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Abstract

The impact of bursty traffic on queues is investigated in this paper. We consider a discrete-
time single server queue with an infinite storage room, that releases customers at the constant
rate of ¢ customers/slot. The queue is fed by an M/G/oco process. The M/G/oco process can
be seen as a process resulting from the superposition of infinitely many “sessions”: sessions
become active according to a Poisson process; a station stays active for a random time,with
probability distribution G, after which it becomes inactive. The number of customers entering
the queue in the time-interval [t,¢ + 1) is then defined as the number of active sessions at time
t (t=0,1,...) or, equivalently, as the number of busy servers at time ¢ in an M/G /oo queue,
thereby explaining the terminology. The M/G/oo process enjoys several attractive features:
First, it can display various forms of dependencies, the extent of which being governed by the
service time distribution G. The heavier the tail of G, the more bursty the M/G/oco process.
Second, this process arises naturally in teletraffic as the limiting case for the aggregation of
on/off sources [27]. Third, it has been shown to be a good model for various types of network
traffic, including telnet/ftp connections [37] and variable-bit-rate (VBR) video traffic [24]. Last
but not least, it is amenable to queueing analysis due to its very strong structural properties. In
this paper we compute an asymptotic lower bound for the tail distribution of the queue length.
This bound suggests that the queueing delays will dramatically increase as the burstiness of
the M/G/oo input process increases. More specifically, if the tail of G is heavy, implying a
bursty input process, then the tail of the queue length will also be heavy. This result is in sharp
contrast with the exponential decay rate of the tail distribution of the queue length in presence
of “non-bursty” traffic (e.g. Poisson-like traffic).

Keywords: Self-similar process; long-range dependence; subexponential distribution;
queue; performance evaluation; data network.



1 Introduction

Recent measurements [11, 25] have shown that data traffic in networks (e.g. Internet) may exhibit
“similar looking behavior” over an an extremely wide range of time scales (from a few milliseconds
to several hours). These observations are in sharp contrast to the Poisson-like nature of traditional
telephone and data traffic (like in the Arpanet, the “ancestor” of the Internet — [23]). As a result of
these findings, one now speaks of the bursty/self-similar/fractal nature of the traffic and discusses
the failure of Poisson modeling [37]. At this time, both the reasons why self-similar-like traffic —
referred to as bursty traffic from now on — builds up in the network and the impact of these traffic
on the performance of the network (delay, loss probability, throughput, etc.) are still the object of
ongoing research as well as debates!

While electronic and software breakdowns may still occur in today’s complex networks, in the vast
majority of cases the degradation in the performance results from the congestion in the network.
When congestion occurs, queues in routers build up to create long delays and losses, that will in
turn decrease the quality of service (QoS) provided to the users. In the case of “conventional”
traffic (eg. Poisson-like traffic) packet losses due to congestion are expected to have less impact on
the QoS than in the case of bursty traffic where a burst of packets arriving at a full router is likely
to be partially or entirely lost, a situation that, when repeated, may harm the performance.

The objective of this paper is to quantify the impact of bursty traffic on the performance in the
framework of queueing theory. To this end, we will consider a discrete-time single-server queue with
a constant release rate of ¢ customers/slot and fed by an “M/G /oo process”. Under the assumption
that the queue is stable, we will evaluate the tail distribution of the stationary queue length q. We
will actually content ourselves with the computation of a lower bound on P(q > x) when z — oo.
This bound will already tell us a lot on the impact of burstiness on performance.

The M/G /oo process is a process {b;,t = 0,1,...} that counts the number of busy servers at times
t =0,1,... in an M/G/oco queue [42]. A precise definition of the M/G/oco process is given in
Section 4. It was first mentioned by Cox and Isham [10] as an instance of a process exhibiting
long-range dependence, which occurs when the service time distribution G in the M/G /oo queue
is Pareto (with parameter lying in (1,2) — see Section 4). The M/G/oo process enjoys several
attractive features. First, it can display various forms of dependencies, the extent of which is
governed by the service time distribution G (see (4.2)). Second, this process arises naturally in
teletraffic as the limiting case for the aggregation of on/off sources [27]. Third, it has been shown
to be a good model for various types of network traffic, including telnet and ftp connections [37]
and variable-bit-rate (VBR) video traffic [24]. Finally, it is amenable to various queueing analysis
thanks to its very strong structural properties (see Section 4). Other proposed traffic models include
fractional Brownian motion and its discrete-time analog, fractional Gaussian noise [1, 15, 31, 32],
on-off sources with heavy-tailed activity periods [2, 5, 6, 7, 9, 17, 20, 40] and an aggregation of
independent memoryless on/off sources [19]. Already, all these studies have exposed clearly the
limitations of traditional traffic models in predicting storage requirements.



The use of the M/G /oo process as a traffic model was first advocated in [37] where the authors
have found that it matches reasonably well some wide area applications. Queueing performance for
queues fed by a M/G/oco process have been reported in [13, 20, 29, 34, 35, 36, 38, 43]. Queueing
metrics investigated in these works include the distribution of the queue length as well as the
probability of overflow and the distribution of the time to overflow in case of finite buffers.

Through the study of a single server queue we provide in this paper a comprehensive discussion on
the impact of bursty traffic on queueing performance. The paper is organized as follows: the main
concepts associated with bursty traffic are collected in Section 2; Section 3 reports basic results
on the behavior of the queue length in case of non-bursty inputs. M/G/oco input processes are
then introduced and discussed at length in Section 4. We will observe that not only the buffer
content is heavy-tailed when the M/G /oo process is long-range dependent (LRD), but also that its
tail may remain (moderately) heavy when it is short-range dependent (SRD). These results are in
sharp contrast to the exponential decay rate encountered in Section 3 when the input is a “weakly
correlated” process. These results already indicate that self-similarity and LRD are not the only
ingredients in the building up of long queueing delays. The paper ends with some remarks on the
relevance of bursty traffic to the dimensioning of network resources (Section 5).

A word on the notation in use: IN = {0,1,2,...} (resp. IN* = {1,2,...}) will denote the set of
all nonnegative (resp. positive) integer numbers. A renewal sequence of random variables (rv’s)
is a sequence of independent and identically distributed (iid) rv’s. For any rv X with cumulative
probability distribution F(z) = P(X < z), F(z) = 1 — F(z) denotes the probability distribution
of its tail. For any real number z, [z] will denote the smallest integer larger than or equal to z.
Last, I(A) will denote the indicator function of the event A.

2 Self-similarity, long-range dependence and subexponentiality

Throughout we will only consider discrete-time stochastic sequence {X;,t € IN}. In the networking
setting the rv X; may represent, for instance, the number of packets entering a router in the
time-interval (or time-slot) [t,t 4+ 1).

A stationary sequence [41] X = {X;,t € N} is self-similar with (Hurst) parameter H > 0 if its
distribution coincides with that of the process X,, = {m 7 (Xym +--- + X(t+1)m),t € N} for every
m € IN*. In other words, a process is self-similar if it is equivalent (in distribution) to the process
resulting from summing up the original process over non-overlapping blocks of identical lengths (say

m) divided by mf. For instance, the increments of a fractional Brownian motion are self-similar
with parameter H [3, 30].

If X is self-similar with Hurst parameter H and possesses a finite second-order moment, then its
autocorrelation function r(k) = cov(Xy, Xiik)/var(Xy) is given by [3, Chapter 2]

r(k) = (1/2) ((k +1)22 — 2k — (k —1)2H), ke N*,



From this identity we deduce the asymptotics

r(k) ~ H2H — 1)k~20-H) (k- o0). (2.1)

A stationary sequence X is called asymptotically second-order self-similar if the autocorrelation
function 7,,(k) of the “aggregated” process X,,, converges to r(k) as m tends to infinity. An
instance of such a process is given in Section 4.

A stationary sequence is long-range dependent if its autocorrelation function is not summable in
Ly, namely if > ;5 [r(k)] = co. We see from (2.1) that a self-similar process with parameter
1/2 < H < 1 is long-range dependent.

Ties exist between self-similar/long-range dependent processes and the class S of suberponen-
tial rv’s. Formally, a nonnegative rv X is subexponential if P(X + X' > z)/P(X > z) ~ 2
(x — o), where X’ is an independent copy of X [14]. A key consequence of this definition
is that subexponentiality means “slower than exponential tails”, in the sense that if X € §
then limgyoo e’ P(X > z) = oo for all A > 0. Let us briefly see what is behind the defini-
tion. Let {X,,n € N*} be iid rv’s and define M,, as the maximum of Xi,...,X,, and S, as
the sum of Xy,...,X,. It is always the case that limyoo P(M,, > z)/P(X > z) = n and that
liminfgo P(S, > z)/P(X > ) > n as elementary considerations show. What subexponentiality
says is that P(S, > z) ~ P(M,, > z) (x — o) for n = 2,3,... if X,, € § (this result flows from
the very definition of §). As nicely put by A. M. Makowski during a seminar given at INRIA in
the Spring of 1998, subexponentiality can be seen as “conspiracy versus rogue loner”.

Examples of subexponential rv’s include Pareto, Log-normal and Weibull rv’s. A nonnegative
rv X is Pareto if P(X > z) = L(z)z™®, a > 1, where L(x) is a slowly varying function (i.e.

limy oo L(ta)/L(z) = 1 all ¢ > 0), Log-normal if X £ exp(§ U + p) with U £ N(0,1), and Weibull
if P(X > z) =exp(—az¥) witha>0and 0 < v < 1.

As an example of the existing connections between self-similar processes and subexponential rv’s,
it has been shown [45] that the superposition of infinitely many, strictly alternating, independent,
identical and adequately normalized on/off sources is a fractional Brownian motion. This conver-
gence takes place only for particular heavy-tailed distributions of the length of on and off periods,
typically, Pareto-like distributions.

3 Queue under non-bursty traffic

Consider a discrete-time single server queue with an infinite buffer, receiving b; € IN packets in the
time-interval (slot) [t,t + 1) and sending out at most ¢ € IN* packets in every slot. Then ¢, the
number of packets in the system at time ¢, satisfies the Lindley recursion

qi+1 = max{q; + b — ¢,0}, te€NN. (3.1)



If the input process {b;,t € IN} is stationary and ergodic [41, Chapter V] with finite mean p =
E[b;] > 0 and gy € IN (for instance gy = 0), then ¢; converges in distribution to a proper rv ¢, that
is P(gt <z) > P(¢<=x)ast— oo forall z € N. The rv ¢ is called the stationary queue-length.

An explicit expression for P(¢ < z) is in general not available, even when {b;,¢ € IN} is a renewal
sequence. Fortunately, bounds can easily be obtained in the latter case. Specializing a result by
Kingman [22] to a queue fed by the renewal sequence {b;,¢ € IN} (with generic element b and
common distribution B(z) = P(b < z)), we obtain

ae T <P(g>z)<e?®® zeN (3.2)

for all 0 < 0 < 6* = sup{y > 0 : E[exp(y(b — ¢))] = 1} with a a nonnegative constant given by
a = inf,50(1 — B(x))/ [y exp(6*(u — x)) B(du). The upper bound in (3.2) is non-trivial under the
stability condition E[b] < ¢ in that #* > 0 under this condition.

The bounds in (3.2) extend to the case when the sequence {b;,t € IN} is Markov modulated [12, 28],
in which case the b;’s are weakly correlated rv’s.

We conclude from (3.2), and the extension of this result to Markov modulated input processes as
mentioned above, that the complementary distribution of the queue-length decreases exponentially
fast to zero as x tends to infinity (at least when a > 0, which arises for most distributions of

practical interest — see a discussion in [28]), more precisely,

1
lim —logP(q > z) = —0* (3.3)
r— 00 m
when {b;,t € N} is a Markov modulated sequence. In particular, (3.3) holds when {b;,t € IN} is
a renewal sequence. The validity of (3.3) actually extends much beyond the Markovian setting [8,
Thm 3.9], [18, Thm 1], the key condition being that

o1
@(y) = lim - log Elexp(y(bo + -~ + b-1))]
exists and is finite in the vicinity of zero.

None of the input sequences considered so far exhibits any kind of self-similar or long-range depen-
dence properties. They all have in common the existence and finiteness of ®(y), at least for y in
a neighborhood of zero, which yields an exponential decrease of P(¢ > x) as x tends to infinity.
In the next section we show that a very different decrease takes place when the queue is fed by a
bursty process.

4 Queue under bursty traffic

In this section we revisit the discrete-time queueing model introduced in Section 3, this time
assuming that the queue is fed by the so-called “M/G/oc process”.



In order to define the M/G /oo process we introduce a Poisson process {7}, j € N*} with intensity
A > 0 and a renewal sequence of rv’s {oj,j € IN*}, independent of {T},j € IN*}, with generic

element o and common cumulative probability distribution G(z) = P(¢ < z). Let 7 = E[o] < co.

Consider now the discrete-time, integer-valued process {b;,¢ € IN} defined as

be= > I(o;>t—1T;), teN*
0Ty <t

with by = 0 a.s. In the queueing setting b; can be interpreted as follows: assume that customers
arrive at a queue with infinitely many servers at times 0 < 77 < Tb < --- and that customer
arriving at time 7j (j € IN*) carries with it a service time o (this queueing system is known in the
literature as the M/G/oo queue [42]). If we further assume that this M/G /oo queue is empty when
the first customer arrives, then b; gives the number of busy servers at time ¢. For that reason, the
process {b;,t € IN} is called an M/G /oo (input) process.

A
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bo=0,01=1,b20=2,b3=2,b4=3,b5=1,b6=0,br=1,bs =1

Figure 1: M/G/oo process

In a networking setting, the traffic generated by an M/G/oco process can be seen (cf. Figure 1) as the
traffic resulting from the superposition of infinitely many “sessions”, each session becoming active
at random (Poisson) times and staying active for a random time (with distribution G). During
an activity period a session sends one packet per unit time to the queue (router). Therefore,
if b; sessions are simultaneously active at time ¢, then b; packets will be sent to the queue in
the time-interval [t,t + 1). Moreover, if these b; sessions stay simultaneously active for at least n
consecutive time-slots then at least b; packets will be generated at times t,t+1,...,t+n. With this
interpretation we see that the heavier the tail of the distribution of the activity periods {o;,j € IN*}



the more bursty the input process to the queue. In particular, if o is an heavy-tailed rv (e.g. Pareto

rv — see the discussion after the proof of Proposition 4.1) then the traffic will be very bursty.

For later use, we introduce Gi(z) = (1/7) [y G(u)du (z > 0), the integrated tail distribution of G.

In words, G is the distribution of the residual lifetime of a rv observed at an arbitrary instant, a
key quantity in renewal theory.

Lemma 4.1 below, whose proof follows from [4, Chapter 6] and [42, pp. 160-162] reports some basic

features of the M/G/oo process that we will use in the proof of the main result in Section 4.

Lemma 4.1 If {b;,t € N} is an M/G /oo process then the distribution of the sequence {biyr,t € N}
converges monotonically for k — oo to the distribution of a proper stationary and ergodic sequence
{b*,t € N}, with

0 t—1

B=>"I(6;>t)+>, > Ilo;>t—Ty). (4.1)
j=1 s=0 s<T;<s+1

In (4.1), 80 is a Poisson rv with parameter p = \@ and {6;,7 € N*} are iid rv’s, with common

cumulative probability distribution G, independent of b°.

Furthermore, the v’s {Tj, 0, j € N*} are independent of the rv’s {b°,6;, j € N*}. o

The first term (resp. second term) in the r.h.s. of (4.1) describes the contribution to the number
of customers in the system at times ¢ € IN from those present just before time ¢ = 0 (resp. from
the new arrivals in [0,¢)) The rv’s b and &, represent the number of busy servers in steady-state

and the residual lifetime of the rv o;, respectively.

An appealing feature of the stationary version of the M/G /oo process® is that its autocovariance

is known in closed form. More precisely [10, p. 139]

r(k) =Gi(k), keN (4.2)
thereby showing that the M/G /oo process exhibits positive correlations. In fact, the process {b',t €
IN} can be shown [34] to be associated [16], in that for any ¢ € IN and any pair of non—decreasing

mappings fvg : ]Nt+1 - R7 E[f(b07 ) bt) g(b07 e 7bt)] > E[f(boa e 7bt)] E[g(b07 ) bt)]v pI‘OVidEd
the expectations exist and are finite.

We may observe from (4.2) that the process {b*, ¢ € N} will be long-range dependent if }_, .y G1(k) =
00, which will occur, for instance, when G is Pareto with parameter 1 < a < 2.

Also worth pointing out is the fact that the process {b',t € N} is asymptotically second-order self-
similar with Hurst parameter H = (3 — a)/2 when G is a Pareto-like distribution with parameter
1< a < 2[43, Appendix A].

'From now on we will only consider the stationary version {b*,t € N} of the M/G /oo process, as defined in Lemma
4.1.



The rest of this section is devoted to the study of the queue length when the queue is fed by an
M/G/oo process. To this end, we first recall some standard results of queueing theory (e.g. see

[4])-

As in Section 4 if the server (router) can transmit ¢ packets per slot, then the queue length at time

t satisfies the recursion
qi+1 = max{q + b — ¢,0}, teN

for some initial condition ¢y = Q.

Since the process {bi1x,t € IN} converges in distribution to the stationary and ergodic process
{b',;t € N} as k — oo by Lemma 4.1, it is well-known that under the stability condition p =
E[t°] < ¢, ¢ converges in distribution to a proper rv ¢ [4, Theorem 6, p. 12]. Here, the stationary
sequence {b',t € IN} being also reversible for any distribution G (as the process of the number of
busy servers in an M /G /oo is reversible [21, Theorem 3.11]), the tail distribution of ¢ is given by

Plg>z)=P (sup (E b® — ct) > :1:) , x€N. (4.3)

teN 1)

Needless to say that the task of finding an explicit expression for the r.h.s. of (4.3) is difficult,
not to say more. We will instead content ourselves with an asymptotic lower bound on the tail
distribution of the queue length. This bound will already reveal some interesting properties of
the buffer statistics in presence of bursty traffic. From now on we shall assume that the stability
condition p < c is satisfied.

Proposition 4.1 (Asymptotic lower bounds on the queue length)

Let p < c. For any activity period distribution G,

(¢>1)
llgg)lf N DL >L (4.4)
with
_Je—p+2 if ¢ — p is an integer number
N= { [c—p]+1 otherwise (4.5)
and
N pk
L=1-3 e >0 (4.6)
k=0 "

Proof. Define v(¢) =c—p+1+ewith0<e<min{p,1+c—p—[c—p|}. Clearly, [y(e)] =N
where N is defined in (4.5). Also note that p —e > 0.



Let A(t) = 't b° be the number of customers entering the queue in [0,¢). With (4.1) we find

t—1
A(t) =" as(t) (4.7)
s=0
with
bO
ag(t) =y _ min([6;],1) (4.8)
j=1
and
t—1
as(t) = > > I(o;>i-Tj), s=12,...,t—1 (4.9)

s—1<T;<s 1=s

Starting from (4.3) and using the definition of A(t) we get

P(g>1t) > P(A®) —ct>1)

t—1
> P (ao(t) > y(e)t, > ag(t) > (p— e)t)
s=1
t—1
= Plao(t) 2~(e)t) P (Z as(t) > (p - €)t> (4.10)
s=1

where (4.10) follows from the independence of the rv’s ag(t) and {as(t),s =1,2,...,t—1} (Lemma
4.1).

Consider the first factor in the r.h.s. of (4.10). Conditioning on °, using the independence of the
rv’s {6;,j =1,2...} and b° (Lemma 4.1), along with the identity N = [y(e)], gives

oo k
Pag(t) > y(e)t) > > P min(5;,t) > y(e)t | P(b° = k)

k=N j=1

> Y P61 >t,-,0n8 >t) PO =k)
k=N

= GNP >N) fort=1,2,.... (4.11)

On the other hand, the ergodicity of the sequence {b’,¢ € N} which implies that [41, Chapter V])

=

: - C 01 —

tllglo ; sgo b =E[b]|=p as.,

combined with the identity 3020 b° = ag(t) + 42] as(t) (cf. (4.7)-(4.9)) yields

S

=
tll)rgo— sz::l as(t) =p as.



as we trivially have lim; ., ag(t)/t = 0 a.s.. Consequently,

t—1
tlir&P (; as(t) > (p — e)t> =1 (4.12)
Dividing now both sides of (4.10) by G1(¢)", taking the liminf as ¢ — oo and using (4.11) and

(4.12), gives
.. Pg>1) 0

which concludes the proof. 1

The asymptotic lower bound (4.4) indicates that the tail distribution of the queue length does
not decrease to zero faster than the integrated tail distribution of an activity period raised at the
power N > 2. To be more concrete, consider the case when G is a Pareto distribution, namely,

G(z) ~ cp 7% (x — o0) with @ > 1 (to ensure the existence of the first moment) and ¢; > 0 Hence,

Gi(z) ~ ez (& — o0) (4.14)
with ¢3 = ¢1/((a — 1)). From (4.4) we get
liminf 29> 2) 5 fa-DN (4.15)

r—00 :L-(—OH'l)N

In other words, the tail of the queue length inherits the heavy-tailed nature of the Pareto distribution
of an activity period.

To derive (4.14) we have only assumed that o > 1. In particular (4.14) will hold if @ > 2, a
situation where the M/G /oo process is neither asymptotically second-order self-similar nor long-
range dependent. This shows that self-similarity and/or long-range dependence are not necessary

to produce heavy-tailed queue lengths, a conclusion that can also be reached from an earlier result
of Pakes [33] and Veravebeke [44].

Since Proposition 4.1 holds for any distribution G it holds, in particular, for moderate tail distri-
butions such as the Log-normal and the Weibull distributions. Therefore, Proposition 4.1 tells us
that the queue length will not be lighter than that of a moderate tail rv if G is itself moderate,
a situation that is again very different from the situation observed under non-bursty traffic, as
discussed in Section 3.

Figure 2 reports simulation results. It displays the mapping = — log;q P(¢ > z) for two different
probability distributions G: G(x) = 1 — exp(—ux) (Exponential distribution with mean og = 1/p)
and G(z) =1 — (a/(z + a))* (Pareto distribution with mean op = a/(a — 1)). Note from (4.2)
that even when G is exponential the M/G /oo process {b’,t € N} is not a renewal process since
r(k) = exp(—uk) > 0. We have chosen a = 1.5 so that the M/G/oco process is asymptotically
second-order self-similar when G is Pareto, ¢ = 1.0 and a = a — 1 so that ¢ = g = op = 1,
A = 0.7 and ¢ = 1. Under these parameters the queue is stable as p = 0.7 < ¢. The results

10



have been obtained by simulation by using the modeling software QNAP22. These curves illustrate
the very different behavior of the buffer statistics for short-tailed (exponential) and heavy-tailed
(Pareto) activity period distributions and show the key role played by the correlation structure of
the input process on the performance. The accuracy of the asymptotic lower bound (4.4) has also
been investigated in the case when G is a Pareto distribution. To this end, we have plotted in
Figure 2 the mapping t — L G1(¢t)" for t € {0, 5,10,15,20,25,30}. The results in Figure 2 seem to
indicate that the asymptotic lower bound in (4.4) is fairly loose, thereby suggesting that P(q > x)
may actually decrease much slower than L G ()", enhancing even more the impact of bursty traffic

on queueing performance.

0 T T T T
d = Pareto (simulation) ——
0.5 G = Exponential (simulation) -----
1 \\\ G = Pareto (lower bound) *® 7
15 \\\\ -
-2 — \\\\\ —
'25 — L \\\\\ —
. \\\
-3 ® ° \\\\ -
~. o
-3.5 - \\\\ .
4 1 1 1 1 1 )
0 5 10 15 20 25 30

Figure 2: x — log;, P(¢ > z) for G € {Exponential, Pareto}

We conclude this section with a few remarks.

Remarks 4.1

(1) When the distribution G belongs to the class D C S of dominated-variation distributions,
then a tighter lower bound than (4.4) can be derived [29, Prop. 3.2]. A distribution F' € D
if limsup,_, ., F(z)/F(2x) < co. Pareto-like distributions belong to D but Log-normal and
Weibull distributions do not. Note, however, that the bound in (4.4) is more “versatile” than

all other bounds reported to date since it holds for any activity period distribution G.

(2) The lower bound (4.4) can be complemented with an upper bound [29] whenever G and G,
are both subexponential distributions. This occurs, for instance, if G; € S if G either Pareto,

2QNAP2is a trademark by INRIA. QNAP2 is marketed by SIMULOG — http://www.simulog.fr/US /welcome.html
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Log-normal or Weibull. In this case the upper bound reads

P
limsupM <p+ P (4.16)

T—00 Gl(.’E) c—p

(3) When ¢ — p < 1, it was shown in [29] that

lim

L S log P(g>z)=—-a+1

when G is Pareto, and
1

. 1
lim ——— log P(¢ > ) = ~ 252

220 (log )
when G is Log-normal. Again, these limiting results contrast with the corresponding result
(3.3) found for non-bursty traffic.

(4) The condition ¢ — p < 1 appearing in item (3) above identifies a situation when the available
capacity c is not sufficient to process all customers generated by a single session, in addition
to the average traffic p. This is an example of a situation where a single session may dictate
the performance.

(5) During the revision of this paper we became aware of two recent works [26] and [39] (for
the continuous-time version of the model considered here) in which the authors were able to
derive the exact asymptotics for the tail of the queue length distribution when the input is a
M/G /oo process with Pareto-like activity period distribution and under the condition p < c.
As expected, their results show that the tail of ¢ is heavier than the tail of o.

5 Concluding remarks

In this paper we have shown by using a simple, yet pertinent traffic model, the impact of bursty
traffic on queueing performance. However, extrapolating these preliminary results to real networks
requires some care since several network characteristics do not appear in our model. These charac-
teristics include closed-loop flow control mechanisms (TCP in the Internet) that aim at regulating
traffic at the sender and finite buffers in routers. Buffers are necessarily finite but in practice
they may even be fairly small so as to prevent long delays from building up. The conjunction of
closed-loop control schemes and finite buffering should “in principle” break up correlations, thereby
advocating the use of traffic models with correlations only up to some finite lags (proportional to
the buffer size?) as it is the case in ... Markovian models! The debate is therefore still wide
open between pro-LRD and pro-Markovian traffic models and much work is needed, including fur-
ther measurement campaigns, to reach a better understanding of the impact of the existence of
correlations at multiple time scales on the QoS delivered by networks to the end users.

Acknowledgements: The author thanks the anonymous referees for their comments and sugges-
tions which helped improving the presentation of this paper.
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Miscellaneous: This paper contains material presented at the 19th French-Belgian Workshop of
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Marseille, France, in the Fall of 1998. Proposition 4.1 is inspired by a collaborative work [29]
with Z. Liu (INRIA), D. Towsley (Univ. Massachusetts, MA) and Z.-L. Zhang (Univ. Minnesota,
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