

P (Di > t) = e−λt
[
1 +

� t
T �∑

m=0

m∑
k=0

(Am)k+1 − (Bm)k+1

(k + 1)!

]
, (16)

where Am := λ(t−mT ), Bm := λ[t− (m+1)T ]+, �x	 designates the largest integer
≤ x, and [x]+ := max(0, x). Plugging (16) in (9) gives the CDF of Td. By comparing
the CCDF of Td with constant TTL= T and with TTLs distributed exponentially with
mean T , we deduced that Td with constant TTL is stochastically smaller than Td with
TTL exponential.
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Fig. 2. (a) Mappings t → FTd(app)(t) and t → FTd(sim)(t) for two different hyper-exponential
distributions (N = 10). (b) Comparison of CCDF of Td in the case of hyper-exponential (sim-
ulated CCDF) and exponential (CCDF using (16)) inter-meeting time distributions (N = 50).

4 Two-Hop Relay with Erasure Coding

We now consider a system where the source introduces some redundancy in its trans-
missions and sends more data than the actual information. The advantage of this mech-
anism is that it can considerably reduce the variance of the delivery delay at the expense
of an increase of its expectation.

One of these techniques is known as erasure coding [11]. Erasure coding with repli-
cation factor r works as follow. Upon receiving a packet of size M , the source produces
n = r · M/b equal sized code blocks of size b, such that any of the k = (1 + ε) · M/b
code blocks can be used to reconstruct the packet. Here ε is a small constant, close
to zero [11]. Thus, the destination is able to decode the packet if it receives k ≤ n
blocks. On the other hand, when k = 1, the size of a block becomes almost equal to
M , the packet size, and in this case the destination needs to receive a block in order to
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Fig. 3. Transition diagram of the Markov chain {A(t), t ≥ 0}
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decode the packet. Thus for k = 1, the erasure coding scheme is the same as a simple
multicopy scheme in which the source sends exactly one copy of a packet to n different
relay nodes [19]. We will exploit this observation to compare erasure coding with the
multicopy scheme in the following.

Throughout this section the stochastic model is the following. There are N relay
nodes, one source node, and one destination node. We assume that the source cannot
send directly a packet to the destination. Inter-meeting times between any pair of nodes
are exponentially distributed with rate λ, except for the pair source-destination. Un-
der this setting, the only way to forward the data from the source to the destination
is through the relay nodes. The source has only one packet to send to the destination,
and the source implements the erasure coding algorithm with replication factor r and
parameter k. Hence, the destination needs to receive k ≤ n of the blocks in order to
decode the original packet. The forwarding mechanism used to deliver the blocks to the
destination is the standard two-hop relay protocol. We assume that there is only one
copy of a block in the network.

A relay node can only relay one block at a time, and it is possible for a relay node
that already delivered a block to the destination receives a new block when it again
encounters the source. There is no TTL associated with the blocks.

Let Td and Gd be the delivery delay and the total number of source-relay transmis-
sions at the time when the kth block reaches the destination, respectively. Introduce the
joint transform H(s, z) := E[e−sTd zGd ], s ≥ 0, |z| ≤ 1.

We now evaluate H(s, z). Let A(t) = (B(t), R(t)) denote a two-dimensional pro-
cess such that A(t) = (m, l), 1 ≤ m ≤ n, 1 ≤ l ≤ k − 1, m + l ≤ n, if there are
m relay nodes that hold m blocks (one block for each relay node) and the destination
has received l blocks at time t < Td, and A(t) = a when t ≥ Td (a is an absorbing
state). Under the above assumptions, {A(t), t ≥ 0} is a finite-state absorbing Markov
process. Figure 3 displays the transition diagram of this Markov chain, where the y-axis
represents R(t) and the x-axis represents the sum B(t) + R(t). More precisely, a point
(i, l), i ≥ l, in the transition diagram means that the destination has received l blocks
and that there are i − l relay nodes that hold i − l blocks (one block for each).

Let ji ≥ 0 denote the number of jumps (transitions) along the horizontal line of
index i ∈ {0, · · · , k − 1}. Let Si denote the total number of jumps along the lines of
index less than or equal to i. Given Si−1, the probability of making ji jumps along the
horizontal line i is {

P1(ji) = (N−Si−1+i)!
(N−Si+i)!

Si−i
Nji+1 , Si < n

P2(ji) = (N−Si−1+i)!
(N−n+i)!

1
Nji , Si = n,

(17)

for 0 ≤ i ≤ k − 1. Let m∗ denote the index of the horizontal line such that Sm∗−1 < n
and Sm∗ = n. Conditioned on all the possible paths before absorption at {a} and given
that A(0) = (0, 0), H(s, z) can be written as

H(s, z) =
n−1∑
j0=1

· · ·
n−1∑

jk−1=0

( zNλ

s + Nλ

)Sk−1+k k−1∏
l=0

P1(jl) +
n∑

j0=1

· · ·
n−Sm∗−2∑
jm∗−1=0

P2(n − Sm∗−1)

×
m∗−1∏
l=0

P1(jl)
( zNλ

s + Nλ

)n+m∗ k−1∏
l=m∗

λ(n − l)
s + λ(n − l)

, (18)
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We now evaluate the expectation and the variance of Td for different values of k,
n, and N . Let σTd

:=
√

var(Td)/E[Td] denote the normalized standard deviation of
Td. As noted earlier, erasure coding when k = 1 is similar to the multicopy scheme.
Table 1 shows that E[Td] increases with k and that σTd

decreases with k. For instance,
for N = 20 and n = 10 when k increases from 1 to 5 E[Td] increases by a factor of 3
while σTd

decreases by a factor of 7.5, thereby showing that erasure coding has a much
lower variability than the multicopy scheme. A similar result was found in [19] under
the assumption that the source instantaneously transmits all its n blocks to n different
relay nodes.

Table 1. Erasure coding (k > 1) vs multicopy scheme (k = 1) for different value of n and N

(N, n) (20,10) (40,10)
k 1 2 5 1 2 5

E[Td] (sec.) 31.51 42.04 96.69 22 33.7 79.76
σTd 8.7 4.9 1.17 2.01 1.38 0.63

We conclude this section by investigating the behavior of T ∗
N(s) := E[e−sTd ], the

LST of Td, as N is large. We observed that as N becomes large the most probable path
(MPP) is where all n blocks are first transmitted to n relay nodes, and then these relay
nodes start to deliver these blocks to the destination. Further, it is easy to see that as N
is large the system has a deterministic path MPP with probability one. Therefore,

T ∗
N (s) ≈

( Nλ

s + Nλ

)n k−1∏
l=0

λ(n − l)
s + λ(n − l)

(19)

5 Concluding Remarks

In this paper, we have studied a class of two-hop relay protocols. The interest was on
the multicopy two-hop relay (MTR) protocol and on the two-hop relay protocol with
erasure coding. Closed-form expressions have been derived for nth order moment of
the time to deliver a packet to its destination, the distribution of the number of copies
at delivery, and the expected total number of copies generated before delivery in the
case where copies have limited lifetime (TTL) and where the number of copies in the
network is limited. Also, We investigated the impact of arbitrary inter-meeting times
distribution and constant TTLs on the delivery delay of the MTR protocol. In particular,
we show that exponential inter-meeting times yield stochastically smaller delivery delay
than hyper-exponential inter-meeting times. Finally, for the two-hop relay protocol with
erasure coding the joint generating function of the delivery delay and of the number of
transmissions was derived in closed-form. By analyzing these results, we found that the
delivery delay in the case of erasure coding has much lower dispersion than the delivery
delay of the multicopy scheme.

As future work, we will study the delay when there are multiple sources with multiple
packets to transmit to a set of destinations and where the relay nodes may have different
mobility.
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