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Summary. Our objective is to determine the evolutionarily stable strategy [14] supposed to
drive the behavior of foragers competing for a common patchily distributed resource [16].
Compared to [18], the innovation lies in the fact that random arrival times are allowed.

In this first part, we investigate scramble competition: the game still yields simple
Charnov-like strategies [4]. Thus we attempt to compute the optimal long-term mean rateγ∗

[11] at which resources should be gathered to achieve the maximum expected fitness: the as-
sumed symmetry among foragers allows us to expressγ∗ as a solution of an implicit equation,
independent of the distribution law of arrival times.

A digression on a simple model of group foraging shows thatγ∗N can be simply computed
via the classical graph associated to the marginal value theorem —N is the size of the group.
An analytical solution allows us to characterize the decline in efficiency due to group foraging,
as opposed to foraging alone: this loss can be relatively low, even in a “bad world”, provided
that the handling time be relatively long.

Back to the original problem, we then assume that the arrivals on the patch follow a
Poisson process. Thus we find an explicit expression ofγ∗ that makes it possible to perform a
numerical computation: Charnov’s predictions still hold under scramble competition.

Finally, we show that the distribution of foragers among patches is not homogeneous but
biased in favor of bad patches. It is in agreement with common observation and theoretical
knowledge [1] about the concept of ideal free distribution [12, 22].
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1 Introduction

Behavioral Ecology [13] attempts to assert to what extent the natural selection
process could have carved animal behavior. This evolutionary approach focuses on
optimal strategies in terms of capitalizing on genetic inheritance through genera-
tions; as a common currency between survival ability and reproductive success, we
shall use the term —Darwinian—fitness[15], analogous to the concept of “utility”
in Economics.

In this respect, optimal foraging theory [20] seeks to investigate the behavior
of an animal searching for a valuable resource such as food or a host to parasitize.
In many cases, these resources are spread in the environment as distantpatchesof
variousqualities. Moreover, the resourceintake ratesuffers from patch depletion. As
a consequence, it is likely advantageous to leave a patch not yet exhausted in order
to find a richer one, in spite of an uncertaintravel time. Hence the need to determine
the optimal leaving rule.

In this context, Charnov’s marginal value theorem [4] provides a way to gather
resources at an optimal long-term mean rateγ∗ that gives the best fitness a forager
can expect in its environment.

Actually, this famous theoretical model is applied to a lone forager that has
monopoly on resources it finds; it predicts that each patch should be left when the
intake rate on that patch drops belowγ∗, independently of either its quality or on the
time invested to reach it.

Naturally, the question arises of whether this result holds for foragers competing
for a common patchily distributed resource [16], i.e. whether this is an evolutionar-
ily stable strategy [14]. The authors of [18] assume that somehown foragers have
reached a patch simultaneously, and they investigate their evolutionarily stable giv-
ing up strategy. Our innovation lies in the fact that an a-priori unlimited number of
foragers reaching a patch at random arrival times is allowed.

In section 2, we develop a mathematical model of the problem at hand and recall
Charnov’s classical marginal value theorem. In section 3, we investigate the so-called
scramble competitioncase, where the only competition between foragers is in shar-
ing a common resource.

In a companion paper [9], we extent the model to take into account actualinter-
ference; i.e. a decline of the intake rate due to competition.

2 Model

We consider a population of independent animals foraging freely in an environment
containing a patchily distributed resource, assumed to be stationary; i.e. the spatial
and qualitative statistical distributions of the patches remain constant over time. In
other words, there is no environment-wide depletion but only local depletion; an ad-
hoc renewal process of the resource is then implicitly assumed, although it might not
necessarily be an appropriate modeling shortcut [2, 3]. We then focus on a single
forager evolving in this environment, among its conspecifics.
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2.1 Local fitness accumulation

A lone forager on an initially unexploited patch

We consider the case of a single forager acquiring some fitness from a patch of
resource. We let

• q ∈ R+ be the quality of the patch, i.e. the potential fitness it initially offers,
• p ∈ R+ be the current state of the patch, i.e. the amount of fitness remaining,
• ρ = p/q ∈ Σ1 = [0, 1] be the fitness remaining on the patch relative to its quality.

Let f(q, τ) be the fitness gathered in a timeτ on a patch of qualityq. Our basic
assumption is that the intake rateḟ = ∂f(q, τ)/∂τ is a known functionr(ρ) contin-
uous, strictly increasing and concave; in appendix A.3 we derive such a law from an
assumption of random probing on a patch. It yields

ḟ = r(ρ) , f(0) = 0 ,

resulting in
qρ̇ = −r(ρ) , ρ(0) = 1 . (1)

We find it convenient to introduce the solutionφ(t) of the differential equation

φ̇ = −r(φ) , φ(0) = 1 .

Theorem 1.Our model is given by

f(q, τ) = q

[
1− φ

(
τ

q

)]
. (2)

It yields:∀q,

• f(q, 0) = 0,
• τ 7→ f(q, τ) is strictly increasing and concave,
• limτ→∞ f(q, τ) = q.

A lone forager on a previously exploited patch

Assume that the forager reaches a patch that has already be exploited to some extent
by a conspecific. The patch is characterized by its initial qualityq and its ratio of
available resourceρ0 at arrival time. The dynamics are still (1) initialized atρ(0) =
ρ0, and the fitness gathered is

f(q, ρ0, τ) = p0 − p(τ) = q[ρ0 − ρ(τ)] .

This is depicted on the reduced graph, figure 1.
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Fig. 1.The reduced graph

Several foragers on a patch

Assume thatn ∈ N identical foragers are on the same patch. Let the sequence of
forager arrivals times beσ = {σ1, σ2, . . . , σn} andi ∈ {1, 2, . . . , n}. By definition,
scramble competition let the intake rate independent ofn thus

∀i , ḟi = ḟ = r(ρ) , fi(σi) = 0 .

Nevertheless, the speed of depletion is multiplied byn:

ṗ = qρ̇ = −nḟ , ρ(0) = ρ0 .

2.2 Global fitness accumulation

The marginal value theorem

In order to optimally balance the residence times on the differing patches, a relevant
criterion is the average fitness acquired relative to the time invested: assume the qual-
ity q of the patch visited is a random variable with cumulative distribution function
Q(q). We allow the residence time to be a random variable, measurable on the sigma
algebra generated byq. We also assume that the travel timeθ is a random variable of
known distribution and let̄θ = Eθ. It yields

γ =
Ef(q, τ)
θ̄ + Eτ

. (3)
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Theorem 2.Charnov’s marginal value theorem: the maximizing admissibleτ is
given as a function ofq by the rule

• either
∂f

∂τ
(q, 0) ≤ γ∗ andτ∗ = 0,

• or
∂f

∂τ
(q, τ∗) = γ∗.

whereγ∗ is obtained by placingτ∗ in (3).

Proof: Call Dγ the —Ĝateaux— derivative ofγ in (3). Euler’s inequality reads, for
anyδτ such thatτ∗ + δτ be admissible

Dγ.δτ =
1

θ̄ + Eτ∗

∫
R+

[
∂f

∂τ
(q, τ∗)− γ∗

]
δτ(q) dQ(q) ≤ 0 .

The incrementδτ may have any sign ifτ∗ is strictly positive, but it must be positive
if τ∗ is zero. Hence the result. This is —a marginal improvement over— Charnov’s
marginal value theorem.

A lone forager evolving in our model

As in the classical model, we consider in this subsection a lone forager which has a
monopoly on resource it finds. Under the main modeling assumption of subsection
2.1, the criterion becomes:

γ = E
{

q

[
1− φ

(
τ(q)
q

)]}/[
θ̄ + Eq

τ(q)
q

]
.

Charnov’s optimal patch-leaving strategy is to leave whenḟ = γ∗. In our model,
the intake rate of a lone forager only depends onρ, hence an equivalent threshold
is ρ∗ = r−1(γ∗). One can notice that any unexploited patch should be attacked
independently of its quality since for everyq, (∂f/∂τ)(q, 0) = r(1) andr(1) > γ∗

by construction.
A simple property of our model —see equation (2)— is thatτ∗(q)/q is a con-

stant, sayz, z = φ−1(ρ∗), for anyq. Hence the following expression ofγ∗, if we let
q̄ = Eq:

γ∗ =
1− φ(z)
θ̄/q̄ + z

.

Therefore, one can compute the optimal value ofρ∗ —or equivalentlyγ∗— via
the well-known graph in figure 2. One can notice the duality betweenq̄ andθ̄: mul-
tiplying by n the average level of resource is equivalent to dividing byn the average
travel time.

As a consequence, the patches should be relatively less depleted in agood world
[6] —rich and easy to find patches— than in a bad one —scarce patches offering few
resources.

Thus, in our particular case, onlȳq is relevant: “it suffices to know̄q —rather
thanQ(q)— to be able to behave optimally”. Hence this model stands if the resource
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Fig. 2.The marginal value theorem

is “only” stationary in a weak sense; i.e. if themeansof the qualitative and spatial1

statistical distributions of the patches remain constant over time.

An explicit formula for ρ∗

We now make use of the particular form of the functionr of appendix A.3: it allows
the functionφ(t) to be inverted into:

φ−1(ρ) = h(1− ρ)− α ln(ρ) . (4)

It yields an analytical solution, simply by performing an optimization inρ as
ρ∗ = arg maxρ γ(ρ) with

γ(ρ) =
1− ρ

θ̄/q̄ + φ−1(ρ)
, ρ ∈ Σ1 .

Hence
ρ∗ = −1

/
W−1

(
−e−(1+x)

)
, (5)

wherex = θ̄/(αq̄) andW−1 is the LambertW function as defined in [7] —this
is indeed the “non-principal” branch of this multi-valued function that contains the
solution asρ∗ ∈ Σ1 ⇒ W ≤ −1.

Thusρ∗ depends on1+x, a sort of inverse duty cycle asαq̄ is the time needed to
cover an average patch in a systematic way; one can notice thatρ∗ does not depend
on the handling timeh althoughγ∗ does. Lety = 1/(1 + x) = αq̄/(αq̄ + θ̄); the
functionρ∗(y) is plotted on figure 3.

As expected, in a bad world the patches should be relatively more depleted than
in a good one —high “duty cycle”y—, where the forager would be harder to please.

1 More precisely, this is the mean travel time which has to remain stationary.
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Fig. 3.The functionρ∗(y)

3 Scramble competition

Scramble-competition only takes into account the fact that the resource depletes
faster due to simultaneous foraging activities on the patch. As a consequence, the
departure of a forager only slows down the depletion. Hence there is no hope to
seeρ, or equivalently the intake rate, increase. Moreover, as foragers are assumed
to be identical, they surely share the same optimal long-term mean rateγ∗ and thus
must leave at the same time, independently of their arrival times. Hence adopting
commonly the Charnov’s patch-leaving strategy given by theorem 2 provides a Nash
equilibrium in non-anticipative strategies among the population. As this latter is both
strict and symmetric, this is indeed an evolutionarily stable strategy —this is detailed
in appendix B of the second part [9].

3.1 An attempt to get an analytical expression ofγ∗

Let us assume that all foragers apply Charnov’s patch-leaving strategy, i.e. leave
whenḟ = γ∗ or equivalently whenρ = ρ∗. As a consequence, when a patch is left,
it is at a densityρ∗ which makes it unusable for any forager. Hence all admissible
patches encountered are still unexploited, withρ0 = 1.

Let t be the time elapsed since the patch was discovered. For a fixed ordered
sequence ofσj ’s, j ∈ {1, 2, . . . , n}, let us introduce a “forager second” —as one
speaks of “man month”—,s = S(t, σ) defined by

ṡ = j if σj ≤ t < σj+1 , s(0) = 0 .

Equivalently
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for t ∈ (σj , σj+1) , S(t, σ) = j(t− σj) +
j−1∑
k=1

k(σk+1 − σk) . (6)

The functiont 7→ S(t, σ) is strictly increasing. It therefore has an inverse function
denotedt = S−1

σ (s), easy to write explicitly in terms of thesj = S(σj , σ):

for s ∈ (sj , sj+1) , S−1
σ (s) =

1
j
(s− sj) +

j−1∑
k=1

1
k

(sk+1 − sk) .

According to subsection 2.1, the dynamics of the patch are now

ṗ = qρ̇ = −jr(ρ) , for t ∈ (σj , σj+1) .

As a consequence, the patch trajectory satisfies

ρ(t) = φ

(
1
q
S(t, σ)

)
.

We shall also lett∗ be such thatρ(t∗) = ρ∗, i.e. to be explicit, if not clearer,
t∗ = S−1

σ ◦ (qφ−1) ◦ r−1(γ∗).
Let us regroup possible combinations ofσ’s by the maximum number of foragers

reached before they all leave the patch, sayn̂. When they leave, they have retrieved
an amount

∑
i fi = q(1 − ρ∗) of the resource. By symmetry, the expectation of

fitness acquired is for each of them

Eσf =
q

n̂
(1− ρ∗) .

Moreover, this is exactly the amount of resource each would have acquired if they
all had arrived simultaneously, since in that case they all acquire the same amount of
resource.

Let us callcentral trajectoryof ordern̂ that particular trajectory where alln̂ for-
agers arrived at time zero. We denote with an index� the corresponding quantities.
Hence, for all̂n, Eσ(f) = f�.

Now, for a given ordered sequenceσ of length n̂, the reference forager may
have occupied any rank, from 1 tôn. Let ξ be this rank. Callτ∗ξ its residence time
depending onξ. Notice that since they all leave simultaneously,

∀n̂, ∀ξ ∈ {1, . . . , n̂} , τ∗ξ = σn̂ − σξ + τ∗n̂ .

Again, for reasons of symmetry,

Eξτ
∗
ξ = σn̂ −

1
n̂

n̂∑
j=1

σj + τ∗n̂ . (7)

Now, τ∗n is defined byφ(S(σn̂ + τ∗n̂, σ)/q) = ρ∗, i.e., according to equation (6):
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n̂[(τ∗n̂ + σn̂)− σn̂] +
n̂−1∑
j=1

j(σj+1 − σj) = qφ−1(ρ∗).

Notice that
n̂−1∑
j=1

j(σj+1 − σj) = n̂σn̂ −
n̂∑

j=1

σj .

Hence we get

τ∗n̂ =
q

n̂
φ−1(ρ∗)− σn̂ +

1
n̂

n̂∑
j=1

σj .

On the central trajectory of order̂n, it holds thats = n̂t = n̂τ , so that

τ∗� =
q

n̂
φ−1(ρ∗) ,

so that finally

τ∗n̂ = τ∗� − σn̂ +
n̂∑

j=1

σj .

Place this in (7), it comesEξτ
∗
ξ τ∗�. But this last quantity is independent onσ, so that,

for any fixedq andn̂,

Eστ∗ = τ∗� =
q

n̂
φ−1(ρ∗) .

The random variablesq andn̂ are surely correlated, as the foragers stay a longer
time on better patches, and are thus likely to end up more numerous. Similarly,n̂
surely depends onρ∗; hence we useE∗ to mean that we take the expected value
over all patch qualities and sequences of arrival under the optimal scenario. Let then
q∗ = E∗(q/n̂). We obtain the fixed point equation:

r(ρ∗) = γ∗ =
1− ρ∗

θ̄/q∗ + φ−1(ρ∗)
. (8)

Yet, it remains a partial result as long as we do not know how to expressq∗ as a
function ofρ∗.

A digression on an —excessively— simple model of group foraging

In this subsection we relax the assumption of independent foragers provided that they
be identical —all we need up to now is symmetry among foragers.

Thus let us consider a group ofN identical individuals foraging “patch-by-
patch”; i.e. the travel-times are assumed to be too long to allow the group to cover two
patches simultaneously. In this “information-sharing” model [8], once a patch is dis-
covered by any member of the group, the others are assumed to join it sequentially;
i.e. we assume that the group spread itself in a radius [17] that allows every members
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to benefit from the poorest patch —as a function of the optimal profitability thresh-
old ρ∗ computed below. This assumption results inn̂ equal toN independently ofq
andρ∗. Therefore, the formula (8) is exactly as applying Charnov’s marginal value
theorem for both deterministic patch qualityq̄/N and travel timēθ. As the tradition
wants, one can computeγ∗ graphically, as done in figure 4.
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Fig. 4.The marginal value theorem

Obviously foraging in group is less2 efficient in term of fitness gathering than
foraging alone, if no advantage [5] is taken into account. However, it does not imply
that the individual efficiencyγ∗(N) =: γ∗N is an homogeneous function of degree
−1; indeed, the relationγ∗N = γ∗1/N would be true if the individuals were acting as
if they were alone.

If we make use of the particular form of the functionr of appendixA.3, N 7→
ρ∗(N) is given by equation (5) withx = Nθ̄/(αq̄); asγ∗ = r(ρ∗), the function
N 7→ γ∗(ρ∗(N)) is easily obtained. Letβ = α/h, µ = θ̄/(αq̄) and

Γ (N) := γ∗1/γ∗N =
[
1− βW−1

(
−e−(1+Nµ)

)]/[
1− βW−1

(
−e−(1+µ)

)]
.

Let κ = β/
[
(1− βW−1

(
−e−(1+µ)

)]
andΓ ′(N) := dΓ (N)/dN ; it comes

Γ ′(N) = κµW−1

(
−e−(1+Nµ)

)/[
1 + W−1

(
−e−(1+Nµ)

)]
> 0 .

Let Γ ′′(N) := dΓ (N)/dN2.

Γ ′′(N) = −µ2κW−1

(
−e−(1+Nµ)

)/{[
1 + W−1

(
−e−(1+Nµ)

)]3}
< 0 .

Thus Γ (N) is strictly increasing but concave. Therefore, foraging in group
should yield —far— more than only aN th of what would get a lone forager, pro-
vided that the strategy be adapted to the size of the group.

2 At best equal, if ever the mean travel time was divided byN while foraging in group [5].
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Moreover, it is easy to see thatlimN→∞ Γ (N) = ∞, that limN→∞ Γ ′(N) =
κµ and thatΓ ′′(N) increases abruptly in the vicinity of zero. HenceΓ (N) can be
approximated by an affine function of slopeκµ: let Γ̃ (N) := (1 − κµ) + Nκµ ∼
Γ (N). The “duty cycle” is nowy = 1/(1+µ). Figure 5 approximately characterizes
the decline in individual efficiency resulting from foraging in group, as opposed to
foraging alone. We see that in a even in a bad world, the loss can be relatively small
if the handling time is relatively long.

Fig. 5.The functiony 7→ κµ

Back to the original problem

As q∗ = EqE∗(q/n̂|q) = EqqE∗(1/n̂|q), we shall first consider thatq is fixed.
Let ζ1 be the time a lone forager would stay on a patch of qualityq if not disturbed

by an intruder:ζ1 := τ∗�n̂ = qφ−1(ρ∗). In order to perform an optimization inρ
as in subsection 2.2, our purpose is now to compute the functionζ1 7→ E∗(1/n̂).
Let the successive arrival times on a patch be a Poisson process with intensityλ >
0. This means that the successive inter-arrival times form a sequence of mutually
independent random variables{wn}, exponentially distributed with mean1/λ.

Once a first intruder has arrived, the maximum —in absence of further intruder—
remaining time to deplete the patch up toρ∗ is divided by two as the depletion speed
doubles; more generally, after thenth arrival, the maximum remaining residence
time is reduced by a factor(n − 1)/n. Our aim is now to express the cumulative
distribution function ofn̂ in closed form as a function ofζ1, from which we will
deduceE∗(1/n̂).
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A way to formulate the problem is the following one: letζn be the remaining
effort in “forager second” when thenth forager arrives. Clearly

ζn+1 = ζn − nwn , n ≥ 1.

Note that the mappingn → ζn is non-increasing. Therefore, the random variablen̂
is characterized byζn̂+1 ≤ 0 < ζn̂.

We have

P (n̂ > M) = P (ζ2 > 0, . . . , ζM+1 > 0) ,

= P (ζ1 > w1 + 2w2 + . . . + MwM ) .

This is equivalent to finding the distribution law of
∑M

n=1 nwn. As the probabil-
ity density function of the sum of independent random variables is given by the con-
volution product of their density functions, one can obtain it by inverting the product
of the Laplace transforms of their density functions. This is done in appendix B and
it yields

E∗(1/n̂|q) = 1−
∞∑

l=1

(
1− e−λζ1/l

)
e−l ll−1

l!
.

Hence

q∗ = E∗(q/n̂) = q̄ −
∞∑

l=1

[(
q̄ −

∫ ∞

0

e−λζ1/lqdQ(q)
)

e−l ll−1

l!

]
.

We now make use of the particular form ofφ−1(ρ) given by equation (4); it yields
ζ1 = q[h(1− ρ)− α ln(ρ)].

As the Laplace transform ofq(dQ(q)/dq) is the derivative of the Laplace trans-
form of−dQ(q)/dq, it yields:∫ ∞

0

qdQ(q)e−λζ1/l = −L′(ν̂) ,

with ν̂ = λ[h(1− ρ)− α ln(ρ)]/l, whereL(ν) is the Laplace-Stieltjes transform of
q andL′(ν) = dL(ν)/dν.

Hence

q∗ = q̄ −
∞∑

l=1

{
[q̄ + L′(ν̂)] e−l ll−1

l!

}
.

Although we now get an explicit expression ofγ(ρ) as, according to equation
(8),

γ(ρ) =
(1− ρ)

θ̄/q∗ + φ−1(ρ)
,

this expression does not allow us to find an analytical expression forρ∗ = arg maxρ γ(ρ).
However, one can perform some numerical computations, as done in figure 6 —

we tookα as a time unit,β = α, a uniqueq = 200 units of fitness,θ = 50α and
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L = 100 for numerical computations, as suggested in appendix B. Atλ ∼ 0, the
mean inter-arrival time is infinite, thus we took∀ρ , E(1/n̂) = 1. λ = 0.05 is a fair
intensity as the mean inter-arrival time equal to20α. λ = 0.5 is an extreme intensity
as the mean inter-arrival time is equal to2α.

Fig. 6.The functionγ(ρ)

In agreement with Charnov’s model, the patches should be more depleted in a
bad world —now in terms of the possible presence of competitors.

4 Concluding remark

Unavoidably, the consideration of the number of foragers reaching a patch as a func-
tion of its quality raises the issue of the relation with another central concept in
foraging theory: theideal free distribution[12, 22]. It focuses on the distribution that
corresponds to a Nash equilibrium among the foragers; i.e. into such a configuration,
no one can individually improve its intake rate by moving instantaneously elsewhere.
Hence the intake rates of identical foragers should be permanently equalized.

A simple property of our model —see equation (2)— is that an homogeneous and
synchronous distribution of foragers yields an permanent equalization of their intake
rates; i.e. if the number of foragers on any patch is proportional to patch quality and if
they all reach their respective patch at the same time, their intake rates would remain
equalized as all patch densities would decrease at the same speed.
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Compared to that distribution, the calculations of appendix B let one compute
ζ1 7→ E∗n̂, the expected maximum number of foragers as a function of patch quality
where nowρ∗ is fixed thusζ1 proportional toq:

E∗(n̂) = 1 +
∞∑

l=1

(
1− e−λζ1/l

)
e−l ll−1

l − 1!
.

It can be easily shown that the functionζ1 7→ E∗n̂ is increasing but concave so good
patches seem under-exploited, relatively to the “ideal free” distribution mentioned
above. This deviation is in agreement with the common observation [21] and pre-
vious theoretical results [1] regarding the effect of perturbations such as non-zero
travel time —or equivalently the foragers’ asynchrony here.
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A Modeling patch depletion

A.1 Discrete foraging

We consider in this subsection a situation where the resource comes as a finite num-
ber of tokens. We letq ∈ N —for quality— be the initial number of tokens in the
unvisited patch.

In our model, a token of resource remains on the patch once exploited, as an
empty token. The forager is assumed to search for tokens at random —it is not sup-
posed to search the patch in a systematic way—, so that the distribution of depleted
resource tokens among the patch will be assumed to be uniform at all times. Thus
the forager finds itself more and more often probing a possible resource that turns
out to be void. As a result, its efficiency decreases, prompting it to usually leave the
patch before it is completely depleted. The decision parameter in the theory of patch
use is the timeτ that the forager spends on the patch before leaving it, orresidence
time. We letα be the time it takes to move to a new token and probe it andh, the
handling time, the time it takes to actually exploit a token of resource. Lettk be the
time at which thekth valid resource token is found. It is actually exploited at time
tk + h. Let pk be the amount of resource remaining on the patchafter thekth unit
is taken, i.e.pk = q − k —and hencep0 = q. Let alsoρk = pk/q be the density of
good resource tokens. We seek the law fortk+1.
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The forager finds a potential item of resource, possibly already exploited, every
α units of time. For a givent = tk + h + `α, the eventtk+1 = t is equivalent to the
fact that the items found at timestk + h + α, tk + h + 2α, . . . , tk + h + (` − 1)α
were already exploited, and the one found at timetk + h + `α was not. During that
time,ρ does not change, so that, assuming these events are independent —the patch
is attacked in an homogeneous fashion—, the probability of this event is

Pk,` = (1− ρk)`−1ρk .

Therefore, the expected timetk+1 is given by

E(tk+1 − tk − h) =
∞∑

`=1

(1− ρk)`−1ρk`α =
α

ρk
.

Hence

E(tk+1 − tk) =
α + ρkh

ρk
. (9)

Deriving from there the lawf , i.e. the expectation of the number of good resource
tokens found in a given timeτ , is done in appendix A.2. One computes, forn ≤ q,

Pn
k := P{tn = kα + (n− 1)h} ,

and finds that it can be expressed in terms of productsan
m of combinatorial coeffi-

cients

an
m = (−1)n−1

(
q − 1
n− 1

)
(−1)m

(
n− 1

m

)
,

as —equation(11)—

Pn
k =

n−1∑
m=0

an
m

(
m

q

)k−1

.

Then, letkn = Int[(τ − nh)/α]. The expected harvest is

f(q, τ) =
∑
n≤q

nPn
kn

.

A.2 Appendix: combinatorics of discrete foraging

We have seen, equation (9), thatP{tk+1 − tk − h = `α} =: Pk,` = (1− ρk)`−1ρk.
From there, we compute the full law for the residence timeτn as follows. LetPn

k :=
P{tn = kα + (n− 1)h}. It is the probability thatk attempts were necessary to find
n items. It is the probability thatt0 +(t1− t0−h)+ . . .+(tn− tn−1−h) = kα. The
characteristic function of the sum of independent random variables is the product of
their characteristic functions. Let therefore

P̂k(z) =
∞∑

`=1

Pk,`z
−` =

ρk

z − (1− ρk)
.
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The characteristic function oftn is therefore

P̂n(z) = P̂0(z)P̂1(z) · · · P̂n−1(z) ,

=
ρ0ρ1 . . . ρn−1

[z − (1− ρ0)][z − (1− ρ1)] . . . [z − (1− ρn−1)]
.

If, now, ρ0 = 1 andρ` = 1− `/q, it comes

P̂n(z) =
(1− 1

q )(1− 2
q ) · · · (1− n−1

q )

z(z − 1
q ) · · · (z − n−1

q )
. (10)

It remains to expand this rational fraction in powers ofz−1 to compute the probability
soughtPn

k = P{tn = kα + (k − 1)h)}. This is done through a decomposition in
simple elements and expansion of each. If we let

P̂n(z) =
n−1∑
m=0

an
m

z − m
q

,

it comes, forn ≤ q,

an
m = (−1)n−m−1 (q − 1)!

(q − n)!m! (n−m− 1)!
= (−1)n−m−1

(
q − 1
n− 1

)(
n− 1

m

)
,

and the expansion yields, still forn ≤ q:

Pn
k =

n−1∑
m=0

an
m

(
m

q

)k−1

, (11)

with the convention that00 = 1 —useless in practice, since fork > 1, the only
interesting case, the termm = 0 can clearly be omitted.

It can be directly shown that the above formulas enjoy the desired properties that
for any fixedn ≤ q, thePn

k are null ifk < n, and add up to one:

∀k < n , Pn
k = 0 , and

k=∞∑
k=n

Pn
k = 1 .

A.3 Continuous foraging

Following most of the literature, we shall use a continuous approximation of the
above theory, assuming that the resource is, somehow, a continuum: now,q ∈ R+.
Let us introduce a surface —or volume— resource densityD3. Two time constants
enter into the model:
3 In the body of the paper, we assume that the unit of area chosen is such thatD = 1 or

equivalently,α is the time required to probe one unit of resource.
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• α is the time it takes for the forager to explore a unit area that could contain a
quantityD of resource —if it were not yet exploited.

• h is the extra time —orhandling time— it takes to actually retrieve a unit of
resource if necessary.

Our hypothesis is that a ratioρ of the patch area is productive so that an areadæ
produces a quantity

df = ρDdæ

of resource and the time necessary to gather it is

dt = αdæ + ρDhdæ .

Hence we get

ḟ =
ρD

α + ρDh
:= r(ρ).

One can relate this equation to Holling’s equation [10] by substitutingα by theattack
rate, a parameter giving the amount of resource attacked per unit time,a = D/α.

B Evaluating a probability law

Let w1, . . . , wn be mutually independent random variables with common probability
distributionP (wj < x) = 1− exp(−λx). DefineYk = w1 + 2w2 + . . . + kwk. The
Laplace-Stieltjes transform ofYk is given by

fk(s) := E(e−sYk) =
k∏

j=1

λ

λ + js
.

Denote bygk(t) the density function ofYk, namely,gk(t) = dP (Yk < t)/dt. The
functiongk(t) may be computed by inverting the LSTfk(s). This gives

gk(t) =
1

2πi

∫ γ+i∞

γ−i∞
estfk(s)ds ,

whereγ is any real number chosen so that the lines = γ lies to the right of all
singularities offk(s) [19]. The functionfk(s) has onlyk simple poles, located at
pointss = −λ/j for j = 1, . . . , k. We may therefore takeγ = 0.

The usual way for computing the complex integral
∫ i∞
−i∞ estfk(s)ds is first to

consider the complex integralI(R) :=
∫

CR
estfk(s)ds, whereCR is the contour

defined by the half circle in the left complex plane centered ats = 0 with radius
R, and the line[−iR, iR] on the imaginary axis.R is any real number such that
R > 1/λ so that all poles offk(s) are located inside the contourCR —see Figure 7.
By applying the residue theorem we see that

I(R) = 2πi
k∑

l=1

Residue
(
estfk(s); s = −λ/l

)
.
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Fig. 7.The contourCR

Since the residue of the functionestfk(s) ats = −λ/l is equal toe−λt/l(λ/l)
∏k

j=1
j 6=l

l/(l−
j), we find that

I(R) = 2πi
k∑

l=1

e−λt/l λ

l

i∏
j=1
j 6=l

l

l − j
. (12)

At this point we have shown that

gk(t) =
1

2πi
lim

R→∞

∫ iR

−iR

estfk(s)ds ,

=
1

2πi
lim

R→∞
IR −

1
2πi

lim
R→∞

∫
ΓR

estfk(s)ds ,

=
k∑

l=1

e−λt/l λ

l

k∏
j=1
j 6=l

l

l − j
− 1

2πi
lim

R→∞

∫
ΓR

estfk(s)ds ,

by using (12), whereΓR = CR − [−iR, iR].
One can find constantsK > 0 anda > 0 such that|fk(s)| < K/Ra when

s = Reiθ for R large enough4, so that the integral in the latter equation vanishes as
R →∞ [19, Theorem 7.4].

In summary, the density functiongk(s) of the r.v.Yk is given by

gk(t) =
k∑

l=1

e−λt/l λ

l

k∏
j=1
j 6=l

l

l − j
. (13)

4 Hint: always true iffk(s) = P (s)/Q(s), with P andQ polynomials and the degree ofP
is strictly less than the degree ofQ.
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Let us now come back to the original problem. Define —withζ > 0—

n = inf{k ≥ 1 : ζ − (w1 + 2w2 + . . . + kwk) ≤ 0} ,

or equivalently
n = inf{k ≥ 1 : ζ − Yk ≤ 0}.

We are interested inE(1/n). We have

P (n > M) = P (ζ − Y1 > 0, . . . , ζ − YM > 0) ,

= P (Y1 < ζ, . . . , YM < ζ) ,

= P (YM < ζ). (14)

SinceP (n = M) = P (n > M −1)−P (n > M) we see from (14) that forM ≥ 2,

P (n = M) = P (YM−1 < ζ)− P (YM < ζ)

=
∫ ζ

0

gM−1(t)dt−
∫ ζ

0

gM (t)dt (15)

=
M−1∑
l=1

(
1− e−λζ/l

)M−1∏
j=1
j 6=l

l

l − j
−

M∑
l=1

(
1− e−λζ/l

) M∏
j=1
j 6=l

l

l − j

where the latter equality follows from (13).
The r.h.s. of (15) can be further simplified, to give

P (n = M) =
M∑
l=1

(
1− e−λζ/l

)
(−1)M−1−l M

(M − l)!
lM−2

(l − 1)!
, (16)

for M ≥ 2. It remains to determineP (n = 1). Clearly,

P (n = 1) = P (Y1 > ζ) = e−λζ . (17)

Therefore,

E(1/n) =
∞∑

M=1

1
M

P (n = M)

= 1 +
∞∑

M=1

M∑
l=1

(
1− e−λζ/l

)
(−1)M−1−l 1

(M − l)!
lM−2

(l − 1)!

= 1 +
∞∑

l=1

(
1− e−λζ/l

) 1
(l − 1)!

∞∑
M=l

(−1)M−1−l lM−2

(M − l)!

= 1−
∞∑

l=1

(
1− e−λζ/l

)
e−l ll−1

l!
. (18)

Similarly we find
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E(n) = 1 +
∞∑

l=1

(
1− e−λζ/l

)
e−l ll−1

l − 1!
. (19)

Concluding remark:
A way to avoid the calculation of the infinite series in the r.h.s. of (18) —or

similarly that of (19)— is to split the series in two parts:
∑L

l=1(1−e−λζ/l)e−lll−1/l!
and

∑
l>L(1−e−λζ/l)e−lll−1/l! for some arbitrary —but carefully chosen— integer

L > 1. The first —finite— series can be evaluated without any problem for moderate
values ofL and the second one can be approximated by using Stirling’s formula as
shown below. Indeed, if we use the standard approximationl! ∼

√
2πl ll e−l then it

follows that∑
l>L

(
1− e−λζ/l

)
e−l ll−1

l!
∼ 1− 1√

2π

∑
l>L

(
1− e−λζ/l

)
l−3/2 .

We can further approximate the infinite series
∑

l>L

(
1− e−λζ/l

)
l−3/2 by the

integral
∫∞

L

(
1− e−λζ/x

)
x−3/2 dx, which gives

∞∑
l>L

(
1− e−λζ/l

)
l−3/2 ∼ 2√

L
−
√

π

λζ
erf

(√
λζ

L

)
,

where the error functionerf is defined byerf := 2/
√

π

∫ x

0

e−t2dt.


