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Iterative Learning Control (ILC) and Repetitive Control
(RC) are relatively new research methodologies for improving
the performance of systems that operate in a cyclic mode.
The general form of Iterative Learning Control can be given
as follows:

uk(t) = L{ei(τ), ui(τ), τ ∈ [0, T ], i = 1, ..., k − 1},

t ∈ [0, T ], k = 1, 2, ... , (1)

where L is a learning operator that generates a command
for the next cycle based on the information about the errors
and commands from previous cycles. The error is defined by
ek(t) = r(t)−yk(t), where r(t), t ∈ [0, t], is the desired output
which the system must track repetitively. The time parameter
t can be either continuous or discrete. The general form of
Repetitive Control can be given as follows:

u(t) = L{e(τ), u(τ), τ ∈ [0, t)}, t ∈ [0,∞). (2)

In the case of Repetitive Control the system has to track a
periodic signal r with period T , i.e., r(t) = r(t − T ). Even
though ILC and RC appear to be very similar, there is an
important difference between them: In ILC the system initial
conditions are reset at the beginning of each trial, whereas in
RC the initial conditions are set only once at the beginning of
the system operation. In orther words, the transients have an
important influence on every cycle of ILC and in the case of
RC the effect of transient fades away with time. It turns out
that the following linear forms of ILC and RC are sufficiently
versatile

uk(t) = uk−1(t) + Lek−1, t ∈ [0, T ], k = 1, 2, ... , (3)

u(t) = u(t − T ) + Le, t ∈ [0,∞). (4)

Many well known ILC and RC schemes can be represented
in the above forms. In particular, the gradient-based RC algo-
rithm studied in the paper by Hätönen et al can be presented
as follows:

u(t) = u(t − T ) + βG∗e, t ∈ [0,∞), (5)

where G∗ is the adjoint system operator in the case of FIR
system or the truncated adjoint system operator in the case
of IIR system, and where β is some tunable parameter.
The gradient-based algorithms have been studied before in
the context of ILC (see [5], [9], [4]). The gradient-based
ILC algorithms are more complicated than the basic P-type

ILC algorithm with L = γI and moreover they require a
good system identification. However, the gradient-based ILC
algorithms provide a monotonous convergence of the ILC from
trial to trial, whereas the basic P-type ILC often suffers from
very bad transients [6], [7]. It is natural to expect (and as
observed in [7], it is often the case) that if some algorithm
performs well in the context of ILC its analog will perform
also well in the context of RC. Thus, one might expect that
the gradient-based RC algorithm will provide good transient
behavior when the system has to track a periodic signal. The
paper by Hätönen et al initiates the following series of very
interesting questions about the transient behavior of Repetitive
Control:

1) What are differences between ILC and RC in terms of
convergence and transient behavior?

2) Is it true that if some algorithm performs well for ILC
its analog will perform also well for RC?

3) What are the conditions for monotonic convergence of
RC? By monotonic convergence we mean the monotonic
convergence in some function norm from cycle to cycle.

4) Is it possible that RC has very bad transient but con-
verges eventually, as it is often the case for ILC?

5) What is the measure of good transient behavior or good
convergence behavior in the case of RC?

Below let us elaborate further on the above questions. First,
we discuss the differences between convergence conditions
for ILC and RC. If the system operates in discrete time, as
considered in the paper by Hätönen et al, the necessary and
sufficient convergence conditions for the basic P-type ILC are
as follows [8], [7]:

0 < γCΓ < 2, (6)

with matrices C and Γ defined in equation (1) of the paper
by Hätönen et al. However, even if the above conditions are
satisfied, the basic P-type ILC often has a very bad transient
behavior. In contrast, the gradient-based ILC algorithm ex-
hibits monotonic convergence [5]. There are simple frequency
domain sufficient conditions that guarantee the monotonic
convergence of ILC defined by (3) (see [7] and references
therein)

sup
ω∈[0,2π]

|1 − L(eiω)G(eiω)| < 1. (7)

In the case of the gradient-based ILC algorithm the above
condition can always be met if β < 2/ supω∈[0,2π] |G(eiω)|2.



In the paper by Hätönen et al, the authors require additional
conditions to (7) in order to guarantee the monotonic conver-
gence of the gradient-based algorithm in the context of RC.
Specifically, the authors prove that if the impulse response of
the system is finite and positive, with an appropriate choice
of β the gradient-based RC algorithm produces monotonic
convergence. Let us discuss how restrictive these additional
conditions are. In fact, the authors mitigate the FIR condition
themselves either using the truncation of the adjoint system
operator or with the help of auxiliary feedback and pole
placement. Then, the positivity condition remains. This seems
to be a very restrictive condition and furthermore it is not
clear if it is needed at all. The authors write that the positivity
condition is “quite common in practical applications”. How-
ever, their very practical experimental test facility does not
satisfy the positivity assumption (see Figure 12 in Hätönen
et al). Nevertheless, all runs of the gradient-based RC algo-
rithms demonstrate monotonic convergence (see Figures 8-10
in Hätönen et al). Of course, one has to consider only the
runs when the algorithms indeed converge with the appropriate
choice of β and auxiliary feedback. Since in the context of ILC
the single condition (7) is sufficient to guarantee monotonic
convergence, it is very tempting to ask the following question:
Is the condition (7) also sufficient to guarantee monotonic
convergence for RC? As was pointed out in [7], the condition
(7) is a sufficient condition of convergence (not necessarily
monotonic) for RC and it is very close to be a necessary
condition. Therefore, if the condition (7) guarantees monotonic
convergence for RC, almost any RC algorithm would either
converge monotonically or diverge. It is very likely that this
supposition is too simplistic and, as usually the case, the
reality is more subtle. Nevertheless, the above contemplation
might suggest that if an RC algorithm satisfies condition (7),
it converges with a “good” transient. And furthermore, in
contrast to ILC, there could be virtually no RC algorithms
that converge eventually but have very bad transients.

Now we come to the question what is the good performance
measure for RC. In [2], [11] it is shown that for continuous
time Repetitive Control systems the condition

||1 − L(s)G(s)||H∞
= sup

ω∈[0,∞)

|1 − L(iω)G(iω)| < 1,

which is by the way the continuous time analog of (7), assures
the L2 input/output stability. This suggests that the L2-norm
could be a good measure of RC performance. It is interesting
to note that in [10] to measure the performance of ILC the
authors recommend to use the sum of mean-square-errors from
several first consecutive learning trials. The latter measure
becomes the L2-norm when it is applied to RC. It would
be very interesting to compare several RC schemes, including
the gradient-based scheme, using the L2-norm. It is a pity that
Hätönen et al did not provide the comparison of their gradient-
based RC algorithm with the basic P-type RC algorithm.

Finally, a very interesting point for the discussion is the
application of discrete time algorithm to the continuous time
system. Note that Hätönen et al developed the gradient-based

RC algorithm and its theory for the discrete time plant but
while making experiments they applied it to the continuous
time plant. As shown in [3], one has to be alert to “ripple
effect” when applying the discrete time RC algorithm to a
continuous plant. The combination of appropriate choice of
the sampling frequency and careful pole placement apparently
limited the “ripple effect”. It would be very nice to see some
analytical bounds describing the effect of discretization. On
the other hand, the use of discretization can serve as a low-
pass filter to limit the influence of singular perturbations or
unmodelled high frequency dynamics [1], [7]. The analysis of
discretization effects in RC and ILC algorithms is an appealing
future research direction.
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