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Abstract

PageRank is one of the principle criteria according to which Google
ranks Web pages. PageRank can be interpreted as a frequency of vis-
iting a Web page by a random surfer and thus it reflects the popularity
of a Web page. Google computes the PageRank using the power itera-
tion method which requires about one week of intensive computations.
In the present work we propose and analyze Monte Carlo type meth-
ods for the PageRank computation. There are several advantages of
the probabilistic Monte Carlo methods over the deterministic power
iteration method: Monte Carlo methods provide good estimation of
the PageRank for relatively important pages already after one itera-
tion; Monte Carlo methods have natural parallel implementation; and
finally, Monte Carlo methods allow to perform continuous update of
the PageRank as the structure of the Web changes.

1 Introduction

Surfers on the Internet frequently use search engines to find pages sat-
isfying their query. However, there are typically hundreds or thousands of
relevant pages available on the Web. Thus, listing them in a proper order
is a crucial and non-trivial task. The original idea of Google presented in
[5] is to list pages according to their PageRank which reflects popularity of
a page. The PageRank is defined in the following way. Denote by n the
total number of pages on the Web and define the n× n hyperlink matrix P
as follows. Suppose that page i has k > 0 outgoing links. Then pij = 1/k
if j is one of the outgoing links and pij = 0 otherwise. If a page does not
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have outgoing links, the probability is spread among all pages of the Web,
namely, pij = 1/n. In order to make the hyperlink graph connected, it is
assumed that a random surfer goes with some probability to an arbitrary
Web page with the uniform distribution. Thus, the PageRank is defined as
a stationary distribution of a Markov chain whose state space is the set of
all Web pages, and the transition matrix is

P̃ = cP + (1 − c)(1/n)E, (1)

where E is a matrix whose all entries are equal to one and c ∈ (0, 1) is
the probability of not jumping to a random page (it is chosen by Google to
be 0.85). The Google matrix P̃ is stochastic, aperiodic, and irreducible, so
there exists a unique row vector π such that

πP̃ = π, π1 = 1, (2)

where 1 is a column vector of ones. The row vector π satisfying (2) is called
a PageRank vector, or simply PageRank. If a surfer follows a hyperlink
with probability c and jumps to a random page with probability 1 − c,
then πi can be interpreted as a stationary probability that the surfer is at
page i. The PageRank also allows several different interpretations through
expectations. For instance, in [2], the PageRank is seen as the average
number of surfers navigating a given page at a given time instant provided
that at each time instant t ≥ 0, a surfer can cease from navigating with
probability (1 − c) and on average (1 − c) surfers start navigating from
each page. This interpretation is helpful for deeper understanding of the
PageRank but it is hard to use in practice because it involves the time
component. The interpretation via absorbing Markov chains that we explore
in the present paper, is easier and it naturally leads to simple simulation
algorithms for the computation of PageRank. The end-point of a random
walk that starts from a random page and can be terminated at each step with
probability 1 − c, appears to be a sample from the distribution π [4, 7, 9].
Thus, after repeating the process many times, the estimate of πj for j =
1, . . . , n, is determined as the number of times when a run terminated at j,
divided by the total number of runs.

In order to keep up with constant modifications of the Web structure,
Google updates its PageRank at least once per month. According to publicly
available information Google still uses simple Power Iteration (PI) method
to compute the PageRank. Starting from the initial approximation as the
uniform distribution vector π(0) = (1/n)1T , the k-th approximation vector
is calculated by

π(k) = π(k−1)P̃ , k ≥ 1. (3)
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The method stops when the required precision ε is achieved. The number of
flops needed for the method to converge is of the order log ε

log c nnz(P ), where
nnz(P ) is the number of non-zero elements of the matrix P [13]. We note
that the relative error decreases uniformly for all pages. Several proposals
[8, 11, 12, 14] (see also an extensive survey paper [13]) have recently been
put forward to accelerate the power iteration algorithm.

In contrast, here we study Monte Carlo (MC) type methods for the
PageRank computation. To our best knowledge only in two works [3, 7]
the Monte Carlo methods are applied to the PageRank computation. The
principle advantages of the probabilistic Monte Carlo type methods over the
deterministic methods are: the PageRank of important pages is determined
with high accuracy already after the first iteration; MC methods have nat-
ural parallel implementation; and MC methods allow continuous update of
the PageRank as the structure of the Web changes.

The structure and the contributions of the paper are as follows. In Sec-
tion 2, we describe different Monte Carlo algorithms. In particular, we pro-
pose an algorithm that takes into account not only the information about
the last visited page (as in [3, 7]), but about all visited pages during the
simulation run. In Section 3, we analyze and compare the convergence of
Monte Carlo algorithms in terms of confidence intervals. We show that the
PageRank of relatively important pages can be determined with high accu-
racy even after the first iteration. In Section 4, we show that experiments
with real data from the Web confirm our theoretical analysis. Finally, we
summarize the results of the present work in Section 5. Technical proofs we
put in the Appendix.

2 Monte Carlo algorithms

Monte Carlo algorithms are motivated by the following convenient for-
mula that follows directly from the definition of the PageRank:

π =
1 − c

n
1T [I − cP ]−1 =

1 − c

n
1T

∞
∑

k=0

ckP k. (4)

This formula suggests a simple way of sampling from the PageRank distribu-
tion [4, 7, 9]. Consider a random walk {Xt}t≥0 that starts from a randomly
chosen page. Assume that at each step, the random walk terminates with
probability (1 − c), and makes a transition according to the matrix P with
probability c. It follows from (4) that the end-point of such random walk has

3



a distribution π. Hence, one can suggest the following algorithm employed
in [3].

Algorithm 1 MC end-point with random start. Simulate N runs

of the random walk {Xt}t≥0 initiated at a randomly chosen page. Evaluate

πj as a fraction of N random walks which end at page j = 1, . . . , n.

Let π̂j,N be the estimator of πj obtained by Algorithm 1. It is straight-
forward that

E(π̂j,N ) = πj, V ar(π̂j,N) = N−1πj(1 − πj).

A rough estimate V ar(π̂j,N) < 1/(4N) given in [3] results in a conclusion
that the number of samples (random walks) needed to achieve a good rel-
ative accuracy with high probability, is of the order O(n2). In the ensu-
ing Sections 3 and 4 we will show that this complexity evaluation is quite
pessimistic. The number of required samples turns out to be linear in n.
Moreover, a reasonable evaluation of the PageRank for popular pages can
be obtain even with N = n, that is, one needs only as little as one run per
page!

In order to improve the estimator π̂, one can think of various ways of
variance reduction. For instance, denoting Z = [I − cP ]−1 and writing πj

in (4) as

πj =
1 − c

n

n
∑

i=1

zij, j = 1, . . . , n,

we can view πj as a given number (1/n) multiplied by a sum of conditional
probabilities pij = (1 − c)zij that the random walk ends at j given that it
started at i. Since n is known, an unnecessary randomness in experiments
can be avoided by taking N = mn and initiating the random walk exactly
m times from each page in a cyclic fashion, rather than jumping N times to
a random page. This results in the following algorithm whose version was
used in [7] for computing personalized PageRank.

Algorithm 2 MC end-point with cyclic start. Simulate N = mn
runs of the random walk {Xt}t≥0 initiated at each page exactly m times.

Evaluate πj as a fraction of N random walks which end at page j = 1, . . . , n.

Let p̂ij be a fraction of m random walks initiated at i, that ended at j.
Then the estimator for πj suggested by Algorithm 2 can be expressed as

ˆ̂πj =
1

n

∑

i=1

p̂ij .
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For this estimator, we have

E(ˆ̂πj) = πj,

V ar(ˆ̂πj) = (N)−1[πj − n−1
n
∑

i=1

p2
ij] < V ar(π̂j).

Besides the variance reduction, the estimator ˆ̂πi has important advantages
in implementation because picking a page at random from a huge database
is not a trivial problem [10]. This difficulty is completely avoided if the pages
are visited in a cyclic fashion1. As the only advantage of the Monte Carlo
with random start, note that it does not require the number of samples N
to be a multiple of n.

Another and probably more promising way of reducing the variance is to
look at formula (4) from yet another angle. Note that for all i, j = 1, . . . , n,
the element zij of the matrix

Z = [I − cP ]−1 =

∞
∑

k=0

ckP k (5)

can be regarded as the average number of times that the random walk
{Xt}t≥0 visits a page j given that this random walk started at page i. Thus,
we can propose an estimator based on a complete path of the random walk
{Xt}t≥0 instead of taking into account only its end-point. The complete
path version of the Monte Carlo method can be described as follows.

Algorithm 3 MC complete path. Simulate the random walk {Xt}t≥0

exactly m times from each page. For any page i, evaluate πj as the total

number of visits to page j multiplied by (1 − c)/(n ∗ m).

The Algorithm 3 can be further improved by getting rid of artifacts in
the matrix P related to pages without outgoing links (so-called dangling
nodes). When a random walk reaches a dangling node, it jumps with the
uniform probability to an arbitrary page. Clearly, it is more efficient just to
terminate the random walk once it reaches a dangling node. Thus, we aim
to rewrite (4) in terms of the original hyperlink matrix Q defined as

Qij =







1/k, if i has k > 0 outgoing links,
and j is one of the links;

0, otherwise.

1When referring to MC algorithms with cyclic start, we shall use the words “cycle”

and “iteration” interchangeably.

5



Denote by I0 a set of dangling pages and by I1 = {1, . . . , n}\I0 a set of
pages which have at least one outgoing link. For all j = 1, . . . , n, it follows
from (1) and (2) that

πj = c
n
∑

i=1

Pijπi +
(1 − c)

n

n
∑

i=1

πi = c
n
∑

i=1

Qijπi + γ, (6)

where γ is the same for each j:

γ =
c

n

∑

i∈I0

πi +
(1 − c)

n
<

1

n
. (7)

Now, we rewrite equation (6) in the matrix form

π = πcQ + γ1T ,

which leads to the new expression for π:

π = γ1T [I − cQ]−1. (8)

Note that the above equation is in accordance with the original definition
of PageRank presented by Brin and Page [5]. The definition via the matrix
P appeared later in order to develop the Markov chain formulation of the
PageRank problem. The one-to-one correspondence between (4) and (8)
was noticed and proved in [2] but we find the proof presented above more
insightful in our context.

Consider now a random walk {Yt}t≥0 which follows hyperlinks exactly as
{Xt}t≥0 except the transitions are governed by the matrix Q instead of the
matrix P . Thus, the random walk {Yt}t≥0 can be terminated at each step
either with probability (1 − c) or when it reaches a dangling node. For all
i, j = 1, . . . , n, the element wij of the matrix W = [I − cQ]−1, is the average
number of visits of {Yt}t≥0 to page j given that the random walk started at
page i. Denote

w·j =

n
∑

i=1

wij.

Since the coordinates of π in (8) sum up to one, we have

γ =





n
∑

i,j=1

wij





−1

=





n
∑

j=1

w·j





−1

(9)
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and

πj = w·j





n
∑

j=1

w·j





−1

. (10)

This calls for another version of the complete path method.

Algorithm 4 MC complete path stopping at dangling nodes.

Simulate the random walk {Yt}t≥0 starting exactly m times from each page.

For any page j, evaluate πj as the total number of visits to page j divided

by the total number of visited pages.

Let Wij be a random variable distributed as a number of visits to page
j = 1, . . . , n by the random walk {Yt}t≥0 given that the random walk initi-
ated at state i = 1, . . . , n. Formally,

P(Wij = x) = P

([

∞
∑

t=0

1{Yt=j}

]

= x|Y0 = i

)

, x = 0, 1, . . . ,

where 1{·} is the indicator function. Let W
(l)
ij , l ≥ 1, be independent random

variables distributed as Wij. Then the estimator produced by Algorithm 4
can be written as

π̄j =

[

m
∑

l=1

n
∑

i=1

W
(l)
ij

]





m
∑

l=1

n
∑

i,j=1

W
(l)
ij





−1

. (11)

In the next section we present the analysis of this estimator.
We note that the complete path versions of the Monte Carlo methods

also admit a random start. The corresponding algorithm is as follows.

Algorithm 5 MC complete path with random start. Simulate N
samples of the random walk {Yt}t≥0 started at a random page. For any page

j, evaluate πj as the total number of visits to page i divided by the total

number of visited pages.

One can show however that Algorithm 4 provides an estimator with a
smaller variance than Algorithm 5. Indeed, let WUj be the number of visits
to page j from a randomly chosen page U ∈ {1, . . . , n}. Then, we have

V ar(WUj) =
1

n

n
∑

i=1

V ar(Wij) +
1

n

n
∑

i=1

E
2(Wij)

−
[

1

n

n
∑

i=1

E(Wij)

]2

>
1

n

n
∑

i=1

V ar(Wij).
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Now note that in n simulation runs, Algorithm 4 generates one sample
of the sum

∑n
i=1 Wij, whereas Algorithm 5 generates n samples of WUj.

Hence, Algorithm 4 provides random variables with smaller variance in both
numerator and denominator of (11).

3 Convergence Analysis

From the preliminary analysis of the previous section, we can already
conclude that MC algorithms with cyclic start are preferable to the analo-
gous MC algorithms with random start. In the present section we thoroughly
analyze and compare MC complete path stopping at dangling nodes with
MC end-point. We show that under natural conditions MC complete path
stopping at dangling nodes outperforms MC end-point.

We start by studying the properties of Wij’s. Denote by qij the prob-
ability that starting from page i, the random walk {Yt}t≥0 reaches page
j:

qij = P





⋃

t≥1

{Yt = j}|Y0 = i



 , i, j = 1, . . . , n.

Note that in this definition, qjj < 1 is a probability to return to state j if
the process started at j. It follows from the strong Markov property that
Wjj has a geometric distribution with parameter 1 − qjj ≥ 1 − c:

P(Wjj = x) = qx−1
jj (1 − qjj), x = 1, 2, . . . ,

which implies

E(Wjj) =
1

1 − qjj
; V ar(Wjj) =

qjj

(1 − qjj)2
;

Further, applying again the strong Markov property, one can show that for
all i, j = 1, . . . , n, Wij has a shifted geometric distribution:

P(Wij = x) =

{

1 − qij , x = 0,
qijP(Wjj = x), x = 1, 2, . . . .

Consequently,

E(Wij) = wij = qijE(Wjj) =
qij

1 − qjj
(12)

and

V ar(Wij) =
1 + qjj

1 − qjj
wij − w2

ij. (13)
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Now, define

W·j =

n
∑

i=1

Wij, j = 1, . . . , n, W =

n
∑

j=1

W·j.

Assuming that all Wij ’s are independent, we immediately obtain

E(W·j) =

n
∑

i=1

wij = w·i,

V ar(W·j) =
1 + qjj

1 − qjj
w·j −

n
∑

i=1

w2
ij <

1 + qjj

1 − qjj
w·j,

E(W ) =

n
∑

j=1

w·j = γ−1.

For i, j = 1, . . . , n, let the empirical mean

W̄ij =
1

m

m
∑

l=1

W
(l)
ij

be the estimator of wij , and view

W̄·j =
∑

i=1

W̄ij , j = 1, . . . , n,

and
W̄ =

∑

j=1

W̄·j

as estimators of w·j and γ−1, respectively. The estimator (11) can be then
written as

π̄j = W̄·jW̄
−1. (14)

Since the second multiplier in (14) is the same for all j = 1, . . . , n, the
estimator π̄j is completely determined by W̄·j. The following theorem states
that the relative errors of π̄ and W̄·j are similar.

Theorem 1 Given the event that the estimator W̄·j satisfies

|W̄·j − w·j| ≤ εw·j , (15)

the event

|π̄j − πj| ≤ εn,βπj
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occurs with probability at least 1 − β for any β > 0 and εn,β satisfying

|ε − εn,β| <
C(β)(1 + ε)√

nm
.

The factor C(β) can be approximated as

C(β) ≈ x1−β/2

√

n − n0

n
(1 + c3)

c

1 − c
,

where x1−β/2 is a (1−β/2)-quantile of the standard normal distribution and

n0 is the number of dangling nodes.

Proof. See the Appendix.
Theorem 1 has two important consequences. First, it states that the

estimator π̄j converges to πj in probability when m goes to infinity. Thus,
the estimator π̄j is consistent. Second, Theorem 1 states that the error in the
estimate of πj originates mainly from estimating w·j. The additional relative

error caused by estimating γ as
[
∑

W̄·j

]−1
, is of the order 1/

√
mn with

arbitrarily high probability, and thus this error can essentially be neglected.
It follows from the above analysis that the quality of the estimator π̄j

as well as the complexity of the algorithm can be evaluated by the estima-
tor W̄·j. We proceed by analyzing the confidence intervals. Consider the
confidence interval for W̄·j defined as

P(|W̄·j − w·j| < εw·j) ≥ 1 − α. (16)

From (12) and (13), we have

E(W̄·j) = w·j, V ar(W̄·j) ≤
1

m

1 + qjj

1 − qjj
w·j.

Since W̄·j is a sum of a large number of terms, the random variable [W̄·j −
w·j ]/

√

V ar(W̄·j) has approximally a standard normal distribution. Thus,

from (16) we deduce

εw·j/
√

V ar(W̄·j) ≥ x1−α/2,

which results in

m ≥ 1 + qjj

1 − qjj

x2
1−α/2

ε2w·j
.
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Now applying w·j = γ−1πj , we get

m ≈ 1 + qjj

1 − qjj

γx2
1−α/2

ε2πj
. (17)

Note that πj ≥ γ for all j = 1, . . . , n. Thus, with a high probability, a couple
of hundreds iterations allows to evaluate the PageRank of all pages with
relative error at most 0.1. In practice, however, it is essential to evaluate
well the PageRank of important pages in a short time. We argue that a
typical user of a search engine does not check more than a dozen of first
answers to his/her query. Therefore, let us evaluate the relative error ε for
a given value of πj. Using (7), from (17) we derive

ε ≈ x1−α/2

√

1 + qjj

1 − qjj

√

1 − c + c
∑

i∈I0
πi

√
πj
√

mn
. (18)

Strikingly, it follows from (18) that the Monte Carlo method gives good
results for important pages in one iteration only, that is, when m = 1.
From the examples of PageRank values presented in [5], it follows that the
PageRank of popular pages is at least 104 times greater than the PageRank
of an average page. Since the PageRank value is bounded from below by
(1− c)/n, the formula (18) implies that if the important pages have PageR-
ank 104 times larger than the PageRank of the pages with the minimal
PageRank value, the Monte Carlo method achieves an error of about 1% for
the important pages already after the first iteration. In contrast, the power
iteration method takes into account only the weighted sum of the number
of incoming links after the first iteration.

Let us now compare the precision of the end-point version and the com-
plete path version of the Monte Carlo method. According to Algorithm 1,
the end-point version estimates πj simply as a fraction of N = mn random
walks that ended at page j. Using standard techniques for such estimate,
we construct a confidence interval

P(|π̂j,N − πj,N | < επj,N) = 1 − α.

Using again the standard normal distribution, we get

ε = x1−α/2

√

1 − πj√
πj
√

mn
. (19)

Forgetting for a moment about slight corrections caused by the trade-off be-
tween random and cyclic start, we see that the choice between the end-point
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version and the complete-path version essentially depends on two factors:
the total PageRank of dangling nodes and the probability of a cycle when a
random walk started from j returns back to j. If the Web graph has many
short cycles then the extra information from registering visits to every page
is obtained at cost of a high extra variability which leads to a worse pre-
cision. If total rank of dangling nodes is high, the random walk will often
reach dangling nodes and stop. This can have a negative impact on the com-
plete path algorithm. The above mentioned two phenomena, if present, can
make the difference between the end-point and the complete-path versions
negligible. The experiments of the next section on the real data however
indicate that the real Web structure is such that the complete path version
is more efficient than the end-point version.

We remark that if the results of the first iteration are not satisfactory, it is
hard to improve them by increasing m. After m iterations, the relative error
of the Monte Carlo method will reduce on average only by the factor 1/

√
m

whereas the error of the power iteration method decreases exponentially
with m. However, because of simplicity in implementation (in particular,
simplicity in parallel implementation), the Monte Carlo algorithms can be
still advantageous even if a high precision is required.

Let us also evaluate a magnitude of πj’s for which a desired relative error
ε is achieved. Rewriting (18), we get

πj ≈ x2
1−α/2

1 + qjj

1 − qjj

(1 − c + c
∑

i∈I0
πi)

ε2mn
. (20)

Finally, we would like to emphasize that the Monte Carlo algorithms
have natural parallel implementation and they allow to perform a contin-
uous update of the PageRank vector. Indeed, each available processor can
run an independent Monte Carlo simulation. Since the PageRank vector
changes significantly during one month, Google prefers to recompute the
PageRank vector starting from the uniform distribution rather than to use
the PageRank vector of the previous month as the initial approximation
[13]. Then, it takes about a week to compute a new PageRank vector. It is
possible to update the PageRank vector using linear algebra methods [14].
However, one needs first to separate new nodes and links from the old ones.
This is not necessary if one uses Monte Carlo algorithms. Specifically, we
suggest to run Monte Carlo algorithms continuously while the database is
updated with new data and hence to have an up-to-date estimation of the
PageRank for relatively important pages with high accuracy. Then, once
in a while one can run the power iteration method to have a good PageR-
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ank estimation for all pages. In particular, the continuous update should
eliminate the negative reaction of users to the so-called “Google dance” [15].

4 Experiments

For our numerical experiments we have taken the Web site of INRIA
Sophia Antipolis http://www-sop.inria.fr. It is a typical Web site with
about 50000 Web pages and 200000 hyperlinks. Since the Web has a fractal
structure [6], we expect that our dataset is enough representative. Accord-
ingly, datasets of similar sizes have been extensively used in experimental
studies of novel algorithms for PageRank computation [1, 13, 14]. To collect
the Web graph data, we construct our own Web crawler which works with
the Oracle database. The crawler consists of two parts: the first part is
realized based on Java and is responsible for downloading pages from the
Internet, parsing the pages and inserting their hyperlinks into the database;
the second part is realized with the help of the stored procedures written in
PL/SQL language and is responsible for the data management. The program
allows to run several crawlers in parallel to use efficiently the network and
computer resources. Since the multi-user access is already realized in Oracle
database management system, it is relatively easy to organize the infor-
mation collection by several crawlers and parallel implementation of Monte
Carlo algorithms. We have also implemented the power iteration method
and the following three Monte Carlo algorithms in PL/SQL language:

• MC complete path stopping in dangling nodes,
MC comp path dangl nodes, for short;

• MC end-point with cyclic start,
MC end-point cycl start, for short;

• MC complete path with random start,
MC comp path rand start, for short.

First, we performed a sufficient number of power iterations to obtain the
value of PageRank with 20 digits accuracy. We sorted the PageRank vector
in the decreasing order and plotted it in the loglog scale (see Figure 1). It is
interesting to observe that the PageRank vector follows very closely a power
law. One can also see in Figure 2 how well the power low approximates
the PageRank vector in linear scale starting from approximately the 100-
th largest element. Then, we have chosen four elements from the sorted
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PageRank vector:

π1 = 0.004093834,

π10 = 0.001035867,

π100 = 0.000546446,

π1000 = 0.000097785. (21)
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Fig. 1: Sorted PageRank, loglog scale
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Fig. 2: Sorted PageRank, linear scale

We have performed 10 iterations of the PI method and 10 iterations of the
three implemented MC algorithms. In Figures 3-6, we compare the results
of 10 iterations of PI method and MC complete path stopping in dangling
nodes method for the four chosen pages (21). Indeed, as predicted by formula
(18), already the first iteration of MC complete path stopping in dangling
nodes algorithm gives a small error for important Web pages. In fact, from
Figures 3-6 one can see that MC complete path stopping in dangling nodes
algorithm outperforms PI method even for the first 1000 most important
pages. In Figures 3-6, we also plotted 95% confidence intervals for the MC
method. As expected, there are some randomness in the convergence pattern
of the Monte Carlo method and some points might fall outside of confidence
intervals. However, as one can see from Figures 3-5, the PI method does
not converge monotonously for the first few iterations as well.

At first sight, it looks surprising that one iteration gives a relative error
of only 7% with 95% confidence for pages with high PageRank. On the
other hand, such result is to be expected. Roughly speaking, we use 5 ∗ 104

independent samples in order to estimate the probability π = 0.004. A
binomial random variable B with parameters n = 5 ∗ 104, p = 0.004 has
mean 200 and standard deviation 14.1, and thus, with a high probability, a
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Fig. 3: PI vs. MC: π1.
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Fig. 4: PI vs. MC: π100.
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Fig. 5: PI vs. MC: π10.
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Fig. 6: PI vs. MC: π1000.

relative error of a standard estimator π̃ = B/n will be less than 11%. The
additional gain that we get in (18) is due to regular visits to every page and
the usage of the complete path information.

Next, in Figures 7-10 we compare three versions of the Monte Carlo
method: MC complete path stopping in dangling nodes, MC end-point with
cyclic start, and MC complete path with random start. We plotted actual
relative error and the estimated 95% confidence intervals. It turns out that
on our dataset MC complete path stopping in dangling nodes performs the
best, followed by MC complete path with random start.

MC end-point with cyclic start has the worst performance. The better
performance of MC with cyclic start in respect to MC with random start was
expected from the preliminary analysis of Section 2. MC is not trapped in
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Fig. 7: MC algorithms: π1.
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Fig. 8: MC algorithms: π10.
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Fig. 9: MC algorithms: π100.
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Fig. 10: MC algorithms: π1000.

cycles in our instance of the Web graph and the total PageRank of dangling
nodes is relatively small

∑

i∈I0

πi = 0.23,

hence, we have

εcomp.path ≈
√

1 − c + c
∑

i∈I0

πi εend−point ≈ 0.59εend−point.

To check if the presence of cycles hinder the convergence of the Monte Carlo
methods, we took into account the intra-page hyperlinks. On the modified
graph the Monte Carlo methods have shown a very slow convergence. It is
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thus fortunate for MC methods that the original definition of the PageRank
excludes the intra-page hyperlinks.

5 Conclusions

We have considered several Monte Carlo algorithms. In particular, we
have proposed a new Monte Carlo algorithm that takes into account not
only the information about the last visited page, but about all visited pages
during the simulation run. We have shown that MC algorithms with cyclic
start outperform MC algorithms with random start. Our theoretical and
experimental results have demonstrated that the Monte Carlo algorithms
determine the PageRank of relatively important pages already after the
first iteration. Here is a sharp contrast with the power iteration method that
approximates the PageRank vector with the uniform relative error and takes
into account only the weighted sum of the number of incoming links after the
first iteration. The other advantages of MC algorithms are natural parallel
implementation and the possibility of the continuous PageRank update while
the crawler brings new data from the Web.

Appendix: The proof of Theorem 1

To prove Theorem 1 we need the following lemma.

Lemma 1 Let Wi· =
∑n

j=1 Wij be the length of the random walk {Yt}t≥0

initiated at page i = 1, . . . , n. Then for all dangling nodes i ∈ I0, it holds

Wi· ≡ 1, and for non-dangling nodes i ∈ I1,

E(Wi·) ≤
1

1 − c
, V ar(Wi·) ≤

c(1 + c3)

(1 − c)2
. (22)

Proof. The statement for dangling nodes is obvious. For non-dangling
nodes, (22) essentially follows from the distributional identity

Wi·
d
= min{X,Ni}, i = 1, . . . , n, (23)

where Ni is a number of transitions needed to reach a dangling node from
page i, and X has a geometric distribution with parameter 1− c. The mean
and variance of X are given by

E(X) =
1

1 − c
; V ar(X) =

c

(1 − c)2
.
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The upper bound for the expectation of Wi· follows now directly from (23).
For the variance, we write

V ar(Wi·) = E[V ar(Wi·|Ni)] + V ar[E(Wi·|Ni)].

Conditioning on events [Ni = k] and computing V ar(Wi|k) for k = 1, 2, . . .,
one can show that

E[V ar(Wi·|Ni)] < V ar(X).

Furthermore, we derive

E(Wi·|Ni) =

Ni
∑

k=1

P(X ≥ k) =

Ni
∑

k=1

ck =
c(1 − cNi)

1 − c
,

and thus the variance of E(Wi·|Ni) satisfies

V ar(E(Wi·|Ni)) = c2V ar(cNi)/(1 − c)2 ≤ c4/(1 − c)2,

because for non-dangling nodes, the random variable cNi takes values only
in the interval [0, c]. This completes the proof of the lemma. 2

We are now ready to prove Theorem 1.
Proof of Theorem 1. Using (9) and (10), we derive

π̄j − πj = W̄·jW̄
−1 − πj

= γ(W̄·j − w·j)(γW̄ )−1 +
(

(γW̄ )−1 − 1
)

πj.

Given the event (15), the last equation together with (9) and (10) yields

|π̄j − πj| ≤ επj +
∣

∣(γW̄ )−1 − 1
∣

∣ (1 + ε)πj . (24)

Let us now investigate the magnitude of the term (γW̄ )−1. First, note that
the random variables

W̄i· =

n
∑

j=1

W̄ij , i ∈ I1,

are independent because they are determined by simulation runs initiated
at different pages. Further, for a non-dangling node i, using Lemma 1, we
find

E(W̄i·) =
n
∑

j=1

wij ,

V ar(W̄i·) =
1

m
V ar(Wi·) ≤

1

m

c(1 + c3)

(1 − c)2
.
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Thus, W̄ equals the number of dangling nodes n0 plus the sum of n − n0

independent random variables Ŵi·, i ∈ I1. Since the number n − n0 is
obviously very large, W̄ is approximately normally distributed with mean
γ−1 and variance

V ar(W̄ ) =
∑

i∈I1

V ar(Ŵi·) ≤ (n − n0)
c(1 + c3)

m(1 − c)2
.

Hence, γW̄ is approximately normally distributed with mean 1 and variance

V ar(γW̄ ) ≤ γ2(n − n0)
c(1 + c3)

m(1 − c)2
<

n − n0

n2

c(1 + c3)

m(1 − c)2
, (25)

which is a value of the order (nm)−1. Now, let us consider a (1 − β)-
confidence interval defined as

P
(∣

∣(γW̄ )−1 − 1
∣

∣ < ε
)

> 1 − β (26)

for some small positive β and ε. If ε is small enough so that 1/(1− ε) ≈ 1+ ε
and 1/(1 + ε) ≈ 1 − ε, then the above probability approximately equals
P
(∣

∣γW̄ − 1
∣

∣ < ε
)

, and because of (25), the inequality (26) holds for all ε
satisfying

ε ≥ x1−β/2
c

1 − c

√

n − n0

n
(1 + c3)

1√
nm

. (27)

The right-hand side of (27) constitutes the additional relative error in es-
timating πj. For any β > 0, this additional error can be exceeded with
probability at most β. This completes the proof of the theorem. 2
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