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Abstract. Mobile ad hoc networks are characterized by a lack of a fixed infrastructure and
by node mobility. In these networks data transfer is accomplished by using mobile nodes
as relay nodes. As a result, transmission power and movement pattern of nodes have a key
impact on the performance. In this work we focus on the impact of node mobility through
the analysis of a simple one-dimensional ad hoc network topology. Nodes move in adjacent
segments with reflecting boundaries according to Brownian motions. Communications (or
relays) between nodes may only occur when they are within transmission range of each
other. We determine the expected time to relay a message and compute the probability
density function of relaying locations. We also provide an approximation formula for the
expected relay time between any pair of mobiles.

1 Introduction

Ad hoc networks can be deployed when a fixed network structure is not available. The lack of a fixed
infrastructure may arise in emergency situations, remote regions, hostile areas or, as is often the case,
due to the financial costs involved in the deployment of a fixed infrastructure.

As a consequence of the absence of a fixed infrastructure, components (or nodes) of an ad hoc network
need to behave as routers by relaying messages in order to improve communications. Instances of nodes
in ad hoc networks are laptops, planes [11], cars, electronic tags on animals [10], etc. If nodes are mobile
then operating these networks become even more complex, as mobility will impact routing protocols,
control of transmission power, quality of service (e.g. interference, path loss, shadowing effects), battery
usage, etc.

As long as data does not have to be transferred directly between two mobiles and that nodes are
willing to relay messages, their mobility may have a positive impact on the performance, as shown in [6].
This has led to the design of protocols that take advantage of node mobility to enhance the performance
of some applications (e.g. messaging applications in [7]). Data relaying cuts down transmission power,
interferences and increases battery usage. On the other hand, it may increase latency - since the existence
at any time of a “path” between two mobiles is not guaranteed - even if (intermediary) nodes can be
used as routers to convey a message from its source to its destination.

In this paper we study the impact of mobility on the latency in the case of nodes acting as relay
nodes. This is done for one-dimensional ad hoc network topologies and under the assumption that nodes
move according to (independent) Brownian motions.

A natural approach (but not the only one, see [9] for an another approach) to modeling a mobile
ad hoc network with relaying nodes consists of looking down at the earth and representing it as a
finite two-dimensional plane. If two mobiles are within a fixed transmission range of each other then a
message can be relayed/transmitted (see Figure 1). Furthermore, mobiles move according to a certain
movement pattern. Unfortunately, this simple model of an ad hoc network (no physical restrictions in
the area covered by the nodes, nodes are homogeneous, etc.) is extremely difficult to analyze, even with
simple movement patterns such as, for example, the Random Waypoint Mobility (RWM) model [12]. For
instance, finding the stationary distribution of the location of the mobiles under the RWM is, to the best
of our knowledge, an open problem.

Obtaining any results characterizing the first instance of time when two mobiles come within trans-
mission range of each other is a problem of even greater complexity. For this reason, this paper focuses
on a one-dimensional topology - a model that has already reveales interesting properties. Its extension
to two dimensions is an open problem.

When analyzing a mobile ad hoc network, an important consideration is the movement pattern.
Are mobiles restricted in their movement by roads, physical objects, waterways, or mountains? Do they



Figure 1. Graphical representation of an ad hoc network

roam around a central point? It has been shown that this is the case for RWM, where there is a higher
concentration of mobiles around a central region [2].

The following scenarios are addressed in this paper. In Section 2 we consider the situation where
two mobiles move along a segment with reflecting boundaries (see Figure 2). Both mobiles move along
the segment according to independent Brownian motions. We are interested in computing the expected
time until both mobiles come within communication range of each other. This quantity is computed
for any given initial locations (Proposition 1) as well as for the case where each Brownian motion is
initially in steady-state (Proposition 3). It is known (see Section 3) that the latter assumption implies
that both mobiles are uniformly distributed over the segment. The uniform spatial distribution over the
coverage area has attracted attention lately and several fundamental results [1, 6] have been obtained in
this setting. However, our model is different from the models considered in those papers.

In Section 3, we consider I mobiles and I segments, one mobile per segment, as depicted in Figure 5.
The mobiles move along their respective segment (with reflecting boundaries) according to independent
Brownian motions. The goal is to determine the expected transfer time between the first and last mobile
in the sequence (Proposition 5). As an additional result, we identify the probability density function
(pdf) of the position of a mobile at a relay epoch (Proposition 4). Numerical results are reported in
Section 4. These results suggest an accurate and scalable approximation for the expected transfer time
(see (15)).

2 Two mobiles moving along a line segment

We consider two mobiles (say mobiles X and Y ) moving along segment [0, L], (see Figure 2). Communi-
cations between these two mobiles may only occur when the distance between them is less than or equal
to r < L. The objective of this section is to determine the expected transfer time, defined as the first
time when both mobiles come with a distance r of each other.
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Figure 2. Two mobiles moving along [0, L] with transmission range r.

Let x(t) and y(t) be the position of mobiles X and Y , respectively, at time t. We assume that
X = {x(t), t ≥ 0} and Y = {y(t), t ≥ 0} are identical and independent Brownian motions with drift
0 and diffusion coefficient1 D, both moving along the segment [0, L] with reflecting boundaries at the
edges. Let TL,r be the transfer time, namely,

TL,r = inf{t ≥ 0 : |y(t) − x(t)| ≤ r}. (1)

Set x(0) = x0 and y(0) = y0. By convention we assume that TL,r = 0 if |y0 − x0| ≤ r. From now on we
assume that |y0 − x0| > r.

We are interested in

TL,r(x0, y0) := IE[TL,r |x(0) = x0, y(0) = y0], 0 < x0, y0 < L,

1 i.e x(t + h) − x(t) (resp. y(t + h) − y(t)) is normally distributed with mean 0 and variance 2Dh for all h > 0, and
non-overlapping time intervals are indepent of each other.



the expected transfer time given that mobiles X and Y are located at position x0 and y0, respectively,
at time t = 0. The following result holds:

Proposition 1 (Expected transfer time with given initial positions).

For 0 ≤ x0 < y0 ≤ L with x0 + r < y0 and 0 ≤ r ≤ L

TL,r(x0, y0) =
32(L − r)2

Dπ4

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin
(

mπ(y0+x0−r)
2(L−r)

)

sin
(

nπ(y0−x0−r)
2(L−r)

)

mn(m2 + n2)
. (2)

�

The proof of Proposition 1 is based on the following intermediary result that gives the expected time
for a two-dimensional Brownian motion Z evolving in a R by R square to hit any boundary of the square.

Proposition 2 (Two Brownian motions in a square).

Consider two independent and identical one-dimensional Brownian motions {u(t), t ≥ 0} and {v(t), t ≥
0}, with zero drift and diffusion coefficient D. Define the two-dimensional Brownian motion Z = {z(t) =
(u(t), v(t)), t ≥ 0}. Set u0 = u(0) and v0 := v(0) and assume that 0 < u0 < R and 0 < v0 < R.

Let

τR := inf{t > 0 : u(t) ∈ {0, R} or v(t) ∈ {0, R}}

be the first time when the process Z hits the boundary of a square of size R by R.

Define τR(u0, u0) = IE[τR | z(0) = (u0, v0)]. Then,

τR(u0, v0) =
16R2

Dπ4

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn(m2 + n2)
. (3)

�

The proof of Proposition 2 is given in Appendix A. We are now in a position to prove Proposition 1.

Proof of Proposition 1.

Let x0 + r < y0 ≤ L. An equivalent way to view the Brownian motions X and Y at time t = 0 is to
consider that the point (x0, y0) is located in the upper triangle in Figure 3 delimited by the lines x = 0,
y = L and y = x + r. If we assume that the boundaries x = 0 and y = L are reflecting boundaries in
Figure 3, then we see that TL,r(x0, y0) is nothing but the expected time needed for the two-dimensional
Brownian motion {(x(t), y(t)), t ≥ 0} to hit the diagonal of the triangle (i.e. to hit the line y = x + r)
given that (x(0), y(0)) = (x0, y0). (The process {(x(t), y(t)), t ≥ 0} is a two-dimensional Brownian motion
since {x(t), t ≥ 0} and {y(t), t ≥ 0} are both independent Brownian motions.)

By using the classical method of images (see e.g. [8, p. 81]), it can be seen that this time is itself
identical to the expected time needed to hit the boundary of the square of size

√
2(L− r) by

√
2(L− r)

shown in Figure 4 given that (x(0), y(0)) = (x0, y0).

In order to apply the result in Proposition 2, we need to compute the coordinates (x′
0, y

′
0) of (x0, y0)

in the new system of coordinates (x′, y′) depicted in Figure 4. We find (x′
0, y

′
0) = ((y0 + x0 − r)/

√
2 and

(y0 − x0 − r)/
√

2) and we may conclude, from Proposition 2, that

TL,r(x0, y0) = τ√2(L−r)

(

(y0 + x0 − r)/
√

2, (y0 − x0 − r)/
√

2
)

. (4)

By using (3) in the r.h.s. of (4) we see that (2) holds.

The expected transfer time TL,r(x0, y0) is displayed in Figure 6 (see Section 4 for comments).

We conclude this section by considering the situation where both mobiles are uniformly distributed
over the segment [0, L] at time t = 0. (We will see in the next section that this case corresponds to the
situation where both Brownian motions X and Y are in steady-state at time t = 0.)

The next result gives the expected transfer time.
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Figure 3. When mobiles X and Y are at a distance
r of each other they are located on the line y = x+r
(y0 > x0 + r).
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Figure 4. Since reflecting barriers at x = 0 and
y = L act as mirrors, the method of images turns
the problem into a 2D Brownian motion inside four
absorbing barriers.

Proposition 3 (Expected transfer time for uniformly distributed initial positions).
Assume that both mobiles Xand Y are uniformly distributed over [0, L] at time t = 0 and 0 ≤ r ≤ L.

The expected transfer time IE[TL,r] is

IE[TL,r] =
128(L − r)4

Dπ6 L2
C0, (5)

where C0 is a constant given by C0 =
∑∞

m=1
m odd

∑∞
n=1
n odd

1
m2n2(m2+n2) ≈ 0.52792664. �

Proof. Since X and Y are uniformly distributed at t = 0, we have

IE[TL,r] =
1

L2

∫ L

0

∫ L

0

IE[TL,r |x(0) = x0, y(0) = y0]dx0dy0

=
1

L2

∫

x0+r<y0≤L

TL,r(x0, y0) dx0dy0 +
1

L2

∫

y0+r<x0≤L

TL,r(y0, x0) dx0dy0

=
2

L2

∫

x0+r<y0≤L

TL,r(y0, x0) dx0dy0

=
64(L − r)2

Dπ4L2

∫

x0+r<y0≤L

h(y0+x0−r, y0−x0−r)dx0 dy0.

where

h(u, v) :=

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin(muβ) sin(nvβ)

mn(m2 + n2)
, β :=

π√
2(L − r)

.

Define the new variables u = (y0 + x0 − r)/
√

2 and v = (y0 − x0 − r)/
√

2. We find

IE[TL,r] =
64(L − r)2

Dπ4L2

[

∫
L−r√

2

u=0

∫ u

v=0

h(u, v)|J(u, v)| dv du +

∫

√
2(L−r)

u= L−r√
2

∫

√
2(L−r)−u

v=0

h(u, v)|J(u, v)| dv du

]

(6)

where |J(u, v)| (=1) is the determinant of the Jacobian matrix

J(u, v) =











dx

du

dx

dv

dy

du

dy

dv











=











1√
2

− 1√
2

1√
2

1√
2











.



It remains to evaluate the two integrals in (6). By using the identity h(u, v) = h(
√

2(L−r)−u, v) we see
that both integrals in the r.h.s. of (6) are equal, since

∫

√
2(L−r)

u= L−r√
2

∫

√
2(L−r)−u

v=0

h(u, v)dvdu =

∫

√
2(L−r)

u= L−r√
2

∫

√
2(L−r)−u

v=0

h(
√

2(L−r)−u, v)dvdu =

∫
L−r√

2

u=0

∫ u

v=0

h(u, v)dvdu.

The first integral can be evaluated by using the symmetry h(u, v) = h(v, u). This gives

∫
L−r√

2

u=0

∫ u

v=0

h(u, v)dvdu =

∫
L−r√

2

u=0

∫ u

v=0

h(v, u)dvdu =

∫
L−r√

2

v=0

∫
L−r√

2

u=v

h(v, u)dudv =

∫
L−r√

2

u=0

∫
L−r√

2

v=u

h(u, v)dvdu.

Hence,
∫

L−r√
2

u=0

∫ u

v=0

h(u, v)dvdu =
1

2

∫
L−r√

2

u=0

∫
L−r√

2

v=0

h(u, v)dvdu

so that

IE[TL,r] =
64(L − r)2

Dπ4L2

∫
L−r√

2

0

∫
L−r√

2

0

h(u, v)dvdu. (7)

Since the double series in h(u, v) are uniformly bounded in the variables u, v ∈ [0,
√

2(L−r)] (its absolute
value is bounded from above by (

∑

k≥1 1/k2)2 = π4/36), we may invoke the bounded convergence theorem
to interchange the integral and summation signs in (7). This gives

IE[TL,r] =
64(L − r)2

Dπ4L2

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

1

mn(m2 + n2)

∫
L−r√

2

u=0

sin(muβ)du

∫
L−r√

2

v=0

sin(nvβ)dv

=
128(L − r)4

Dπ6L2

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

1

m2n2(m2 + n2)
.

The last line follows because cos( jπ
2 ) = 0 for j odd.

3 A chain of relaying mobiles

We consider the situation depicted in Figure 5. There are I adjacent segments, each of length L, and
there is a single mobile per segment. We denote by Xi the mobile in segment i. Let 0 ≤ xi(t) ≤ L
(i = 1, . . . , I) be the relative position of the i-th mobile in its segment. We assume that the process
Xi = {xi(t), t ≥ 0} is a Brownian motion with zero drift and diffusion coefficient D and that X1, . . . ,XI

are mutually independent processes. Last, we assume that each segment has reflecting boundaries at the
ends. Let T1 = inf{t ≥ 0 : x1(t) + r ≥ L + x2(t)} be the transfer time between mobiles X1 and X2,

0 (I−2)L IL2LL (I−1)L

Figure 5. A chain of relaying mobiles.

that is T1 is the first time when X1 and X2 are located at a distance less than or equal to r from each
other. The relay times T2 ≤ · · · ≤ TI−1 between mobiles X2 and X3, . . ., XI−1 and XI , respectively, are
recursively defined by

Ti = inf{t ≥ Ti−1 : xi(t) + r ≥ L + xi+1(t)}, i = 2, . . . , I − 1.

Our objective in this section is to compute IE[Ti] for i = 1, . . . , I − 1.
Throughout this section we assume that L < r < 2L. This assumption is made for the sake of

mathematical tractability. Indeed, a few seconds of reflexion will convince the reader that when L <



r < 2L and (x(0), y(0)) = (x0, y0) the transfer time needed to transfer a message between two adjacent
segments is the same as T2L,r(x0, y0 +L), the expected transfer time obtained in Section 2 for a segment
of length 2L (with the given initial conditions). This observation allows us to find at once the expected
transfer time between mobiles X1 and X2 for any initial conditions x1(0) and x2(0). We find

IE[T1 |x1(0) = x, x2(0) = y] = IE[T2L,r(x, y + L)]. (8)

The difficulty arises when trying to find the expected transfer time between mobiles Xi and Xi+1 for
i = 2, . . . , I − 1, since the position of Xi when the transfer between Xi−1 and Xi takes place is not
uniform in [iL, (i + 1)L].

To overcome this difficulty, we assume that the Brownian motions X1, . . . ,XI are all in steady-state
at time t = 0. This assumption implies,2 in particular, that the position of each mobile at time t = 0
is uniformly distributed over its segment (i.e. the pdf of xi(0) is uniform over [0, L]). The same holds of
course at any arbitrary time (i.e. the pdf of xi(t) is uniform over [0, L] if t is arbitrary).

Another consequence of this assumption is that the position of mobile Xi+1 at time Ti−1 (i.e. when
Xi receives a message from Xi−1) is still uniformly distributed over [0, L]. This property will be used
later on.

Proposition 4 below addresses the location of a mobile at the time when a relay occurs. For later
reference, we state the result in a general form. Consider two adjacents segment, each of length L, with a
single mobile in each segment (mobile X in the first segment and Y in the second segment). Both mobiles
move in their segment (with reflecting boundaries) according to independent and identical Brownian
motions with drift 0 and coefficient diffusion D. We assume that the Brownian motion representing the
movement of Y is in steady state at time t = 0. As usual, a relay will occur the first time when both
mobiles comes at a distance r of each other, with L < r < 2L.

Proposition 4 (Pdf of location at relay epoch).
Fix L < r < 2L. Let q(y;x), y ∈ [0, L], be the pdf of the (relative) position of mobile Y at the relay

epoch, given that at time t = 0 the mobile X is at position x and the position of mobile Y is uniform.
We have

q(y;x) =
1{y≤x+r−L} + f(x, y)1{y≥r−L,x<2L−r}

L
, (9)

where

f(x, y) =
4

π2

∞
∑

m≥1

∞
∑

n≥1
n6=m

n (am,n + bm,n + cm,n)

m2 + n2
sin

(

mπ(y − r + L)

2L − r

)

+
2

π(2L − r)

∞
∑

m≥1

dm + em

m
sin

(

mπ(y − r + L)

2L − r

)

,

and

am,n =
2m sin(nθ) − 2n sin(mθ)

m2 − n2
, bm,n =

sin
(

(m − n)π + nθ
)

+ sin
(

(m − n)π − mθ
)

m − n

cm,n = −
sin

(

(m + n)π − nθ
)

+ sin
(

(m + n)π − mθ
)

m + n
, dm = 2(2L − r − x) cos(mθ)

em =
2L − r

mπ

(

sin(mθ) − sin
(

2mπ − mθ
))

, θ =
πx

2L − r
. �

The proof of Proposition 9 is sketched in Appendix B. We are now in a position to compute the expected
transfer times IE[Ti] for i = 1, . . . , I − 1.

Define fi(x) (0 ≤ x ≤ L) as the pdf of xi(Ti−1) for i = 1, . . . , I−1 (i.e. P (xi(Ti−1) < y) =
∫ y

0
fi(x) dx).

Note that f1(x) = 1/L for x ∈ [0, L] thanks to the assumption that mobile X1 is in steady-state at time
t = 0 (recall that T0 = 0 by convention). Let us first compute IE[T1]. We find

IE[T1] =
1

L2

∫ L

0

∫ L

0

IE [T1 |x1(0) = x, x2(0) = y] dx dy =
1

L2

∫

{x+r<y+L}
T2L,r(x, y + L) dx dy, (10)

2 Hint: let p(x) be the stationary density probability that the mobile is in position x ∈ [0, L]. Solving the diffusion
equation D∂2p(x)/dx2 = 0 with the reflecting conditions dp(x)/dx = 0 for x ∈ {0, L} and the normalizing condition
∫ L

0
p(x)dx = 1 yields p(x) = 1/L for x ∈ [0, L] – see e.g. [3, p. 223].



by using (8) and T2L,r(x, y + L) = 0 if x + r ≤ y + L. Similar to the derivation of (5) we get

IE[T1] =
64 (2L − r)4

Dπ6L2
C0. (11)

We now compute IE[Ti] for i = 2, . . . , I − 1. We have

IE[Ti] = IE[Ti−1] +
1

L

∫ L

0

∫ L

0

IE [Ti − Ti−1 |xi(Ti−1) = x, xi+1(Ti−1) = y] fi(x) dx dy (12)

= IE[Ti−1] +
1

L

∫

{x+r<y+L}
T2L,r(x, y + L) fi(x) dx dy, (13)

where we have used (8) to derive (13). To derive (12) we have used the fact that the position of mobile
Xi+1 is uniformly distributed over its segment at time Ti−1 (i.e. when the relay between mobiles Xi−1

and Xi occurs), and that it is independent of the position of mobile Xi−1 at time Ti−1. It remains to
evaluate the functions fi(x) for i = 2, . . . , I − 1. Differentiating in y on both sides of the identity

P (xi(Ti−1) < y) =

∫ L

0

P (xi(Ti−1) < y |xi−1(Ti−2) = x) fi−1(x) dx,

and then using Proposition 9, gives

fi(y) =

∫ L

0

q(y;x) fi−1(x) dx, 0 ≤ y ≤ L, (14)

for i = 2, . . . , I − 1. These results are summarized in the next proposition.

Proposition 5 (Expected transfer times).
The expected transfer times IE[Ti] for i = 1, . . . , I−1, are given by (11) and (13), where the functions

fi(x), i = 2, . . . , I − 1, satisfy the recursion (14) with f1(x) = 1/L. In particular,

IE[T1] =
64 (2L − r)4

Dπ6L2
C0.

�

4 Numerical results and discussion

The expected transfer time TL,r(x0, y0) is displayed in Figure 6 as a function of the initial position x0

and y0 of the mobiles, for L = 30, r = 5 and D = 1/4 (recall that D is the diffusion coefficient of the
Brownian motions X and Y). The figure shows that the expected transfer time grows (roughly) linearly
as the initial distance between both mobiles increases and neither of the mobiles is near the boundaries
of the interval [0, L]. We used (14) to determine the mapping x → f2(x) for 0 ≤ x ≤ L, the pdf of the
location of mobile X2 when the relay with X1 occurs. This mapping is plotted in Figure 7 for different
values of the starting position of mobile X1 (x1(0) = 5, 10, 15, 20) and for L = 30, r = 35, D = 1/4. It is
interesting to observe that f2(x) is uniform in [0, x1(0)]. This is easily explained by the fact that if X2

is located in [0, r − L] at time T1 then it was necessarily located in this interval prior to time T1, since
otherwise the relay would have occured before T1. Each peak corresponds to the most likely value y in
[0, L] where mobile X2 will be located at time T1. This value is given by y = x1(0) + r.

Figure 8 displays mappings x → fi(x) for i ∈ {2, 3, 100} (evaluated from (14) – case where initial
locations are uniformly distributed). It is worth observing that these functions converge very rapidly
(already f2(x) and f3(x) are very close to each other).

Figure 9 displays mappings r → IE[T100], r → 100 × IE[T2 − T1] and r → 100 × IE[T1]. This figure
carries two important messages. First, it shows for different values of the transmission range r, that
the approximation IE[T100] ∼ 100 × IE[T2 − T1] is very close to the exact result IE[T100] (derived from
Proposition 5)), thereby suggesting the approximation

IE[Ti] ∼ i × IE[T2 − T1] (15)

for the expected time to relay a message from mobile X1 to mobile Xi+1. We have indeed checked (the
results are not reported in this paper; see [5] for more information) that (15) is accurate for small values
of i as well as for large values (i.e. larger than 100). Second, it shows that the approximation IE[T100] ∼
100 × IE[T1] may not be accurate for small transmission ranges, thereby ruling out the approximation
IE[Ti] ∼ i× IE[T1]. This is so because the latter approximation does not account for the fact that mobile
Xi does not start from a “uniform location” at time Ti−1 (as opposed to mobile X1 whose position is
uniformly distributed over [0, L] at time t = 0).
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5 Future Research

The question of power control is central in ad hoc networking. Ongoing research is concerned with
determining the minimum transmission range that will ensure communication between mobiles (within
a certain probability) before the battery power runs out, and with introducing utility functions in our
model.
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Appendix A - A proof of Proposition 2 (2D-Brownian motion in a square)

The density probability q(x, t;u0) that the Brownian motion {u(t), t ≥ 0} is in position x ∈ (0, R) at
time t, given that u(0) = u0, is [8, p. 255, formula (8.2.1)]

w(x, t;u0) =
2

R

∑

n≥1

e−(nπ/R)2Dt sin
(nπx

R

)

sin
(nπu0

R

)

.

Since {u(t), t ≥ 0} and {v(t), t ≥ 0} are independent and identical Brownian motions, we deduce from
the above that the density probability p(x, y, t;u0, v0) that the two-dimensional Brownian motion Z is
in position (x, y) at time t is given by

p(x, y, t;u0, v0) = w(x, t;u0)w(y, t; v0). 0 < x, y < R. (16)

Conditioned on z(0) = (u0, v0), the probability S(t;u0, v0) = P (τR > t) that the process has not hit the
boundaries at time t (often called the survival probability) is given by [8]

S(t;u0, v0) =

∫ R

0

∫ R

0

p(x, y, t;u0, v0)dxdy.

Therefore,

S(t;u0, v0) =

∫ R

0

w(x, t;u0)dx

∫ R

0

w(y, t; v0)dy (17)

=
4

R2

∑

m≥1

e−(mπ/R)2Dt sin
(mπu0

R

)

∫ R

0

sin
(mπx

R

)

dx
∑

n≥1

e−(nπ/R)2Dt sin
(nπv0

R

)

∫ R

0

sin
(nπy

R

)

dy

=
16

π2

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn
e−

π
2

R2
(m2+n2)Dt, (18)

where the uniform convergence of the series w(x, t; ·) in x ∈ [0,∞) (|w(x, t; ·)| ≤ 1/(1−exp(−(π/R)2Dt)))
allows one to interchange integral and summation signs in (17). (Note that, as expected, S(0;u0, v0) = 1
since

∑

i≥1 sin((2i − 1)x)/(2i − 1) = π/4 for all x [4, Formula 1.442.1].)
Finally,

τR(u0, v0) =

∫ ∞

0

S(t;u0, v0) dt

=
16

π2

∫ ∞

0

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn
e−

π
2

R2
(m2+n2)Dt dt (19)

=
16

π2

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn

∫ ∞

0

e−
π
2

R2
(m2+n2)Dtdt (20)

=
16R2

Dπ4

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn(m2 + n2)
,

where we have used the property that the series S(t; ·, ·) is uniformly convergent in [0,∞) (since S(t; ·, ·) ≤
1 for all t ≥ 0 by definition of S(t; ·, ·)) to interchange the summation and the integral signs in (19) which
gives (20). This concludes the proof.



Appendix B - Proof of Proposition 4 (Pdf of location at relay epoch)

Let x(t) and y(t) be the relative positions at time t of mobiles X and Y in [0, L] and [L, 2L], respectively.
Let T the first time when x(t) + r ≥ y(t) + L. Observe that T = 0 if x(0) + r ≥ y(0) + L. We have

P (y(T ) < y |x(0) = x0) =
1

L

∫ L

0

P (y(T ) < y |x(0) = x0, y(0) = y0) dy0

=
1

L

∫ L

0

1{x0+r≥L+y0}1{y>y0} dy0 +
1

L

∫ L

0

1{x0+r<L+y0,y≥r−L}P (y(T ) < y |x(0) = x0, y(0) = y0) dy0

=
1

L
min(x0 + r − L, y) +

1

L
1{y≥r−L,x0<2L−r}

∫ L

x0+r−L

P (y(T ) < y |x(0) = x0, y(0) = y0) dy0,

where the indicator function 1{y≥r−L} in the second integral in the second equality accounts for the fact
that if the transfer does not take place at t = 0 (under the condition x0 + r < y + L then necessarily
T > 0) then mobile Y can not be located in [L,L − r) at time T as otherwise the relay would have
occured before time T . Differentiating both sides of the above relation w.r.t. y gives

q(y;x0) =
1

L
1{y≤x0+r−L} +

1

L
1{y≥r−L,x0<2L−r}

∫ L

x0+r−L

g(y;x0, y0) dy0, (21)

with g(y;x0, y0) := (∂/∂y)P (y(T ) < y |x(0) = x0, y(0) = y0). It remains to evaluate g(y;x0, y0). To this
end, we will use again the method of images (see proof of Proposition 1).

Consider a square of size R by R, with R =
√

2(2L − r), delimited by the (absorbing) boundaries
x′ = 0, x′ = R, y′ = 0 and y′ = R. Starting from position (x′

0, y
′
0) at time t = 0, the pdf p(x′, y′, t;x′

0, y
′
0)

of the location of the mobile at time t is given by (see (16))

p(x′, y′, t;x′
0, y

′
0) =

4

R2

∑

n≥1

∑

n≥1

e−(m2+n2)(π/R)2Dt sin

(

mπx′

R

)

sin

(

nπy′

R

)

sin

(

mπx′
0

R

)

sin

(

nπy′
0

R

)

.

Let ξ(x′;x′
0, y

′
0), 0 ≤ x′ ≤ R, be the pdf of the absorption occuring at point (x′, 0). From [8, p. 25, p. 45]

we obtain

ξ(x′;x′
0, y

′
0) = D

∫ ∞

0

∂p(x′, y′, t;x′
0, y

′
0)

∂y′ |y′=0 dt (22)

=
4

Rπ

∑

n≥1

∑

n≥1

n

m2 + n2
sin

(

mπx′

R

)

sin

(

mπx′
0

R

)

sin

(

nπy′
0

R

)

. (23)

With the method of images (see [5] for details) we find

g(y;x0, y0) = ξ
(√

2(y + L − r);x′
0, y

′
0

)

+ ξ
(√

2(y + L − r); y′
0, x

′
0

)

+ξ
(√

2(y + L − r);
√

2(2L − rx′
0, 2L − r − y′

0

)

+ ξ
(√

2(y + L − r);
√

2(2L − r − y′
0, 2L − rx′

0

)

,(24)

with x′
0 = (x0 + y0 + L − r)/

√
2 and y′

0 = (y0 − x0 + L − r)/
√

2. Plugging (24) into (21) yields (9) after
tedious but elementary algebra.


