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Summary. Our objective is to determine the evolutionarily stable strategy [14] supposed to
drive the behavior of foragers competing for a common patchily distributed resource [16].
Compared to [18], the innovation lies in the fact that random arrival times are allowed.

In this first part, we investigate scramble competition: the game still yields simple
Charnov-like strategies [4]. Thus we attempt to compute the optimal long-term meayi rate
[11] at which resources should be gathered to achieve the maximum expected fitness: the as-
sumed symmetry among foragers allows us to expyéss a solution of an implicit equation,
independent of the distribution law of arrival times.

A digression on a simple model of group foraging shows tf{atan be simply computed
via the classical graph associated to the marginal value theor@dhis-the size of the group.

An analytical solution allows us to characterize the decline in efficiency due to group foraging,
as opposed to foraging alone: this loss can be relatively low, even in a “bad world”, provided
that the handling time be relatively long.

Back to the original problem, we then assume that the arrivals on the patch follow a
Poisson process. Thus we find an explicit expressioyi dhat makes it possible to perform a
numerical computation: Charnov’s predictions still hold under scramble competition.

Finally, we show that the distribution of foragers among patches is not homogeneous but
biased in favor of bad patches. It is in agreement with common observation and theoretical
knowledge [1] about the concept of ideal free distribution [12, 22].
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1 Introduction

Behavioral Ecology [13] attempts to assert to what extent the natural selection
process could have carved animal behavior. This evolutionary approach focuses on
optimal strategies in terms of capitalizing on genetic inheritance through genera-
tions; as a common currency between survival ability and reproductive success, we
shall use the term —Darwinian-fitnesg[15], analogous to the concept of “utility”

in Economics.

In this respect, optimal foraging theory [20] seeks to investigate the behavior
of an animal searching for a valuable resource such as food or a host to parasitize.
In many cases, these resources are spread in the environment aspistaetof
variousqualities Moreover, the resourdrtake ratesuffers from patch depletion. As
a consequence, it is likely advantageous to leave a patch not yet exhausted in order
to find a richer one, in spite of an uncertaiavel time Hence the need to determine
the optimal leaving rule.

In this context, Charnov’s marginal value theorem [4] provides a way to gather
resources at an optimal long-term mean rgtehat gives the best fitness a forager
can expect in its environment.

Actually, this famous theoretical model is applied to a lone forager that has
monopoly on resources it finds; it predicts that each patch should be left when the
intake rate on that patch drops belgW;, independently of either its quality or on the
time invested to reach it.

Naturally, the question arises of whether this result holds for foragers competing
for a common patchily distributed resource [16], i.e. whether this is an evolutionar-
ily stable strategy [14]. The authors of [18] assume that somehderagers have
reached a patch simultaneously, and they investigate their evolutionarily stable giv-
ing up strategy. Our innovation lies in the fact that an a-priori unlimited number of
foragers reaching a patch at random arrival times is allowed.

In section 2, we develop a mathematical model of the problem at hand and recall
Charnov’s classical marginal value theorem. In section 3, we investigate the so-called
scramble competitionase, where the only competition between foragers is in shar-
ing a common resource.

In a companion paper [9], we extent the model to take into account anteal
ferencei.e. a decline of the intake rate due to competition.

2 Model

We consider a population of independent animals foraging freely in an environment

containing a patchily distributed resource, assumed to be stationary; i.e. the spatial
and qualitative statistical distributions of the patches remain constant over time. In

other words, there is no environment-wide depletion but only local depletion; an ad-

hoc renewal process of the resource is then implicitly assumed, although it might not
necessarily be an appropriate modeling shortcut [2, 3]. We then focus on a single
forager evolving in this environment, among its conspecifics.
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2.1 Local fitness accumulation
A lone forager on an initially unexploited patch

We consider the case of a single forager acquiring some fitness from a patch of
resource. We let

e ¢ c RT be the quality of the patch, i.e. the potential fitness it initially offers,
e p < R* be the current state of the patch, i.e. the amount of fitness remaining,
e p=p/q € X; =]0,1] be the fithess remaining on the patch relative to its quality.

Let f(q,7) be the fithess gathered in a timen a patch of quality;. Our basic
assumption is that the intake rafe= 9 f(q, 7)/d7 is a known function-(p) contin-
uous, strictly increasing and concave; in appendix A.3 we derive such a law from an
assumption of random probing on a patch. It yields

f=rlp), f0)=0,
resulting in
ap=-r(p), p0)=1. @
We find it convenient to introduce the solutigft) of the differential equation

¢=-r(¢), #(0)=1.

Theorem 1.Our model is given by

f(qu)=q[1—¢<;)] - )

It yields: Vq,

e f(g,0)=0,
e 7+ f(q,7) is strictly increasing and concave,

e lim, . f(q,7) =q.

A lone forager on a previously exploited patch

Assume that the forager reaches a patch that has already be exploited to some extent
by a conspecific. The patch is characterized by its initial qualignd its ratio of
available resourcg, at arrival time. The dynamics are still (1) initialized&0) =

po, and the fitness gathered is

f(@,p0,7) = po —p(7) = qlpo — p(7)] .-

This is depicted on the reduced graph, figure 1.
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Fig. 1. The reduced graph

Several foragers on a patch

Assume thatr € N identical foragers are on the same patch. Let the sequence of
forager arrivals times be = {01,09,...,0,} andi € {1,2,...,n}. By definition,
scramble competition let the intake rate independent thius

Vi.fi=f=r(p), filo:)=0.
Nevertheless, the speed of depletion is multipliechby

p=qp=-nf, p0)=rpo.

2.2 Global fitness accumulation
The marginal value theorem

In order to optimally balance the residence times on the differing patches, a relevant
criterion is the average fitness acquired relative to the time invested: assume the qual-
ity ¢ of the patch visited is a random variable with cumulative distribution function
Q(q). We allow the residence time to be a random variable, measurable on the sigma
algebra generated lyy We also assume that the travel tithis a random variable of
known distribution and le# = E6. It yields

Ef(q,7)

=27 3
7 0+ Er 3)
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Theorem 2.Charnov’s marginal value theorem: the maximizing admissiblis
given as a function of by the rule

° either%(q,o) <~*andt* =0,

*

of .« _
° OI’E((],T ) =~".
wherev* is obtained by placing™* in (3).

Proof: Call Dy the —Gateaux— derivative of in (3). Euler’s inequality reads, for
anyor such that™* + d7 be admissible

1 af
Dry.o1 = = — Al ) d <0.
v.67 9+ET*A;{8TMJ-) v} 7(q) dQ(q) <
The incremendT may have any sign if* is strictly positive, but it must be positive

if 7* is zero. Hence the result. This is —a marginal improvement over— Charnov’s
marginal value theorem.

A lone forager evolving in our model

As in the classical model, we consider in this subsection a lone forager which has a
monopoly on resource it finds. Under the main modeling assumption of subsection
2.1, the criterion becomes:

sf-e ()} o]

Charnov’s optimal patch-leaving strategy is to leave wfiea~*. In our model,
the intake rate of a lone forager only dependspphence an equivalent threshold
is p* = r~!(y*). One can notice that any unexploited patch should be attacked
independently of its quality since for eveqy (0 f/07)(¢,0) = (1) andr(1) > ~*
by construction.

A simple property of our model —see equation (2)— is thafg)/q is a con-
stant, say, z = ¢~ !(p*), for anyq. Hence the following expression of, if we let

q=Eq
0/g+z

Therefore, one can compute the optimal valugof—or equivalentlyy*— via
the well-known graph in figure 2. One can notice the duality betweandd: mul-
tiplying by n the average level of resource is equivalent to dividing:liie average
travel time.

As a consequence, the patches should be relatively less depletgdad avorld
[6] —rich and easy to find patches— than in a bad one —scarce patches offering few
resources.

Thus, in our particular case, onlyis relevant: “it suffices to knowj —rather
thanQ(q)— to be able to behave optimally”. Hence this model stands if the resource
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Fig. 2. The marginal value theorem

is “only” stationary in a weak sense; i.e. if theeansof the qualitative and spatfal
statistical distributions of the patches remain constant over time.

An explicit formula for p*

We now make use of the particular form of the functioof appendix A.3: it allows
the functiong(¢) to be inverted into:

¢~ (p) = h(1 = p) —aln(p). 4)

It yields an analytical solution, simply by performing an optimizatiorpias
p* = argmax, y(p) with

1—p
= = Z .
Hence
pr =1 Wy (—en ) 5)

wherer = 0/(aq) andW_, is the LambertiV function as defined in [7] —this
is indeed the fhon-principal branch of this multi-valued function that contains the
solution ap* € ¥y = W < —1.

Thusp* depends on + z, a sort of inverse duty cycle asj is the time needed to
cover an average patch in a systematic way; one can noticg'tlimtes not depend
on the handling timé althoughy* does. Lety = 1/(1 + z) = ag/(ag + 0); the
function p* (y) is plotted on figure 3.

As expected, in a bad world the patches should be relatively more depleted than
in a good one —high “duty cyclej}—, where the forager would be harder to please.

1 More precisely, this is the mean travel time which has to remain stationary.
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Fig. 3. The functionp™ (y)

3 Scramble competition

Scramble-competition only takes into account the fact that the resource depletes
faster due to simultaneous foraging activities on the patch. As a consequence, the
departure of a forager only slows down the depletion. Hence there is no hope to
seep, or equivalently the intake rate, increase. Moreover, as foragers are assumed
to be identical, they surely share the same optimal long-term mean‘rated thus

must leave at the same time, independently of their arrival times. Hence adopting
commonly the Charnov’s patch-leaving strategy given by theorem 2 provides a Nash
equilibrium in non-anticipative strategies among the population. As this latter is both
strict and symmetric, this is indeed an evolutionarily stable strategy —this is detailed
in appendix B of the second part [9].

3.1 An attempt to get an analytical expression ofy*

Let us assume that all foragers apply Charnov’s patch-leaving strategy, i.e. leave
when f = ~* or equivalently whem = p*. As a consequence, when a patch is left,
it is at a densityp* which makes it unusable for any forager. Hence all admissible
patches encountered are still unexploited, vyeigh= 1.

Let ¢ be the time elapsed since the patch was discovered. For a fixed ordered
sequence of;’s, j € {1,2,...,n}, let us introduce a “forager second” —as one
speaks of “man month"—s = S(t, o) defined by

s=7 if0j§t<0j+1, 8(0):0

Equivalently



8 Freceric Hamelin, Pierre Bernhard, Philippe Nain dfric Wajnberg.

j—1
fortG(Jj,O'j+1), S(t,O’):j(th'j)‘i’Zk(Uk_s_l*Uk). (6)
k=1

The functiont — S(t, o) is strictly increasing. It therefore has an inverse function
denotedt = S *(s), easy to write explicitly in terms of the; = S(0;, 0):

j—1
_ 1
fors € (s;,s501), S;(s)==(s—s;)+ ,;_1 z (Sk+1 — Sk)

According to subsection 2.1, the dynamics of the patch are now

p=gqp=—jr(p), forte (oj,041).

As a consequence, the patch trajectory satisfies

)= (Lstt.0))

We shall also let* be such thap(t*) = p*, i.e. to be explicit, if not clearer,
t* =8 o(gp™ ") or ("),

Let us regroup possible combinationss¢d by the maximum number of foragers
reached before they all leave the patch, 8ayWhen they leave, they have retrieved
an amounty . f; = ¢(1 — p*) of the resource. By symmetry, the expectation of
fitness acquired is for each of them

Eo’f = %(1 - P*) .

Moreover, this is exactly the amount of resource each would have acquired if they
all had arrived simultaneously, since in that case they all acquire the same amount of
resource.

Let us callcentral trajectoryof ordern that particular trajectory where allfor-
agers arrived at time zero. We denote with an ingethe corresponding quantities.
Hence, for alln, E, (f) = fo.

Now, for a given ordered sequeneeof lengthn, the reference forager may
have occupied any rank, from 1 fo Let ¢ be this rank. Calk; its residence time
depending og. Notice that since they all leave simultaneously,

Vi, V§e{l,...,n}, T¢=o0n—0c+T].

Again, for reasons of symmetry,
Te =0h — < E o+ 75 -
gl i & J

Now, 7.} is defined byp(S(os + 7%, 0)/q) = p*, i.e., according to equation (6):
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n—1

n[(rh +oa) —oal + Zj(0j+1 —0;) =q¢ " (p").

Notice that
n—1 n
Zj(0j+1 - O’j) = ’flG‘ﬁ — ZO‘j .
j=1 j=1
Hence we get

7l
«_ 9,1 « 1
Tﬁ:%(b 1(p)—gﬁ+%20j.
j=1

On the central trajectory of ordér, it holds thats = nt = i, so that
so that finally

Place thisin (7), it comeB, 77 7. But this last quantity is independent enso that,

for any fixedq andn,
q

E,7" =15 = Zo7H(p").
n
The random variablegandr are surely correlated, as the foragers stay a longer
time on better patches, and are thus likely to end up more numerous. Similarly,
surely depends op*; hence we us&* to mean that we take the expected value
over all patch qualities and sequences of arrival under the optimal scenario. Let then
q* = E*(¢/n). We obtain the fixed point equation:

__ =7
0/q* +¢1(p*)
Yet, it remains a partial result as long as we do not know how to exgieas a
function of p*.

*

r(p*) =~ (8)

A digression on an —excessively— simple model of group foraging

In this subsection we relax the assumption of independent foragers provided that they
be identical —all we need up to now is symmetry among foragers.

Thus let us consider a group &¥ identical individuals foraging “patch-by-
patch”;i.e. the travel-times are assumed to be too long to allow the group to cover two
patches simultaneously. In thi;mformation-sharin§ model [8], once a patch is dis-
covered by any member of the group, the others are assumed to join it sequentially;
i.e. we assume that the group spread itself in a radius [17] that allows every members
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to benefit from the poorest patch —as a function of the optimal profitability thresh-
old p* computed below. This assumption resultsiirqual toN independently of
andp*. Therefore, the formula (8) is exactly as applying Charnov’s marginal value
theorem for both deterministic patch qualityN' and travel timef. As the tradition
wants, one can compute graphically, as done in figure 4.

flg,m)}
a/N

(1-p")g/N

Sy

—0 0

Fig. 4. The marginal value theorem

Obviously foraging in group is ledfficient in term of fitness gathering than
foraging alone, if no advantage [5] is taken into account. However, it does not imply
that the individual efficiencyy* (V) =: % is an homogeneous function of degree
—1; indeed, the relationy, = ~7/N would be true if the individuals were acting as
if they were alone.

If we make use of the particular form of the functiorof appendixA4.3, N +—
p*(N) is given by equation (5) wite = N6/(aq); asy* = r(p*), the function
N — ~v*(p*(N)) is easily obtained. Let = o/h, u = §/(ag) and

D(N) =i /v = [1 = Wy (=" CENm)] 11— gy (e (4]
Letk = B/ [(1 — BW_; (e~ (1) ] andI”(N) := dI'(N)/dN; it comes
F/(N) = sy (—e=00) [T Wy (—em+¥0)] > 0.

Let I"(N) := dI'(N)/dN?.

I'"(N) = —p?sW_4 (—e*(1+Nu)) /{ {1 LW, (—e(”N#))r} .

Thus I'(N) is strictly increasing but concave. Therefore, foraging in group
should yield —far— more than only &*" of what would get a lone forager, pro-
vided that the strategy be adapted to the size of the group.

2 At best equal, if ever the mean travel time was divided\byvhile foraging in group [5].
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Moreover, it is easy to see thity_,o. I'(N) = oo, thatlimy_,oc I'(N) =
kp and thatl™’(N) increases abruptly in the vicinity of zero. HenE¢N) can be
approximated by an affine function of slopg: let I'(N) := (1 — ku) + Nkp ~
I'(N). The “duty cycle” is nowy = 1/(1+ ). Figure 5 approximately characterizes
the decline in individual efficiency resulting from foraging in group, as opposed to
foraging alone. We see that in a even in a bad world, the loss can be relatively small
if the handling time is relatively long.

beta=1
beta=01
beta=0.01

Fig. 5. The functiony — xu

Back to the original problem

As ¢* = E,E*(¢/n|q) = E,qE*(1/7|q), we shall first consider thatis fixed.

Let(; be the time a lone forager would stay on a patch of qualityot disturbed
by an intruder; = 757 = g¢~'(p*). In order to perform an optimization in
as in subsection 2.2, our purpose is now to compute the funétior E*(1/7).

Let the successive arrival times on a patch be a Poisson process with intensity
0. This means that the successive inter-arrival times form a sequence of mutually
independent random variablés,, }, exponentially distributed with mea/ .

Once afirstintruder has arrived, the maximum —in absence of further intruder—
remaining time to deplete the patch upstois divided by two as the depletion speed
doubles; more generally, after thé" arrival, the maximum remaining residence
time is reduced by a factdmn — 1)/n. Our aim is now to express the cumulative
distribution function off in closed form as a function af;, from which we will
deducel*(1/7).
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A way to formulate the problem is the following one: Igt be the remaining
effort in “forager second” when the'" forager arrives. Clearly

CnJrl:Cn_nwna 7121

Note that the mapping — (,, is non-increasing. Therefore, the random variable
is characterized by, 1 < 0 < (5.
We have

P> M) =P(C>0,...,Cue1 > 0),
= P(¢1 > w1 +2ws + ...+ Mwyy) .

This is equivalent to finding the distribution law Eflzl nwy,. As the probabil-
ity density function of the sum of independent random variables is given by the con-
volution product of their density functions, one can obtain it by inverting the product
of the Laplace transforms of their density functions. This is done in appendix B and
it yields
= NN AP
E*(1/n|q) =1— Z (1 —e A/ ) e T
=1
Hence

q*Eqwﬁ>qgi{QjﬁmeA@mﬂQ@oelﬁJ}'

We now make use of the particular formgf ! (p) given by equation (4); it yields

G = q[h(1 = p) — aln(p)].
As the Laplace transform af(dQ(q)/dq) is the derivative of the Laplace trans-
form of —dQ(q)/dg, it yields:

/ 4dQ(g)e 4/t = —L'(9),
0

with o = A[h(1 — p) — aln(p)]/l, whereL(v) is the Laplace-Stieltjes transform of
gandl'(v) = dL(v)/dv.
Hence

Although we now get an explicit expression ¢fp) as, according to equation

(8), i-p)
—p
v(p) = Do L a1
0/q*+ ¢~ (p)
this expression does not allow us to find an analytical expressiqri ferarg max, y(p).
However, one can perform some numerical computations, as done in figure 6 —
we tooka as a time unitg = «, a uniqueg = 200 units of fithessf = 50« and
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L = 100 for numerical computations, as suggested in appendix B\ At 0, the
mean inter-arrival time is infinite, thus we todk, E(1/7) = 1. A = 0.05 is a fair
intensity as the mean inter-arrival time equalov. A = 0.5 is an extreme intensity
as the mean inter-arrival time is equabio.

tha

larnbda =0
lambda = 0.05
larnbda = 0.5

Fig. 6. The functionry(p)

In agreement with Charnov’s model, the patches should be more depleted in a
bad world —now in terms of the possible presence of competitors.

4 Concluding remark

Unavoidably, the consideration of the number of foragers reaching a patch as a func-
tion of its quality raises the issue of the relation with another central concept in
foraging theory: thédeal free distributiof12, 22]. It focuses on the distribution that
corresponds to a Nash equilibrium among the foragers; i.e. into such a configuration,
no one can individually improve its intake rate by moving instantaneously elsewhere.
Hence the intake rates of identical foragers should be permanently equalized.

A simple property of our model —see equation (2)— is that an homogeneous and
synchronous distribution of foragers yields an permanent equalization of their intake
rates; i.e. if the number of foragers on any patch is proportional to patch quality and if
they all reach their respective patch at the same time, their intake rates would remain
equalized as all patch densities would decrease at the same speed.
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Compared to that distribution, the calculations of appendix B let one compute
(1 — E*n, the expected maximum number of foragers as a function of patch quality
where nowp* is fixed thus(; proportional tog:

. e 7 B -1
E(n):1+2(176 ACI/Z)elm.
=1

It can be easily shown that the function— E*# is increasing but concave so good
patches seem under-exploited, relatively to the “ideal free” distribution mentioned
above. This deviation is in agreement with the common observation [21] and pre-
vious theoretical results [1] regarding the effect of perturbations such as non-zero
travel time —or equivalently the foragers’ asynchrony here.
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A Modeling patch depletion

A.1 Discrete foraging

We consider in this subsection a situation where the resource comes as a finite num-

ber of tokens. We leg € N —for quality— be the initial number of tokens in the
unvisited patch.

In our model, a token of resource remains on the patch once exploited, as an
empty token. The forager is assumed to search for tokens at random —it is not sup-
posed to search the patch in a systematic way—, so that the distribution of depleted
resource tokens among the patch will be assumed to be uniform at all times. Thus
the forager finds itself more and more often probing a possible resource that turns
out to be void. As a result, its efficiency decreases, prompting it to usually leave the
patch before it is completely depleted. The decision parameter in the theory of patch
use is the time- that the forager spends on the patch before leaving iesidence
time We leta be the time it takes to move to a new token and probe it/arttie
handling time the time it takes to actually exploit a token of resource.t.gie the
time at which thek!” valid resource token is found. It is actually exploited at time
t;. + h. Letp, be the amount of resource remaining on the patftér the k" unit

is taken,

i.epr = ¢ — k—and hencey = q¢. Let alsop,, = px/q be the density of

good resource tokens. We seek the lawtfar; .
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The forager finds a potential item of resource, possibly already exploited, every
« units of time. For a given = t;, + h + {a, the event,,, = t is equivalent to the
fact that the items found at times + h + a, tp + h + 2, ...ty + h + (£ — 1)«
were already exploited, and the one found at time- h + £« was not. During that
time, p does not change, so that, assuming these events are independent —the patch
is attacked in an homogeneous fashion—, the probability of this event is

Peo=1—pi)" o

Therefore, the expected timg, ; is given by

> «
E(thrl — 1t — h) = E (]. — pk)zilpkga = —.
=1 Pk
Hence 4ok
«
E(tiy1 —tr) = Tpk ©)

Deriving from there the lavf, i.e. the expectation of the number of good resource
tokens found in a given time, is done in appendix A.2. One computes, foK ¢,

P} = P{t, = ka+ (n—1)h},

and finds that it can be expressed in terms of produltt®f combinatorial coeffi-

cients
= o (22 e (1)

as —equation(11)—
k o m q

Then, letk,, = Int[(7 — nh)/«a]. The expected harvest is

flg,7) =Y _nP} .

n<q

A.2 Appendix: combinatorics of discrete foraging

We have seen, equation (9), thaft, 1 — tx, — h = fa} =: Pyy = (1 — p)* Loy

From there, we compute the full law for the residence times follows. LetP;! :=

P{t, = ka+ (n— 1)h}. Itis the probability that attempts were necessary to find

n items. Itis the probability that + (t1 —to—h)+. ..+ (tn —tn—1 —h) = ka. The
characteristic function of the sum of independent random variables is the product of
their characteristic functions. Let therefore

P =SN"p. = P
S
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The characteristic function @f, is therefore

P"(z) = Py(2)P1(2) -+ Ph_1(2),
PoP1L - - Pn—1
o —pole—(—p)l o= A= pon)]

If, now, pp = 1 andp, = 1 — £/q, it comes

. _(1—%)(1—%)...(1_%)
P"(z) = 2z = 1)z - 2

It remains to expand this rational fraction in powergof to compute the probability
soughtP = P{t, = ka + (k — 1)h)}. This is done through a decomposition in
simple elements and expansion of each. If we let

n—1 n
P =3
m=0 q

(10)

it comes, fom < g,

and the expansion yields, still far < g¢:

n—1 m k—1
=Y () (11)

m=0 q

with the convention that® = 1 —useless in practice, since fér > 1, the only
interesting case, the term = 0 can clearly be omitted.

It can be directly shown that the above formulas enjoy the desired properties that
for any fixedn < ¢, the P;* are null if k < n, and add up to one:

k=00
Vk<n, Pl=0, and Y Pl=1.
k=n

A.3 Continuous foraging

Following most of the literature, we shall use a continuous approximation of the
above theory, assuming that the resource is, somehow, a continuum; moR;".

Let us introduce a surface —or volume— resource denityTwo time constants
enter into the model:

3 In the body of the paper, we assume that the unit of area chosen is sudh that or
equivalently,« is the time required to probe one unit of resource.
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e « is the time it takes for the forager to explore a unit area that could contain a
quantity D of resource —if it were not yet exploited.

e h is the extra time —ohandling time— it takes to actually retrieve a unit of
resource if necessary.

Our hypothesis is that a ratjpof the patch area is productive so that an atea
produces a quantity
df = pDdee

of resource and the time necessary to gather it is

dt = adae + pDhdee.

Hence we get
pD

f= a+ pDh :
One can relate this equation to Holling’s equation [10] by substitutibyg theattack
rate, a parameter giving the amount of resource attacked per unitdimeD /.

=r(p).

B Evaluating a probability law

Letw,...,w, be mutually independent random variables with common probability
distributionP(w; < z) = 1 —exp(—Ax). DefineY, = wy + 2w + ... + kwy. The
Laplace-Stieltjes transform &f; is given by

E

fk(s) —5Yk

Denote bygy (¢) the density function ol}, namely,gx (t) = dP(Y, < t)/dt. The
function gy (t) may be computed by inverting the LST (s). This gives

1 ~y+ioo
t) = — st d
i (t) / et fi(s)ds

211 —ico

where~ is any real number chosen so that the line= ~ lies to the right of all
singularities offy(s) [19]. The functionfy(s) has onlyk simple poles, located at
pointss = —\/j for j = 1,..., k. We may therefore take = 0.

The usual way for computing the complex integféi>O et f1.(s)ds is first to
consider the complex integrd(R) : [C et f1.(s)ds, whereCy is the contour
defined by the half circle in the Ieft complex plane centered at 0 with radius
R, and the line[—iR, iR] on the imaginary axisR is any real number such that
R > 1/X so that all poles of(s) are located inside the contoll; —see Figure 7.
By applying the residue theorem we see that

k

I(R) = 2mi Y Residue (e* fi(s);5 = —\/1) .

=1
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Fig. 7. The contoutCr

Since the residue of the functieff £, (s) ats = —\/lis equal ta== /! (\ /1) H%J 1/(1—
), we find that '

k
A
R) = 2mi —ALZ (12)
R
J#l
At this point we have shown that
iR
t)=—1 st
gk( ) 271 Rgnoo iR fk( )
= lim Ip — — 1i st
274 Rgnoo T Rgnoo Ii(s)

u UL 1
— 7)\t/l - v I E st
> e H 1= At ¢ rls)ds
=1 ;—; R
by using (12), wherd’z = Cr — [-iR,iR).
One can find constant8” > 0 anda > 0 such that|f(s)| < K/R* when

s = Re' for R large enough so that the integral in the latter equation vanishes as
R — 00 [19, Theorem 7.4].

In summary, the density functiap, (s) of the r.v.Y}, is given by

k k
ge(t) =3 e M T I % (13)
iz

~1>

=1

[
—r

4 Hint: always true iffx(s) = P(s)/Q(s), with P and@ polynomials and the degree &f
is strictly less than the degree @f



20 Fieceric Hamelin, Pierre Bernhard, Philippe Nain dfiic Wajnberg.
Let us now come back to the original problem. Define —witly 0—
n=inf{k >1:(— (w +2ws + ...+ kwg) <0},

or equivalently
n=inf{k >1: (—-Y; <0}.

We are interested iR(1/n). We have

P(n>M)=P( Y, >0,....C— Yy >0),
:P(Y1<§75YM<C)5
— P(Ya < 0). (14)

SinceP(n = M) = P(n > M —1)— P(n > M) we see from (14) that fak/ > 2,

P(TL:M):P(YM,1<<)—P(Y1u<<)

¢ ¢
0
M—-1 ; M—-1 l M ; M I
— —A¢/l - e~ A/l -
=2 (=) I = l:l( )]Hllfj

~r

=

Py

where the latter equality follows from (13).
The r.h.s. of (15) can be further simplified, to give

M
M ZM72
P = M) = 1— 7)\C/l M-1-r "= v 16
(n= M) ;( ) (1) USSR
for M > 2. It remains to determin®(n = 1). Clearly,
Pn=1)=P(Y; > () =e . (17)
Therefore,
|
1 -
A/m)= 2 4 F
M=1
oo M
, 1 [M=2
-1 e /) (LM —1-1
+MX_:U;( ) ) M =1 (=1
o0 oo M —
= 1+Z (1—e—A</l> Z(_l)M—l—li
— (l -l 2= (M —1)!
- N AP LA,

Similarly we find
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E(n) =1+ i (1 - e—W) e lll_% . (19)
=1 '

Concluding remark:

A way to avoid the calculation of the infinite series in the r.h.s. of (18) —or
similarly that of (19)— is to split the series in two parls;— , (1—e~*¢/1)e~ 111 /1!
andy_,. ; (1—e=*¢/Ye~!1!=1 /1! for some arbitrary —but carefully chosen— integer
L > 1. The first —finite— series can be evaluated without any problem for moderate
values ofL and the second one can be approximated by using Stirling’s formula as
shown below. Indeed, if we use the standard approximdtieny/27l I' e~! then it
follows that

Z (1 _ eq(/z) ol le;‘l ~1— \/% Z (1 _ qu/z) 1-3/2

I>L I>L

We can further approximate the infinite serfgg. ; (1 — e=*¢/!) 1=3/2 by the
integral [~ (1 — e=*¢/*) 273/2 dz, which gives

i(l—e"\ql)l_3/2~\/2z— Qerf( /\LC>7

I>L

where the error functioarf is defined byerf := 2//7 / e~ dt.
0



