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Abstract— This paper addresses optimal on-line estimation of
the size of a multicast group. Three distinct approaches are used.
The first one builds on Kalman filter theory to derive the MSE-
optimal estimator in heavy-traffic regime. Under more general as-
sumptions, the second approach uses Wiener filter theory to com-
pute the MSE-optimal linear filter. The third approach develops
the best first-order linear filter from which an estimator that holds
for any on-time distribution is derived. Our estimators are tested
on real video traces and exhibit good performance. The paper also
provides guidelines on how to tune the parameters involved in the
schemes in order to achieve high quality estimation while simulta-
neously avoiding feedback implosion.

EDICS— 2-ESTM, 2-SDES, Signal Processing in Network-
ing

I. INTRODUCTION

SINCE its introduction, IP multicast [8], [9] has seen slow
deployment in the Internet. As stated in [10], the service

model and architecture do not efficiently provide or address
many features required for a robust implementation of multi-
cast. However, the fact remains that IP multicast is very appeal-
ing in offering scalable point-to-multipoint delivery especially
in satellite communications. This work is motivated by the con-
viction that large-scale multicast applications will soon be de-
ployed in the Internet. We believe that membership estimates
will be an essential component of this widespread deployment
as they can be very useful for scalable multicast. Future Internet
radios and TVs will need to characterize their audience prefer-
ences and to follow the fluctuations of the audience size over
time. Dutta, Schulzrinne and Yemini proposed an architecture
for Internet radio and TV called MarconiNet [11] that relies on
RTCP [21], [22], the real-time transport control protocol in the
Internet. Even though RTCP provides an easy mechanism for
collecting statistics on the size of the audience, it does not scale
well to large multicast sessions. In such applications, sampling-
based techniques are more appropriate.

There has been a significant research effort in devising
sampling-based schemes for the estimation of the membership
in multicast sessions [5], [12], [17], [19] (see also [2, Ch.
2] where the main features of these schemes are presented).
However, none of these schemes have been shown to be op-
timal within some particular set; further, at the exception of the
scheme in [19], they do not use past information, an essential
feature in estimation theory.

In this work, we propose a novel sampling-based technique
that we now describe. Whenever a source is interested in know-
ing how many receivers are connected to the multicast session

(or are actively following some application that is being broad-
casted), it asks all connected members or participants to send an
acknowledgment (ACK) every � seconds. However, in order to
avoid that too many ACKs are sent to the sources in the case
of a large multicast group, a phenomenon refers to as feedback
implosion, each participant only sends an ACK every � seconds
with probability � . Clearly, the values of � and � will have a
direct impact on the quality of the estimator and on the number
of ACKs that are travelling to the source. Ideally, � should be
large and � should be small so that the source collects enough
correlated observations for its (whatever) estimation scheme to
work efficiently. But this ideal scenario would yield feedback
implosion. The challenge is therefore to design an estimation
scheme for the size of the multicast audience that is accurate
without generating too many ACKs.

Throughout the paper, we address the issue of estimating the
membership of a multicast group. We build on adaptive filter-
ing theory to derive the estimator. Three distinct approaches
are successively considered, based on Kalman filtering the-
ory, Wiener filtering theory and least square estimation, respec-
tively.

The Kalman filter provides a linear, unbiased, and minimum
error variance recursive algorithm to optimally estimate the un-
known state of a linear dynamic system from noisy data taken
at discrete real-time intervals. Furthermore, under normality
assumptions, this filter is optimal, not only among all linear
filters based on a set of observations, but among all measur-
able filters [18], [23]. Since our measurements are collected
at discrete times, Kalman filter therefore appears as an appeal-
ing approach for solving our estimation problem. In Section IV
we show that under some conditions (heavy traffic regime and
exponential on-times – the on-time is defined as the length of
time during which a user participates to a multicast session, see
Section III) the Kalman filter can indeed be used in our context.

In Section V we restrict ourselves to the class of linear filters
with the hope of relaxing some of the assumptions made in Sec-
tion IV for Kalman filtering theory to apply. The best filter is
then a Wiener filter. We show that the Wiener filter can be com-
puted for any traffic regime (as opposed to the Kalman filter in
Section IV that is derived in heavy-traffic regime) provided that
on-times are exponentially distributed. Interestingly enough,
both filters obtained in Sections V and IV turn out to be iden-
tical. This observation thereby explains the good performance
of the Kalman filter that we have observed under moderate and
light traffic regimes (see Section VIII).



In Section VI we determine the optimal first-order linear fil-
ter for an arbitrary on-time distribution. We illustrate the ap-
proach in the case where the on-time distribution is hyperexpo-
nential.

The rest of the paper is organized as follows: motivation for
this work is given in Section II and the multicast group model
is introduced in Section III. Estimators are obtained in Sections
IV-VI for fixed parameters � and � ; in Section VII we give
guidelines on how to choose these parameters so as to limit the
number of ACKs travelling to the source, while in the meantime
achieving a good quality of our estimators. The robustness of
the estimators is addressed in Section VIII. Extensions of our
work are discussed in Section IX and concluding remarks fol-
low in Section X.

II. MOTIVATION

In order to best track the time-evolution of the multicast
membership, we aim at developing an unbiased moving aver-
age estimator that would take advantage of previous estimates
in an optimal way. We propose a mechanism in which the re-
ceivers probabilistically send “heartbeats” to the sender (here-
after called the source) in a periodic way: every � second each
participant sends an ACK to the source with the probability

� . Hence, the feedback implosion problem is addressed via a
convenient choice of the reply (or ACK) probability � and of
the “ACK time-interval” � . Note that � should be larger than
the largest round-trip time between a receiver and the source.
Times ����� � , for �����	��
����� , will denote the end of each
polling round, and ��� will denote the total number of ACKs
received at the � th observation step, i.e. in the interval of time��� ������� ����� � � . We denote by ��� the size of the multicast pop-
ulation at time � � and by �� � an estimator for � � .

A naive approach to the estimation problem would con-
sist in estimating � � by the ratio � ��! � , namely, by letting
�� � �"� �#! � . It has been shown in [2, Ch. 2] that this esti-

mator behaves very poorly. This is partly due to the fact that it
ignores the “history” of the membership process,

A less naive approach to filter out the noisy observations
consists of using an exponential weighted moving average
(EWMA) like the one used in [19]. A natural choice is

�� ���%$ �� �'&)(+* � �,��$-�.��� ! � (1)

which yields an (asymptotically) unbiased estimator, since
E / �� � � � E / � � � ! �0� E / � � � in steady-state.

The difficulty in using the EWMA approach lies in the choice
of the parameter $ , as the performance of the estimator will in
general be highly sensitive to this choice. This sensitivity is
illustrated in Fig. 1, where the estimator has been computed
on an audio trace for three different (but fairly close) values
of $ , namely, 12 354 , 16 353 and 12 3	353 . We can observe that the
estimators computed for $7�812 354 and $9�:12 3	3 are much
more noisy than the estimator obtained for $��;12 3	3	3 , which
appears to be very good. We are therefore left with the problem
of selecting a “good” value for $ , not an easy task since this
value will typically be session dependent. Besides, there is no
guarantee that an estimator based on the EWMA algorithm will
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Fig. 1. Membership evolution of a short audio session and EWMA estimation

be optimal in some sense (e.g. will minimize the mean square
estimation error).

For these reasons, we will use another approach in the fol-
lowing and will rely on adaptive filter theory to construct opti-
mal (to be made more precise) estimators.

Throughout the paper � and � are held fixed. In Section VII
we will give guidelines on how to select these parameters.

III. THE MULTICAST GROUP MODEL

In this section, we present the model for the multicast group.
We consider a multicast group where participants join and leave
at random times. Let <>= and <)=>*@?�= be the join time and the
leave time, respectively, of the A th participant. In the following,
?�=�B@1 is called the on-time of the A th participant and CD?0=E�FAG�
�	�H
2����JI is referred to as the on-time sequence. Let K� � �H� be the
number of participants at time � LM1 or, equivalently, the size
of the multicast audience at time � . We have

K� � �H�G�
NOQPSRHTU
=WV R ?

PSXHT
= *ZYU =[V ( 1 CD< =�\ �-]^< = *_? = I (2)

where CD? PWXHT= ��A`�7�5�H
2����a� K� � 1��FI are the remaining on-times
at �b��1 of participants, if any, which have joined the session
before �c�;1 and who are still connected at time �d��1 (with
? PWX�TR ��1 by convention) and 1 CDe�I is the indicator function of
any event e (i.e. 1 Cfe�I`�g� if the event e occurs and 1 CDe�I`�h1
otherwise).

Primarily for mathematical tractability we shall assume from
now on that the join (arrival) process is Poisson with intensityikj �:� ! E / < =Wl (b�@< = � B91 and that on-times form a renewal
sequence of random variables (RVs) with common probability
distribution m �on �c�7p � ? = ] n � such that 1q] E / ? = � ]�r ,
further independent of the arrival times. In the following ? will
denote a generic RV with probability distribution m �sn � .

In the queueing terminology the process C�K� � �H�F�H�tL"12I is
the occupation process (number of busy servers) in a u !	vc! r
queueing system with arrival rate

i
and service times CD? = ��Aw�

�	�H
2����JI [16].



For later use, we briefly review some results on the u !	vc! r
queue. In steady-state, the number � of busy servers is a Pois-
son RV with parameter � j � i e / ? � , namely, p0/ � ��� � ��������
	 � ���#� ! �� . In particular, both the mean and the variance of
the number of busy servers are equal to � . The autocovariance
function of the stationary version of the process C K� � �H�F�H� L^1�I ,
denoted by CD� � �H�F�H�-L@1�I , is given by [7, Equation (5.39)]

Cov
� � � �H�H�F� � �>*��>����� i�� Y� ��� p � ?9B�� ���
�  (3)

From now on, we will only work with the stationary process
Cf� � �H�H�F� L 12I , still for the sake of mathematical tractability.
This is equivalent to assuming that when the tracking begins,
the system has been operating sufficiently long with respect to
session time durations (for instance, we can see on Fig. 1 that
steady-state is reached after approximately �516�F1	151 sec.). We
have observed in our experiments (see [2, Ch. 2]) that the es-
timators we will develop in the forthcoming sections behave
well even when the multicast population is not in steady-state
at the beginning of the tracking (see Fig. 2 in Section VIII) or
when the steady-state assumption is violated during the entire
estimation process (see Fig. 3 in Section IX).

We denote by Cf� ����� � 16���	���� I the process Cf� � �H�H�F� L^12I
sampled at times �+�h16� �G��
 �G���� , namely � � j � � � � � � .

Let Cov � ��� � denote the autocovariance function of any
second-order discrete-time stationary process C�� � ��� �
16���	���� I . In the case where the on-times CD?0=E��A �8�	�H
2���� I
are exponentially distributed with mean e / ? � � � !�� , we have

Cov O �! �G�"�$# � %&� �  �%12�(' �	���� (4)

with # j �"���
	 � � � � � .
Throughout, we will assume that

U%�) R Cov O �* �w] r (5)

thereby ruling out the situation where the on-times are heavy-
tailed (e.g. Pareto distribution with shape parameter smaller
than 
 ).

In the next three sections we derive three Mean-Square Error
(MSE) optimal estimators for the size of the multicast audience
at times � � ( �q� 12���	���� ) under different sets of assumptions
(exponential on-time distribution and heavy traffic regime in
Section IV by using a Kalman filter, exponential on-time dis-
tribution in Section V by using a Wiener filter and general on-
time distribution in Section VI). In each case the optimality
is defined with respect to a different class of filters (class of
all measurable filters in Section IV, class of all linear filters in
Section V and class of all first-order linear filters in Section VI).

A word on the notation used in this paper: � �,+ ��-6� will de-
note a normal distribution with mean

+
and variance - and�/. � �,+ ��-6� will denote a RV with distribution � �,+ ��-6� ;

C�0 � I � will stand for C10 � �2�t� 12���	���� I .
IV. OPTIMAL ESTIMATION USING A KALMAN FILTER

In this section, which reviews previous work published in [4],
we derive an estimator of the size of the multicast audience at

time � � by using Kalman filtering theory. This estimator will
be obtained in heavy-traffic.

The heavy-traffic regime is obtained by “speeding up” the ar-
rivals by a factor < or, equivalently, by assuming that the arrival
intensity is now

i < . We denote by CD�32 � �H�H�6�dL 12I the occu-
pation process in this new M/G/ r queue with arrival rate

i < .
We will assume that the process Cf�42 � �H�H�6�cL 1�I is stationary
for all <7B 1 . Hence, �42 � �H� is a Poisson RV with parameter�5< for all < B@1 , with � j � i !�� (see Section III).

Let us introduce the normalized process C&562 � �H�H�F�`L 12I de-
fined by 572 � �H��� � 2 � �H� �8�5<9 < � � L@12 (6)

The process C&5 2 � �H�F�H� L 12I describes the fluctuations of
CD� 2 � �H�F�H��L 1�I around its limiting trajectory � < as <;: r .
A nice feature of the process C<5 2 � �H�H�6� L 1�I is that it con-
verges to a diffusion process as <=: r when the on-times
are exponentially distributed RVs. More precisely, as <>: r
the (stationary) process C&5$2 � �H�F�6�dL 12I converges in distribu-
tion to the Ornstein-Ühlenbeck process C�� � �H�F�2� L^12I given by
[20, Theorem 6.14, page 155]

� � �H�G�@? &A&B � � 12�#* 9 
 i � BR ? &CA P B�&CD T �
E � � �F� (7)

with � � 12�F. � � 12���6� , where C�E � �H�F�2�tL 12I is the standard
Brownian motion. The Ornstein-Ühlenbeck process defined in
(7) is a stationary ergodic Markov process, and its invariant dis-
tribution is a normal distribution with mean zero and variance� [15, page 358].

In the remainder of this section we will assume that the on-
times Cf?�=E�FA��k�5�H
2���� I are exponentially distributed RVs.

We now show that the estimation problem can be reduced to
a discrete filtering problem, to which discrete Kalman filtering
theory applies. We first show that the process C1� � �H�H�F��L 12I ,
sampled at discrete times � � � � , is governed by a linear
stochastic difference equation; then, we show that the measure-
ment equation at time � � is linear in the system state � � � �Q� .
A. System dynamics

From (7), we obtain, for 1 \HG \ � , � � �H�G�@? &A P B�&JI T � � G �H*9 
 iLK BI ? &CA P B�&CD T �
E � � � , from which it follows thatM � l (,�H# M �d*ON � � �t�%12���	���� (8)

where
M � j �P� � � � � , # j �@? &A�Q and

N � j � 9 
 i�� P � l ( T Q��Q ? &CA P P � l ( T Q2&CD T �
E � � �F
The RVs C1N ��ID� are i.i.d. withN �R.h� � 12�TS��F� � � 16���5���� (9)

(see e.g. [6, page 17]) where S is given by

S � 
 i E U � P � l ( T Q��Q ? &A P P � l ( T Q�&VD T �WE � � �YX[Z
� 
 i � P � l ( T Q��Q ? & Z A P P � l ( T Q2&VD T �\� �P� � � �8# Z �F



Equation (8) establishes a linear stochastic difference equa-
tion relating the state of the limiting process C�� � �H�F�2�bL 12I at
consecutive polling instants � � and

� �0* ��� � .

B. Measurement equation

Let � =� be the indicator function that receiver A �
�5�H
����� �F� 2 � � � � has sent an ACK in the � th polling round,
with � =� � � if an ACK was sent by receiver A and � =� �:1
otherwise. From the definition of the model it is seen that, con-
ditioned on � 2 � � � � , � (� ����a��� O��#P ��Q T� are i.i.d. Bernoulli RVs
with E / � =� � � � . The conditional expectation and variance of
the number of ACKs � � ��� O��6P ��Q T=[V ( � =� received by the source
at time � � are then given by �32 � � �Q� � and �42 � � � � � � � � �)� ,
respectively. We define our normalized measurement equation
as

u 2 � � � �G� � � � �
� <9 < � �t�%12���	����  (10)

which, with the help of (6), can be rewritten as

u 2 � � � �G� � 572 � � � � *��2 � � � �F� (11)

where � 2 � � � � j � ��� � � 2 � � � � �9 <  (12)

The next step is to let < : r in (11). The following proposi-
tion is proved in [4].

Proposition IV.1: There exist i.i.d. RVs C1-	� ���@� 12���5���� I
with -��F. � � 12��� �F� �t�%12���	���� (13)

where � j � � � � � � �)� , independent of C1N � I � , such that
C1- % �  �h�+�F� * �	���� I is independent of C M % �  �h16���5����a����I
for � ��12���	���� , and such that

� 5 2 � � � �F�	� 2 � � � �F� converges
weakly to

� M � ��- � � as <": r . 

We deduce from Proposition IV.1 that u�2 � � � � defined in

(10) converges weakly as <": r to a RV
+ � such that+ � � � M � * - � � � �h16���	����a (14)

C. Deriving the filter parameters

Equations (8) and (14) represent the equations of a discrete
time linear filter, for which we can compute the optimal esti-
mator. Throughout we shall assume that the Gaussian initial
condition

M R , the signal noise sequence C�N ��If� and the observa-
tion noise sequence C1-	��ID� are all mutually independent.

Let �M � be an estimator of
M � , and denote by � � � M � �%�M � the

estimation error. The estimator that minimizes the mean square
of the estimation error is given by the following Kalman filter
(see e.g. [23, page 347]), which, in its stationary version, has
the following simple recursive structure:

p � �� # Z p *�S�� &)( * � Z ! ��� &)( (15)� � p � ! � (16)

�M � � # �M �'&)(-* � � + � � � � # �M ��&)( ��� (17)

for � � �5�H
2���� , with �M R � E / M R � � 1 and where constants # ,� and S have been defined earlier in the section.

The Ricatti equation (15) has a unique positive solution p
given by

p � � S � Z *��  � �8# Z �
 � Z # Z*�� � S � Z *�� � � �8# Z ��� Z *O� � Z # Z � S
 � Z # Z  (18)

p gives the (stationary) variance of the estimation error. From
(18) and (16) we find that the gain

�
is given by

� � �
� � �8# Z � * � � � � # Z � � � �8# Z � � �q
 �>� Z �
&# Z � � � � �>�  (19)

Recall that ���F.%� � 16�Fp�� for every � and that � � is independent
of the observation

+ � [24, page 240].

D. Membership size estimation

We now return to our original estimation problem, namely,
the derivation of an estimator ( ���� ) for the size of the multi-
cast group at time � � (i.e. �32 � � �Q� ). Recall that the process
CD� 2 � �H�F��� Lk1�I describes the number of busy servers in a sta-
tionary u ! u ! r queue with arrival rate

i < and service rate � .
Motivated by (6), we define �� � as follows:

�� � � �M � 9 < *O� < (20)

with �M � given in (17). Combining (17), (10) and (20), we find
the following first-order linear equation

���� �P# � �Q� � �)� ����'&>( * � �#� *8�5< � �Q�L# � � � � � �)�F (21)

Starting with E /F�M R � � 1 it is seen from (17) and (14) that
E /��M � � ��1 which in turn implies from (20) that E / �� � � �@�5< �
E / �42 � � �Q� � . This shows that ���� is an unbiased estimator. On
the other hand, Var

�F� � �-� �� ��� 9 < �G� Var
� 572 � � � � � �M ��� from

(6) and (20); we conjecture that, as <@: r , the latter quantity
converges to p , the variance of the estimation error ��� in heavy-
traffic.

The estimation algorithm is summarized below ( � < , � and �
are assumed to be known):

Initialization step:
�� R �>�5< (i.e. �M R � 1 ), # � ���
	 � � � � � and set gain�

as given in (19).
� th observation step:

� � = number of ACKs received in interval of time��� � � �	� �G�F� � � and compute �� � as in (21).
Guidelines for choosing parameters � and � are given in Section
VII; a procedure for estimating parameters � < (expected num-
ber of participants) and � !�� (expected on-time) is discussed in
Section IX.

Remark IV.1: The autoregressive equation in (21) does not
exhibit the same form as the one in (1) as it further has a con-
stant term � < � � �L# � � �Q� � �>� . In other words, if we had com-
puted the optimal $ in (1) under the assumptions considered in
Section III, we would not have obtained the optimal estimator.



V. OPTIMAL ESTIMATION USING A WIENER FILTER

In the previous section we have derived a filter that is MSE-
optimal among all measurable filters, provided that the system
evolves in heavy-traffic (i.e. very large multicast audience) and
that on-times are exponentially distributed.

In this section we will derive a (Wiener) filter that is MSE-
optimal among all linear filters, under the only assumption that
on-times are exponentially distributed.

The first step is to replace processes Cf���6If� , C������If� and
Cf� � I � by their centered (zero mean) versions C�� � I � , C �� � I �
and C�� � I � , respectively. We already know that ��/ � � � �"� (see
Section III). On the other hand,

E / � � � � E /E / � ��� � � � � � E / � � � � � �W�# (22)

Taking ��� j �k����� � , ���� j � ������ � and �5� j �k�#��� �W� will
therefore ensure that E / � � � � E / �� � � � E / � � � �%1 .

Wiener filtering theory identifies the MSE-optimal linear fil-
ter, from which we get the following MSE-optimal estimator
[13] � �0� YU% V R ���
	 % �	��& %
where the so-called optimal impulse response C�����	 �#ID� satisfies
the Wiener-Hopf equation

YU V R � ��	  Cov � �* � + �G� Cov ��� �* �H�  � 16���	����  (23)

In (23) Cov � �! � denotes the autocorrelation of the filter in-
put (the measurements) C��5��ID� and Cov ��� �! � � E / � �'& % �	� �
denotes the cross-correlation function of processes C�� � I � and
C�� � I � .

Therefore, all what we have to do is to compute Cov � �* � and
Cov ��� �* � and then to solve (23).

We can express Cov � �* � and Cov ��� �! � in terms of Cov � �* �
as follows:

Cov � �! �G� � Z Cov � �! ��* 1 C  � 12I�� � � �Q� �)� (24)

Cov ��� �* �+� � Cov � �* � (25)

where we have used the identity Cov � �* �G� Cov O �! � .
One way of solving the Wiener-Hopf equation (23) is instan-

tiated in the prewhitening approach [13, page 81] whose steps
are given below: for � ��� �k�� The power spectrum of the input signal C�� �#If� , � � � � � �� Y% V & Y Cov � �! � � & % , is factorized as

��� � � �G��� Z v � � � v � � &>( �H� (26)

where � Z is a constant and v � � � is the part of � � � � � hav-
ing all its zeros and poles inside the unit circle (therefore
v � � &)( � is the part of ��� � � � having all its zeros and poles
outside the unit circle).� The cross-power spectrum between C�� � I � and C�� � I � ,

����� � � � � � Y% V & Y Cov ��� �! � � & % , is then divided by
v � � &)( � . Expanding this ratio into fractions, then taking
the fractions with zeros and poles inside the unit circle

and dividing the resulting fractions by � Z gives ���� � � � �� � ! � Z ��� � ��� � � � !�v � � &)( ��� l .� The transfer function of the Wiener Filter, ��� � � � , is
formed by multiplying � �� � � � by � !�v � � � .� Inverting the transfer function of the optimal filter,��� � � ��� �!�� � � � !�v � � ��� � Y% V R ���
	 % � & % , back into the
time domain yields the desired recurrence between ��5� and�	� and, subsequently, between the non-centered processes
���� and ��� .

The success of the prewhitening approach rests on the abil-
ity to factorize the power spectrum of the original input signal
C��	�#ID� as in (26). Unfortunately, we were able to perform this
canonical factorization only when the underlying model is the
u ! u ! r queue (i.e. “exponential” on-times), which is illus-
trated in Section V-A.

A. Application to the u ! u ! r model

To compute the transfer function of the filter, we need to find
expressions for ��� � � � and �"��� � � � . Let us first determine ��� � � � .
By using (24) and (4) together with the property Cov O �* ���
Cov � �! � , we find

Cov � �! �G�$# � Z � # � %<� � for
 &%� 1

�W�#� for
 � 16

Since # � ���
	 � � � � � ]:� and � ��� � � , the � -transform of
Cov � �* � is

��� � � �G� �
� # � ��� �	� � Z * � � * # Z � � � 
 �)��� � *O# � ��� �	�� � � �8# � � � � � # � &>( � 
The second-order polynomial in the variable � in the numerator
has two positive real roots given by '�] � and � ! '�B�� , with

'd� � * # Z � � � 
 �)�>� � � � � # Z � / � �8# Z � � �q
 �>� Z �
&# � � � �)� 
Hence � � � � �G�(� Z v � � � v � � &)( � with � Z j �P#� � � �)� �>� ! ' , and
v � � � j � � �d�)' � &)( � ! � � � # � &>( � . We now compute � ��� � � � .
From (25) and (4) we find Cov ��� �! ��� �
� # � %&� so that

����� � � � � �W� � � � # Z �� � �8# � � � � � # � &>( � 
The transfer function ���� � � � is given by

� �� � � �G� �� Z
* �"��� � � �
v � � &)( ��+ l � ' � � � # Z �# � � � �>� � � � #�' � � � � # � &>( �

and the transfer function � � � � � of the optimal filter takes here
the simple form

�,� � � �G� ' � �,� # Z �# � � � �)� � � �8#-' � � � �.' � &>( � � E
� �./ � &>(

where /��0' andE � ' � �,� # Z �# � � � �)� � � �8#-' �
� � � � � # Z ��* � � � �8# Z � � � �8# Z � � �q
 �>� Z �
&# Z � � � � �)�  (27)



The impulse response of this linear filter is given by the first-
order recurrence relation [13] ��	����/ ����'&)(>*�E �5� , with �� � the
estimator of ��� . We now return to the original processes C ����#If�
and Cf�#�#If� , to finally obtain the optimal linear filter

�� � ��/ �� �'&)( *�E�� � * � � � � /@� �WE �H (28)

It is interesting to compare this filter with the Kalman filter
derived in Section IV (see (21), in which the filter gain

�
is

given in (19)). Looking at (27) and (19), we can see that they are
exactly the same. Developing the coefficient of �� �'&>( in (21),
we obtain # � � � � �>���(/ . It remains to compare the constant
terms in (21) and (28). Recall that �5< in Section IV denotes
the actual average number of receivers which is simply denoted
by � in the present section. Developing the constant terms in
both linear filters we find

� �d�H# � � �d� � �)��� �d� /g� �WE .
We have therefore shown that the filters returned by both the
Kalman theory and the Wiener theory are identical.

This result is not so surprising, since both the Kalman fil-
ter and the Wiener filter are MSE- optimal among the class of
linear filters. The key point is that the Kalman filter used in
Section IV was derived under a heavy traffic assumption, while
the Wiener filter computed in the present section holds for any
value of the model parameters

i
and � . On the other hand, the

Wiener filter is only optimal among all linear filters whereas
the Kalman filter in Section IV is optimal among all measur-
able filters.

We conclude this section by computing the mean square er-
ror �  = � j � E / � � � � �� � � Z � of our estimator. It is known that
[13] �  = � � � �% V ( Res / � � � �H� � % � with

� � � � j �7� ! � � ��� � � �+�� � � � � ����� � � &>( ��� where � ( ������ � � are the poles (if any) of the
function

� � � � inside the unit circle. The notation Res / � � � �H� � % �
stands for the residue of

� � � � at point � � � % . Specializ-
ing

� � � � to the values of � � � � � , � ��� � � � , ��� � � � found ear-

lier, yields
� � � �G� � � � �8# Z � �F� � � E �>� � � /d�� � �8# � � � � �8# � � � � /d� . This func-

tion has two poles inside the unit circle which are located
at � � / and � � # ; the residues of

� � � � at these poles
are given by ��� �-/ E � � ��# Z � ! / � �d��#�/d� � /g��# � � and �)/ �`*

�E # ! � / �8# � � , respectively. Summing up these residues gives�  = � � � � � � ���
( &��	� � . By using the expressions of / and E ,

we finally obtain

�  = � �"� � � � � # Z � * � � � �8# Z � � �,� # Z � � � 
 �)� Z �
&# Z �  (29)

This expression for �  = � can be used to tune the parameters �
and # or equivalently � (see Section VII).

VI. THE OPTIMAL FIRST-ORDER LINEAR FILTER

The theory reported in Section V applies to any on-time dis-
tribution m �sn � such that (5) holds. However, it is not easy to
identify the function v � � � that appears in the canonical factor-
ization of the spectrum ��� � � � (see (26)) and thereby the optimal
filter, except when the on-times are exponentially distributed
RVs. As already pointed out, we would like to develop an es-
timator under the only assumptions introduced in Section III

(namely Poisson join times and generally distributed on-times
such that (5) holds).

In this section, we will use a least square estimation method
to determine the first-order linear filter that minimizes the mean
square error. Observe that, unlike the Wiener filter, the pro-
posed approach will not return the optimal filter among all lin-
ear filters but simply the optimal linear filter among all first-
order linear filters. We will illustrate this approach at the end of
this section in the case where m �sn � is a hyperexponential dis-
tribution. Recall the definition of the centered stationary pro-
cesses C�����ID� , C �� ��ID� and C��	�#ID� introduced in Section V.

The methodology is simple: we want to find constants /�
� 12����� and E such that � j � E / � ���0� �� ��� Z � is minimized when
the process C �� � I � satisfies the following first-order recurrence
relation

�� � �(/ �� �'&>( *OE � �  (30)

In steady-state we have

�� � �@E YU% V R / % � �'& %  (31)

The mean square error � is equal to � � E / � Z� � �@
 E / � � �� � � *E / �� Z� � . Therefore, we need to compute three terms to evaluate � .
First, E / � Z� � � E / � ����� �#� Z � �@� . Second, using (31) and (25)
yields E / � � �� � � � �E � Y% V R / % Cov � �! ��� �WE� � /c� where� � � � j � YU% V R � % Cov � �! �F (32)

Third, squaring both sides of (30) and then taking the expec-

tation yields E / �� Z� � � � �
(�&���� � � 
 / E / �� �'&>( � � � *�E E / � Z� � � . We

know that E / � Z� � � Cov � � 1��G�"� � (see (24)) and from (31), (24)
and Cov � � 1�� �;� we have E / �� ��&)( � � � � E � Z � � � /d� ���#� ! / .

We finally obtain E / �� Z� � � � ��� �( &���� � � 
 ��� � /d��*3� � �#��
 �)�F� . Hav-

ing computed E / � Z� � , E / � � �� � � and E / �� Z� � , we can write the mean
square error as follows

�Q�"� ��
 �E� � /c�2* � �E Z� �./ Z
� � 
 ��� � /c�#*8� � � � 
 �>���F (33)

Observe that the power series � � � � converges for � �-� ] � (since : Cov � �* � is non-increasing) and is therefore differentiable
for � ��� ]�� . We will denote by � � � � � its derivative.

In order to minimize � , /�
 � 12����� and E must be the solution
of the following system of equations:���������� ���������

� �� / � 
 �E
� �./ Z

� / E * 
 ��� � /d��*O� � � � 
 �)�
� � / Z +

*�� � � /c� � �E � � � � / Z ����� �%1� �� E � 
 �
� E * 
 � � � � /d�>�8�6� *O�

� �./ Z + ��� � /d� � � 12
The second equation gives

EM� � � /d� � � � / Z �
 � � � � /d� �8�#��* �  (34)



Substituting this value of E into the first equation shows that /
must satisfy/ � � /d� � 
 � � � � /d�G� �#� *O�6�

� � � � /d� � � � / Z � � � � � � /d� �8�6�)* � � � � �)�F�G� 1
If this equation has a unique solution / 
 � 16����� , then substitut-
ing this value of / into (34) will give the optimal pair

� /���E0� .
Proposition VI.1 shows that this is indeed the case (see [3] for
a proof).

Proposition VI.1: Define
� �on � j � � 
 � � � �sn � � �#�F* �#� n � �on � �� � � � �on �)� �6�6* � � � � �>��� � �Q� n Z � � � �sn � , where � �on � is given in

(32). If � � �sn �-B@1 for
n 
 / 16���	� , then

� �sn � has a unique zero in
/ 12����� . 


The reader can check that the filter defined in (30) with the
optimal pair

� /���E0� is the same as the Wiener filter found in
Section V-A when the on-times are exponentially distributed.

A. Application to the u ! ��� ! r model

We now illustrate the approach developed in this section by
considering the situation where on-times follow a hyperexpo-
nential distribution. More precisely, we assume that

m �sn ���g� �
�U
� V ( � � ? &A���� (35)

with 1q] � � ] � , 	`� �5�H
2���� ��
 , and � �� V ( � � �"� . In this
setting, the underlying queueing model can be seen as 
 inde-
pendent u ! u ! r queues in parallel. The arrival rate to queue
	 is � � i and the service rate is � � . Define # � j � ���
	 � � � � � � ,� � j � � � i !&� � so that � � � �� V ( � � . The autocovariance func-
tion of the process C��������%�712���	����JI is equal to Cov � �* �c�
� �� V ( � � # � %&�� so that � � /d�G� �U

� V (
� �

� �./ # � .
Numerical example 1: 
 � 
 , �@� 12 12�D1�� and � � 
�J4 G .

Also

� !&� ( � ��53�� G � �2( � �D32J4�� #�( � 12 3	353� 4�3
� !&� Z � ���	1	1��2� G � � Z � �	4�[�	� # Z � 12 3	353	35354
� !&� � ����6��� G � � � 3��6��'

The optimal first-order filter is

�� � � 16 353�����3<�'4�� �� �'&)( *_12[��1���
�1 
��53w� � *_12 1	1��54<�51����<�#
For comparison, the Wiener filter found in Section V-A (for
exponential on-times) is

���� � 16 353��5
��54��	3 �� �'&)()*_12[� �����54�<���-�#�,*_12 12�f
�351	1	1��2�5
VII. GUIDELINES ON CHOOSING � AND �

A “good” pair
� � � � � should

� AH� limit the feedback implo-
sion while at the same time

� A�AH� achieve a good quality of the
estimator. Of course

� AH� and
� A�AH� are antinomic and therefore

a trade-off must be found. This trade-off will be formalized as
�
The values of the parameters come from the trace called ��������� � investigated

in Section VIII.

follows: we want to select a pair
� �>� �Q� so that the mean number

of ACKs generated every � seconds (see (22)) and the relative
error of the variance of the estimator (denoted as  ) are bounded
from above by given constants, namely�� � E / ��� � � �
� \ $

 � Var
� ���)�>� Var

� ������
Var
� � � � \"!  (36)

When ���� is optimal among all linear filters, then Var
� �����w�

Var
� ������0� E / � ��� � �� �6� Z � and  becomes the “normalized

mean square error” [14, page 202]. Optimality was shown for
the u ! u ! r queue, therefore  � �  = � ! � with �  = � given in
(29).

For given constants $ and ! , it is easy to solve the con-
strained optimization problem defined in (36), provided that  
is known. For the u ! u ! r model, where �  = � is given in (29),
we find that � � $ ! � and that � , or equivalently # , is the unique
positive solution of the equation �  = ���@� ! . The problem now
is to choose constants $ and ! so that conditions

� AH� and
� A.AH�

are satisfied. We have found in our experiments that $ in the
range / 12J4���� � and ! \ 12[�D4 give satisfactory results.

We conclude this section with general remarks on how to
adapt the parameters � and � to important variations in the
membership. The estimation schemes in Sections IV-C, V-A
and VI-A have been obtained under the assumption that param-
eters � and � are fixed. However, the filters therein constructed
can still be used if � and/or � change over time, provided that
these modifications do not prevent the system to be in steady-
state most of the time. In that setting, a new filter will have to
be recomputed after each modification. Such a modification can
be carried out each time the number of ACKs received during
a given period of time significantly deviates from the current
expectation (i.e. �
� ).

VIII. VALIDATION WITH REAL VIDEO TRACES

In this section we apply the estimators developed in Sections
V-A and VI-A to four traces of real video sessions. Two types
of estimators will be used: the estimator – denoted as ��$#� –
found in (28) when the population is modeled as an u ! u ! r
queue; the estimator – denoted as ��&% �� – derived in Section VI-
A in the case where join times are Poisson and on-times have a
2-stage hyperexponential distribution ( u ! � Z ! r model).

The objective is twofold: we want to investigate the quality
of both estimators when compared to real life conditions, and
we want to identify the best one. We have collected four MBone
traces – denoted - A('�?*) = �FA � �	����a��� – between August 2001
and September 2001 using the MListen tool [1]. Each trace
corresponds to a long-lived video session (see duration of each
session in Table I, where the superscript “ ' ” stands for “days”)
and records the pair

� < = �F? = � for each participant in the session.
We have run both algorithms (estimators) on each trace. For
each trace, we have identified the parameters of the u ! u ! r
model (parameters

i
and � , or equivalently parameters � and� ) and of the u ! � Z ! r model (parameters ��� �G( � � Z , � ( and

� Z � �b� � ( ). The values of these parameters are reported in
columns 3–8 in Table I. Parameters � and � have been chosen
by following the guidelines presented in Section VII. Values



TABLE I
PARAMETER IDENTIFICATION

Trace Session lifetime � � !&� � !&� ( � !�� Z ��( � Z � � $ !- A('�?*)	( ��+�� � �  
	1 I 94.7 18316 3897 480061 0.97 0.03 0.011 2.5 1.0 0.15- A('�?*) Z �	���"� � ���  � I 14.1 16476 1 226498 0.93 0.07 0.034 3.2 0.5 0.1- A('�?*)�� 4�1�� 
	
 � ��  
�1 I 8.1 66823 1 900854 0.93 0.07 0.062 20.0 0.5 0.1- A('�?*)�� 
�3��w��� � ��  �� I 17.9 83390 1 473268 0.82 0.18 0.028 10.0 0.5 0.1

TABLE II
MEAN AND PERCENTILES OF RELATIVE ERROR � 	�
���	�
�� ��	�


Trace Estimator Mean 25 50 75 90 95- A('�?*)	( ��$#� 6.82 1.09 2.42 5.25 11.5 19.4
��$% �� 6.12 1.08 2.55 6.31 13.5 20.6- A('�?*) Z ��$#� 4.19 1.41 3.08 5.43 8.66 11.9
��$% �� 4.12 0.98 2.14 4.41 8.78 12.6- A('�?*)�� ��$#� 4.20 1.55 3.26 5.71 8.71 11.0
��$% �� 3.98 1.07 2.36 4.83 9.35 12.6- A('�?*) � ��$#� 3.79 1.23 2.57 4.51 7.50 11.0
��$% �� 4.06 1.02 2.21 4.39 8.98 14.7

All ��$#� 4.44 1.33 2.88 5.22 8.60 12.0
��$% �� 4.34 1.02 2.26 4.73 9.61 14.2

of these parameters are listed in columns 9–10 in Table I. The
performance of estimators ��&#� and ��&% �� are reported in Tables
II and III.

Table II reports several order statistics (columns 3–7) and the

sample mean of the relative error
� O�� &��O�� �O�� (column 2), where

�� � is either ��&#� or ��$% �� . All results are expressed in percent-
ages. The first observation is that both estimators perform rea-
sonably well. The sample mean of the relative error is always
less than �2 �5
�� and is as low as 2�� 3�� ; when averaging over all
experiments, this sample mean is less than �6J4�� for both ��&#�
and �� % �� (see last two rows). The second observation is that
no scheme is uniformly better than the other one over an en-
tire session but their sample means are very close to each other
(see column 2). For instance, �� #� performs better than �� % ��
regarding the 351 th and the 354 th percentiles whereas the result is
reversed regarding the 
	4 th percentile. It looks like the relative
error on ��&% �� is empirically more dispersed around its mean
than is the relative error on ��&#� , and has a longer tail.

Table III reports the sample mean and the sample variance of
the error � �0� �� � . In the 4th column, we list the theoretical
variance. It is given by �  = � for ��&#� (see (29)) and by � for
��&% �� (see (33)). The expected average E / ��� � �� � � is zero in

both approaches. Both estimators ��&#� and ��&% �� have almost no
bias (see column 2), and their empirical variances closely match
the theoretical ones given by �  = � and � , respectively. It is of
interest to point out that for the 4 traces studied, � , the theoret-
ical mean square error provided by ��&% �� , is smaller than �  = � ,
the theoretical mean square error provided by ��&#� (however,
this result is reversed if we consider the empirical mean square
errors). Thus, ��&% �� is more efficient (an estimator is said to
be more efficient if it has a smaller variance) than ��&#� (again,

TABLE III
EMPIRICAL MEAN AND VARIANCE OF THE ERROR 	�
���	�


Trace Estimator Mean Variance �  = � � �  -5A(' ?�)	( ��&#� � 12[�	�D
 12.664 13.942 0.147
��&% �� � 12 1<��� 12.851 12.120-5A(' ?�) Z ��&#� 0.006 0.495 1.407 0.099
��&% �� 0.019 0.785 0.396-5A(' ?�) � �� #� 0.037 0.207 0.737 0.091
��&% �� 0.019 0.229 0.208-5A(' ?�)�� �� #� 0.052 0.911 1.566 0.087
��&% �� 0.065 1.423 0.676

��&#� is empirically more efficient than ��&% �� ). The last column
provides the relative error on Var

� ��&#� � , called  ( � �  = ��! � )
in Section VII. Notice that  �] ! ( ! is given in column 12 in
Table I).

Fig. 2 displays the variations of membership for session-5A(' ?�)	( (which presents the highest variations in ��� ) together
with the estimates returned by ��&#� and ��$% �� . Fig. 2(a) displays
three curves: the collected video trace, the estimation returned
by ��&#� , labeled “Exponential”, and the estimation returned by
�� % �� , labeled “Hyperexponential”. It appears that �� #� follows

better � � during periods of high variations whereas ��&% �� is
slightly closer to � � during flat periods.

Both estimators ��&#� and ��&% �� have been derived under some
specific and restrictive assumptions: Poisson join times for both
of them, exponential (resp. 
 -stage hyperexponential) on-times
for the first (resp. second) one. It is interesting to know whether
or not these assumptions were violated in each session - A ' ?*) = ,
AG�g�5����a��� . We have therefore carried out a statistical analysis
of each trace in order to determine the nature of their join time
process and of their on-time sequence. As shown in Table IV
and Fig. 2, parts (b) and (c), neither is the join time process
Poisson nor are on-times exponentially distributed (or hyper-
exponentially distributed), for any of the traces. The inter-join
times and the on-times appear to follow subexponential distri-
butions (Lognormal and Weibull distributions), a situation quite
different from the assumptions under which the estimators have
been obtained. Despite these significant differences, the esti-
mators behave well and therefore show a good robustness to
assumption violations.

In summary, both estimators perform very well when applied
to real traces and are robust to significant deviations from their
(theoretical) domain of validity. Estimator ��&% �� returns the best
global performance for the relative error criterion, but does not
track high fluctuations as well as ��&#� . Overall, we have found
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Fig. 2. Membership estimation of session ��������� � and corresponding probability plots

TABLE IV
DISTRIBUTIONS THAT BEST FITTED INTO THE INTER-ARRIVALS AND ON-TIMES SEQUENCES

Trace Best fit for inter-arrivals sequence Best fit for on-times sequence- A('�?*)	( Lognormal with � � 2 ��6� ' �g�5 � 3 Weibull with shape 0.35, scale 3700- A('�?*) Z Lognormal with � ��4�J
�16� ' �g�5 ��� Weibull with shape 0.26, scale 1400- A('�?*)�� Weibull with shape 0.65, scale 3500 Lognormal with � � 42 1��2� ' � 2 5
- A('�?*)�� Weibull with shape 0.55, scale 2700 Weibull with shape 0.18, scale 4000

that ��&#� is a good estimator, both in terms of its performance
and its usability since it only requires the knowledge of two
parameters: � and � .

IX. ESTIMATING PARAMETERS � AND �
The main pending issue concerns the knowledge of param-

eters � and � (or equivalently any two parameters among � ,
i

and � , since �@� i !�� in steady-state). When these parame-
ters are not known, the source should estimate them. Again,
the source could estimate any two parameters among � ,

i
and� and infer the third one.

One possible way of estimating
i

is to let a newly arrived re-
ceiver send a “hello” message to the source with a certain (con-
stant) probability � ( � should be small enough to avoid over-
whelming the source with hellos). The source would then use
the arrival time �  of the

+
th hello to estimate

i
. The max-

imum likelihood estimator is �i � + ! � � �  � . This estimator
is unbiased and consistent by the strong law of large numbers
( ����� ��

Y
�  ! + �k� ! � � i � a.s.).

In a similar way, the source can estimate � if receivers prob-
abilistically send a “goodbye” message reporting their on-time
when they leave the session. Let � 
	 be the on-time indicated in
the

+ � th goodbye message received at the source, then the max-

imum likelihood estimator of � is simply �� � + � ! � �  	=[V ( �  	 � .
The estimator �� is unbiased and consistent.

A natural estimator for � is ��@� E / �� � � . As long as there
is no estimation of both � and � , it is not possible to compute
the filter coefficient / and E . Then only a naive estimator for
� � can be used, defined as the ratio of the number of ACKs
received ��� over the ACK probability � (see Section II). Notice
that E / ��� ! � � �P� .

We have tested the estimator ��&#� when
i

and � are esti-
mated. We have chosen an ACK probability � � 16 1 
�� , yield-
ing E / � � � �g�5 353 , and a hello probability � � 12[� , which means
that, on average, one hello message is sent to the source for ev-
ery 10 arrivals. The performance of the estimator can visually
be observed in Fig. 3 in which five curves are plotted:

� AH� the
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Fig. 3. Membership estimation of session � � � ��� � ( ��������� 	�
���� � ����� 
���� � � ��� ) when � ��� parameters are known beforehand, ������� estima-
tors �� ��� ��� �"! #$� and ��%� E & '�
)( �*� are used ( �+� � � � ) and � � � � � EWMA
estimators are used ( ,-� � � ���.
 � � ����� )

TABLE V
MEAN AND PERCENTILES OF THE RELATIVE ERROR (IN / )

Estimator Mean 25 50 75 90 95��� i known 6.0 1.2 2.6 5.0 8.8 14.5��� i estimated 5.2 1.5 3.2 5.9 10.5 16.4
EWMA $��%12 3	3 4.6 1.6 3.4 6.0 9.2 11.4
EWMA $��%12 3	353 6.7 1.3 3.3 7.4 14.5 21.2

TABLE VI
EMPIRICAL MEAN AND VARIANCE OF THE ESTIMATION ERROR

Estimator Mean Variance��� i known � 16 1����'� 26.5487��� i estimated 0.2402 37.6369
EWMA $ �%12 3	3 0.0006 23.1149
EWMA $ �%12 3	3	3 0.2570 79.6634

original video trace,
� A�AH� the membership estimation for the case

where the parameters are known beforehand,
� A�A�AF� the member-

ship estimation for the case where estimators �i � + ! � � �  �
and �� � E / ��� � ! � are used,

� A!-6� the estimation returned by the
EWMA algorithm (see (1)) for $ �h16 353 and

� -#� the estimation
returned by the EWMA algorithm for $��%12 3	3	3 . Observe that
when � and

i
are estimated, the filter coefficients are computed

at each observation step, whereas they are computed once for
all in the other cases. As expected, when � and � are unknown,
the estimator ��&#� does not behave as well as when these param-
eters are known beforehand. Still, its performance is reasonably
fair as can be seen in Tables V and VI.

Table V reports the sample mean and some order statistics of
the relative error returned by our scheme and by the EWMA al-
gorithm proposed in (1), and Table VI reports the sample mean
and the sample variance of the error between the true member-
ship and its estimation. Observe that, when the parameters are
estimated, the relative error on ��&#� is 95 � of the time within
16.4 � of the true membership which is a good result (see row 3
column 7 in Table V). As for the EWMA estimator, we observe

both in Fig. 3 and Tables V and VI (row 4) that the perfor-
mance is very good when $ �%12 3	3 , which is not the case when
$ � 16 353	3 as the corresponding EWMA estimator achieves the
worst performance (see row 5 in Tables V and VI). Notice how
high is the variance of the EWMA estimator when $h� 12 3	353
(see row 5 column 3 in Table VI).

Remark IX.1: For the trace -5A(' ?�) ( , the EWMA estimator
with $7�812 3	3 behaves very well in contrast to the EWMA
estimator with $ � 16 353	3 . This is exactly the inverse of what
we have observed when applying both EWMA estimators on
the audio trace shown in Fig. 1. There, the EWMA estima-
tor with $ ��12 3	3 did not perform well, whereas the EWMA
estimator with $g�912 3	3	3 returned excellent results. In other
words, given a trace, one can always find a value of $ for which
the EWMA estimator behaves well, but this value will be exclu-
sive to the trace and one can not know in advance what value
assign to $ .

To conclude this discussion, we believe that using the esti-
mator ��&#� and estimating

i
and � on-line is appealing in the

sense that, even though its performance is not the best one ever,
one is sure of having a fair result for a relatively small amount
of ACKs. This is not the case of the EWMA estimator as not
only the user will not know in advance what value assign to $ ,
but also a “good” value for one trace is most probably not good
for another.

X. CONCLUSION

The major contribution of this work is the design of novel es-
timators for evaluating the membership in multicast sessions.
We have first modeled the multicast group as an u ! u ! r
queue and established our results under the assumption that this
queue is in heavy-traffic. In this regime the backlog process of
the u ! u ! r queue is “close” to a diffusion process that can be
used to cast our estimation problem into the appealing frame-
work of Kalman filter theory. Using this theory we have derived
an estimator that minimizes the variance of the error. Aiming
at generalizing the multicast model, we relied on Wiener filter
theory to compute the optimal linear estimator for session mem-
bership when the underlying model is an u ! u ! r queue (the
heavy traffic assumption is no longer needed). The optimality
refers to the unbiasedness of the estimator and to the fact that
the mean square error is minimized. The latter estimator turned
out to be identical to the one designed using the Kalman filter
theory. We have also developed the optimal first-order linear
filter in the case where the on-time distribution is arbitrary and
have derived the associated estimator in the case where the on-
times have a two-stage hyperexponential distribution. The esti-
mators have been validated on real video traces. Their perfor-
mance have been shown to be excellent, one of them showing a
good ability to adapt to highly dynamic multicast sessions. It is
worthy to point out that it is the first time that a membership es-
timator is tested on real traces, exhibiting human behavior and
correlations between the different processes at hand.
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