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Abstract: We study a large population of communicating terminals using an ALOHA
protocol with two possible levels of transmission power. We pose the problem of how to
choose between these power levels. We study two non-cooperative optimization concepts:
the Nash equilibrium and the Evolutionary Stable Strategy. The latter was introduced
in mathematical biology in the context of Evolutionary Games, which allows to describe
and to predict properties of large populations whose evolution depends on many local
interactions, each involving a finite number of individuals. We compare the performances
of these non-cooperative notions with the global cooperative solution. The payoffs that
we consider are functions of the throughputs and of the cost for the power levels. We
study in particular the impact of the pricing for the use of the power levels on the system
performance.
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1. INTRODUCTION

Interest has been growing in recent years in studying competition aspects of networking
in general, access to a common medium in particular, within the frame of non-cooperative
game theory, see e.g. the survey paper [1]. In this paper we focus on the ALOHA access
scheme [2].

Several previous papers have already studied ALOHA or slotted ALOHA in a non-
cooperative context. The papers [3–7] have studied ALOHA for a non-cooperative choice
of transmission probabilities. Several papers study slotted ALOHA with power diversities
in the context of the cooperative formulation [8–10]. In [11] the authors have studied
the performance of slotted ALOHA in a non-cooperative context, modeled as a game, in
which both retransmission probabilities as well as power levels are controlled. A Markov
chain formulation has been obtained, whose numerical solutions enable to study the sys-
tem performance. In the current paper, in contrast, we propose an alternative simpler
modeling approach which allows us to obtain explicit analytical expressions for the per-
formance measures. This allows us then to compute analytically the solutions for various
non-cooperative optimization criteria.



We study in this paper two equilibria concepts: the Nash equilibria and the Evolution-
ary Stable Strategies (ESS). ESS have been introduced in the context of mathematical
biology in order to describe and to predict properties of large populations whose evolu-
tion depends on many local interactions, each involving a finite number of individuals.
An ESS is characterized by a robustness property (that need not be satisfied by a Nash
equilibrium): under an ESS, the populations becomes immune to the proliferations of
mutations. In our context, when using ESS, not only is there no incentive to deviate for
any single user (which is the definition of a Nash equilibrium), but also a whole (small)
fraction of users cannot benefit by deviating.

ESS have first been defined in 1972 by Maynard Smith in [12]. In 1982, Smith’s seminal
text Evolution and the Theory of Games [13] appeared. Although ESS have been defined
in the context of biological systems, it is highly relevant to engineering as well (see [14]).
In particular, in the context of competition in the access to a common medium, we can
expect that a technology that provides better performance will gain more market shares
on the expense of less performant technologies. To the best of our knowledge, our paper
is the first to apply evolutionary games to study non-cooperative behavior in wireless
networks.

In section 2, we present the model. In section 3, we compute performance measures
for this model, as well as consider some optimization issues in a cooperative setting. In
section 4, we study the non-cooperative setting and exhibit Nash equilibria. In section
5, we introduce the concept of Evolutionary Stable Strategies. Finally, we present some
numerical results in section 6 and draw our conclusions.

2. THE MODEL

We consider an infinite population of mobile terminals. We use a model similar to [15]
for unslotted ALOHA where the global arrival of new packets from all mobiles follows
a Poisson process with intensity λ. The time required to transmit a packet is one unit.
If a packet is transmitted at time t, then any other transmission during the so-called
vulnerable period [t− 1, t + 1] will cause a collision.

We assume that for each packet, its source can choose the transmitted power among
two levels. All packets of the lower power level involved in a collision are assumed to be
lost and will have to be retransmitted later. In addition, if more than one packet of the
higher power level is involved in a collision then all packets are lost. The power differen-
tiation thus allows one packet of the higher power level to be successfully transmitted in
collisions that do not involve other packets of the higher power level. This is the capture
phenomenon (see e.g. [16,9]).

In this paper we study the choice of power levels. A strategy for a mobile corresponds
to the choice of a power level. This can be a deterministic choice or a randomized one.
We assume that the power level choice for a retransmitted packet is the same as the power
level at which it was transmitted the first time. Thus, if the whole population uses the
same strategy q for transmissions (meaning that the higher power level is chosen with
probability q, and the lower with probability q̄ = 1− q) then the rate of arrival of packets
that will be transmitted with higher power level is given by λq.

We consider a non-cooperative approach in which each mobile determines its power



level so as to maximize its payoff, which has two components:

(i) Psucc(p, q), which is the success probability when it chooses the higher power level
(level 1) with probability p and the lower one (level 2) with probability p̄ = 1 − p,
given that all other mobiles choose the higher power level with probability q and
the lower one with probability q̄ = 1−q (we shall keep using q below as the strategy
of other mobiles).

(ii) π(p), which represents the cost of a packet transmission when choosing the higher
power level with probability p. π(p) can be linear: if a is the cost for the higher
power level and b (b < a) for the lower one then we have π(p) = ap + bp̄. In this
case π(p) can represent in particular the expected transmission power. π(p) can also
be chosen as an arbitrary function π2(p) representing the pricing paid by the users.
In this case, π2(p) is generally assumed to be strictly convex and increasing.

We shall consider the following payoff function, given as the ratio between the packet
success probability and expected consumed power: Jr(p, q) = Psucc(p,q)

π(p)
. This type of payoff

can represent in particular the power efficiency, i.e., the expected number of packets that
can be transmitted per a unit power transmitted, see e.g. [17].

Using the approach of [15], we assume that the point process describing packets that
are either transmitted with power level i or retransmitted at a power level i (i = 1, 2) is
a Poisson process with intensity gi = gi(λ, q) (it depends on the arrival process of packets
as well as on the fraction of packets sent with each power level).

3. COMPUTING THE PERFORMANCE MEASURES

3.1. Retransmission rates
Remark 3.1 In the sequel, we shall need the following result. Recall that if z ≥ − exp(−1),
x = LambertW(z) is the root greater than or equal to −1 of the equation z = x exp(x).
This implies that

exp(LambertW(z)) =
z

LambertW(z)
. (1)

Theorem 3.1 (i) Assuming that λq ≤ 1
2
exp(−1), we have

g1(λ, q) = −1

2
LambertW(−2λq). (2)

(ii) Assume λq ≤ 1
2
exp(−1) and

(
if q ≤ 1

1+exp(−1)
, then λq̄ exp

(
exp(−1) q

q̄

)
≤ 1

2
exp(−1)

)
.

Then

g2(λ, q) = −1

2
LambertW

(−2q̄g1

q

)
= −1

2
LambertW

(
q̄

q
LambertW(−2λq)

)
. (3)

(iii) Under the same conditions, we have

Psucc(p, q) = p exp(−2g1) + p̄ exp(−2(g1 + g2)) = λ

(
pq

g1

+
p̄q̄

g2

)
. (4)



(iv) If the conditions on (λ, q) are not met, then there is no possible steady state.

Proof: The success probability of a higher power level (re)transmission is given by
exp(−2g1). Thus the rate of departure of type 1 packets (i.e., the rate of successful
packet transmissions and retransmissions of higher power level) is given by g1 exp(−2g1).

Since at steady state, λq, the rate of arrival of type 1 packets equals to the rate of
departure of type 1 packets, we have

λq = g1 exp(−2g1). (5)

This equation has a solution if 2λq ≤ exp(−1), thus we obtain (2). It follows from (2)
that g1(λ, 0) = 0 and g1(λ, 1) = −1

2
LambertW(−2λ).

The success probability for type 2 packets is given by exp (−2[g1 + g2]). Thus the rate
of departure of type 2 packets is given by g2 exp (−2[g1 + g2]). Hence at steady state:

λq̄ = g2 exp (−2[g1 + g2]) (6)

Using (5), we can write exp(−2g1) =
λq

g1

, and substituting in equation (6), we obtain

−2q̄g1

q
= −2g2 exp(−2g2).

This equation has a solution if 2q̄g1

q
≤ exp(−1). Since g1 ≤ 1

2
, this is always verified if

q ≥ 1
1+exp(−1)

. If q ≤ 1
1+exp(−1)

, this condition becomes LambertW(−2λq) ≥ exp(−1) q
q̄
,

and since the function x 7→ x exp(x) is increasing for x ≥ −1, we can apply it to both
sides of the inequality and get (3). It follows from (6) that g2(λ, 1) = 0 and g2(λ, 0) =
−1

2
LambertW(−2λ).

As (6) implies exp(−2[g1 + g2]) =
λq̄

g2

, we obtain the global success probability (4).

We observe that Psucc(p, q) is a linear function in p:

Psucc(p, q) = λp

(
q

g1

− q̄

g2

)
+

λq̄

g2

The coefficient multiplicating p is zero for q = 1 and strictly positive otherwise. More
specifically, when q = 1, we have exp(−2g1(λ, 1)) = − 2λ

LambertW(−2λ)
and g2(λ, 1) = 0, so

that

Psucc(p, 1) = − 2λ

LambertW(−2λ)
(7)

When q = 0, we have g1(λ, 0) = 0 and exp(−2g2(λ, 0)) = − 2λ
LambertW(−2λ)

, so that

Psucc(p, 0) = p− p̄
2λ

LambertW(−2λ)
(8)



3.2. Optimization issues
We first seek to find the maximum throughput that can be achieved (through the choice

of λ and q). (5) together with (6) imply that the global throughput of the system is

Θ = g1 exp(−2g1) + g2 exp(−2[g1 + g2]) (9)

To obtain g2 that gives the maximum throughput for a fixed g1, we differentiate (9)
with respect to g2 and equate to zero. This gives g∗2 = 1

2
. g∗2 does not depend on g1

and the optimization of Θ corresponds to the optimization of the single-variable function
g1 exp(−2g1) + 1

2
exp(−2g1 − 1). Therefore, g∗1 = 1

2
(1− exp(−1)), and

Θ∗ =
1

2
exp (exp(−1)− 1) (10)

These values are obtained for λ = Θ∗ = 1
2
exp (exp(−1)− 1) and q = 1 − exp(−1),

which satisfy the conditions of Theorem 3.1. We observe that this throughput is higher
(by a factor exp(exp(−1))) than the maximum stable throughput with a single power
level, which is equal to 1

2
exp(−1) for unslotted ALOHA. Such optimal performance can

usually be obtained only in a cooperative setting, for example when a regulator enforces
a common policy for all mobiles.

4. NASH EQUILIBRIUM

4.1. Power Efficiency case
The payoff function for a mobile using strategy p while the population uses strategy q

is given by

Jr(p, q) =
Psucc(p, q)

π(p)
=

λ
[(

q
g1
− q̄

g2

)
p + q̄

g2

]

(a− b)p + b
=

λ
(

q
g1
− q̄

g2

)

a− b

[
1 +

q̄g1

qg2−q̄g1
− b

a−b

p + b
a−b

]
(11)

We begin by checking whether the boundary cases q = 1 and q = 0 are Nash equilibria.
When q = 1, we obtain from (7)

Jr(p, 1) =
− 2λ

LambertW(−2λ)

(a− b)p + b
(12)

Jr(p, 1) is strictly decreasing over p ∈ [0, 1]. Thus p = 0 optimizes Jr(p, 1), so that q = 1
is not a Nash equilibrium.

When q = 0, we obtain from (8)

Jr(p, 0) =
p− p̄ 2λ

LambertW(−2λ)

(a− b)p + b
(13)

As

∂Jr

∂p
(p, 0) =

b + a 2λ
LambertW(−2λ)

((a− b)p + b)2
(14)

we conclude the following:



• If − 2λ
LambertW(−2λ)

≥ b
a

(i.e. λ ≤ − b
2a

ln b
a
) then Jr(p, 0) is non-increasing over p ∈

[0, 1]. Therefore q = 0 is a Nash equilibrium.

• If − 2λ
LambertW(−2λ)

< b
a

(i.e. λ > − b
2a

ln b
a
) then Jr(p, 0) is strictly increasing over

p ∈ [0, 1]. Thus q = 0 is not a Nash equilibrium.

Other equilibria: we now consider q ∈ (0, 1). (11) implies the following:

Theorem 4.1 Jr(p, q) does not depend on p if q̄g1(a− b) = (qg2− q̄g1)b. If b
a
≥ exp(−1),

there are three solutions to this equation, q = 0, q = 1, and

q∗ = 1−
b
a
ln

(
b
a

)

LambertW
(
−2λ

(
b
a

)b/a
)

When q∗ ∈ (0, 1) (which is not necessarily the case), q∗ is a Nash equilibrium.

Note that if we allow the parameters b
a
∈ [exp(−1), 1) and λ ∈ (0, 1

2
exp(−1)) to fluc-

tuate independently, then it is rather straightforward that the expression of q∗ can take
any value in (−∞, 1). However, we observe that for λ = − b

2a
ln b

a
, q∗ = 0, which implies

that if λ > − b
2a

ln b
a

then q∗ ∈ (0, 1), and if λ ≤ − b
2a

ln b
a

then q∗ ∈ (−∞, 0].
To find other possible equilibria, we compute

∂Jr

∂p
(p, q) = λ

qg2b− q̄g1a

g1g2 ((a− b) p + b)2 (15)

The solutions to ∂Jr

∂p
(p, q) = 0 reduce to the case studied in Theorem 4.1.

4.2. Pricing case
When the cost function π2(p) is strictly convex, and we consider the payoff function

Jr(p, q) =
Psucc(p, q)

π2(p)
=

λ
(

pq
g1

+ p̄q̄
g2

)

π2(p)
,

non-trivial potential Nash equilibria are determined by the following implicit equation:

q∗ = 1− r(q∗) ln(r(q∗))
LambertW (−2λ(r(q∗))r(q∗))

where r(p) =

π2(p)
π2
′(p)

− p

π2(p)
π2
′(p)

− p + 1
.

5. EVOLUTIONARY STABLE STRATEGY

5.1. Background and definitions
In the biological context, the amount of reward for an individual is related to its repro-

duction capability. A higher reward to some behavior (which can represent more food or
more chances to mate) implies a higher growth rate of individuals that adopt it.

More precisely, assume that at a given time, a population uses one (possibly mixed)
strategy q∗ (this could be obtained either by a fraction q∗ of the population playing
one strategy and the remainder q̄∗ playing the other, or by each individual randomizing



between the strategies.) Suppose a small fraction (identified as mutations) adopts another
distribution p over the two strategies. If for all p 6= q∗,

J(q∗, q∗) > J(p, q∗) (16)

then the fraction of the mutations in the population will tend to decrease (as it has a
lower reward, meaning a lower growth rate). q∗ is then immune to mutations.

If there are n pure strategies (n = 2 in our case) denoted by s1, . . . , sn, then a sufficient
condition for (16) is that

J(q∗, q∗) > J(si, q
∗), si 6= q∗, i = 1, . . . , n. (17)

In the special case that the following holds,

J(q∗, q∗) = J(p, q∗) and J(q∗, p) > J(p, p) ∀p 6= q∗, (18)

a population using q∗ is “weakly” immune against a mutation using p since if the mutant’s
population grows, then we shall frequently have individuals with strategy q∗ competing
with mutants; in such cases, the condition J(q∗, p) > J(p, p) ensures that the growth rate
of the original population exceeds that of the mutations. q∗ that satisfies (16) or (18) is
called an Evolutionary Stable Strategy (ESS).

5.2. Computing ESS: power efficiency case
Evolutionary Stable Strategies constitute a subset of the Nash equilibria, therefore we

only have to check whether the Nash equilibria satisfy either condition (16) or (18).
Assume that λ < − b

2a
ln b

a
then the Nash equilibrium q∗ = 0 (see (14)) is also an ESS,

since (14) implies that for all p 6= 0, condition (16) holds.
Assume that b

a
≥ exp(−1) and λ > − b

2a
ln b

a
then the Nash equilibrium in Theorem

4.1 exists, and is q∗ ∈ (0, 1). We note that the utility of a player does not depend on
his choice of p: Jr(q

∗, q∗) = Jr(p, q
∗), ∀p. Thus condition (16) does not hold. To check

whether condition (18) holds, we recall (15):

∂Jr

∂q
(q, p) = λ

pg2b− p̄g1a

g1g2 ((a− b) q + b)2

If p < q∗, then ∂Jr

∂q
(q, p) > 0 and if p > q∗, then ∂Jr

∂q
(q, p) < 0, which means that for all

p 6= q∗, condition (18) holds. Therefore q∗ is an ESS.
Finally, for λ = − b

2a
ln b

a
, (16) does not hold, but (18) does and q∗ = 0 is an ESS.

Therefore, all Nash equilibria previously exhibited are ESS as well. As stated in the
previous subsection, this fact has the following interpretation. All these equilibria are
robust against small perturbations either in the “immune” or the “weakly immune” sense.

6. NUMERICAL RESULTS

Figures 1 and 2 show curves delimiting the atteignable regions of (λ, q) in steady state.
As a means of comparison, the bound on the throughput of an ALOHA scheme with a
single power level has been plotted. This bound is equal to 1

2
exp(−1). The atteignable
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Figure 1. Atteignable throughput, Nash
equilibria points with power efficiency pay-
off function, b/a = exp(−1).
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Figure 2. Atteignable throughput, Nash
equilibria points with power efficiency pay-
off function, b/a = exp(−0.5).

region with one power level lies on the left of the dashdotted straight line. For two
power levels, (λ, q) must satisfy the two conditions of Theorem 3.1 and the bound on the
obtainable throughput is always larger than 1

2
exp(−1). In particular, the point defined

by equation (10) appears as the rightmost point on the dashed curve in both figures. The
atteignable region using two power levels lies on the left of the dashed curve. It is to be
noted that these theoretical results can be applied to any ratio b/a < 1 of the two powers;
however, if b/a is too close to 1, then the hypothesis of capture phenomenon becomes
questionable.

In the case of a linear cost function, an interesting result occurs when b/a = exp(−1).
For this particular value, the Nash equilibria curve will merge with the bound curve
up to the point defined by equation (10), as seen in figure 1. It can be shown using
the theoretical formulas, that this is the only case in which the optimum throughput
represents a Nash equilibrium. For b/a > exp(−1), the Nash equilibria (and ESS) points
are always on the left of the bound. However, there still exists Nash equilibria points up
to a certain throughput greater than 1

2
exp(−1). In addition, for all b/a, the highest λ

such that there exists a corresponding Nash equilibrium which lies on the bound curve,
as can be seen on figure 2.

The case of an exponential pricing is shown in figure 3. The curve obtained for the
Nash equilibria shows a similar behaviour as the case of a linear payoff.

In figure 4, we show the curves of the payoff function at the Nash equilibrium for some
values of the parameter b/a, as well as for an exponential pricing, with regard to the rate of
arrival λ (which is also the throughput at steady state). For the linear cost function, two
distinct decreasing regions can be distinguished in each case, the first one corresponding
to the trivial Nash equilibria and the second one to the equilibria of Theorem 4.1. For the
exponential pricing, the curve is plotted only for the non-trivial Nash equilibria we have
found. These curves show that even though the throughput with a lower value of b/a is
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π2(p) = exp(p).
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Figure 4. Values of the payoff function,
power efficiency b/a = exp(−1) and b/a =
exp(−0.5), and exponential pricing.

higher, the payoff for a mobile is lower.

7. CONCLUSION

We have introduced a variant of ALOHA involving two transmission power levels. Ex-
plicit expressions for the optimal throughput as well as for Nash equilibria points associ-
ated with the power level choice have been derived. The concept of Evolutionary Stable
Strategies has been introduced, and the Nash equilibria points have been shown to be
ESS points. The throughput obtained in a Nash equilibrium compared to the optimum
throughput depends essentially on the ratio of the powers, in the case of a linear cost func-
tion. These results provide an insight on the potential gains when using several power
levels in wireless communications.
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