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Abstract. We consider the transmission power control problem with
SINR as objective function in the two scenarii: selfish and cooperative.
We show that in the selfish (non-cooperative) scenario several Nash equi-
libria can arise. In particular, the game can take the form of the Hawk-
Dove game, where the users can choose either conciliation or conflict
fighting for shared sub-carriers. We fully characterize different types of
Nash equilibria. In the cooperative scenario, we show that the parameter
area where users employ pure strategies is essentially narrower than the
area where users employ mixed strategies. Moreover, we identify an area
where Nash equilibrium and Pareto equilibrium coincide. If one of the
users has a big signal to transmit (called a stronger user) for both scenar-
ious meanwhile his rival has small signal to transmit (weaker user) then
behaviour of the stronger user drastically changes in cooperative plot
compare to selfish one. Namely, in selfish one the stronger user squeezes
the weaker one from the best channel meanwhile in cooperative he allows
the weaker user employs the best channel and himself prefers to apply a
mixed strategy.

Keywords: Wireless networks, Power Control, Nash Equilibrium, Co-
operation

1 Introduction

We consider the transmission power control problem with SINR as objective
function in the three scenarii: selfish and cooperative. In particular, in the selfish
scenario we consider two users who try to send information through n resources.
The strategy of user j (j = 1, 2) is T j = (T j

1 , . . . , T j
n) with T j

i ≥ 0 such that∑n
i=1 πiT

j
i = T̄ j , where T̄ j > 0. Here we assume that resource i has a “weight”

of πi > 0. The resources may correspond to capacity available at different time
slots; we assume that there is a varying environment whose state changes among
a finite set of states i ∈ [1, n], according to some ergodic stochastic process with
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stationary distribution {πi}. Either the resources may correspond to frequency
bands (e.g. as in OFDM) where one should assign different power levels for
different sub-carriers [9]. In that case we may take πi = 1/n for all i.

In the selfish (non-cooperative) scenario each user tries to maximize its av-
erage SINR:

vj(T 1, T 2) =
n∑

i=1

πi
αj

i T
j
i

N0
i + αĵ

i T
ĵ
i

,

where N0
i is the noise level and αj

i > 0 are fading channel gains of user j when
the environment is in state i, and ĵ = 3 − j. We assume that all the fading
channel gains αj

i , the noise levels N0
i , the total powers T̄ j are known to both

users or they can be quickly inferred [4]. The authors of [1] have studied the case
of incomplete information.

The SINR as an objective function in the power control game was also con-
sidered in [6]: all users have a single common channel and choose between several
base stations. We note that in the regime of low SINR the present objective can
serve as an approximation to the Shannon capacity. A central motivation to con-
sider SINR as an objective function and not Shannon capacity, is that current
technology for voice over wireless does not try to achieve Shannon capacity but
rather uses given codecs that can adapt the transmission rate to the SINR; these
turn out to adapt the rate in a way that is linear in the SINR over a wide range
of throughput. The SINR has therefore been used very often to represent directly
the throughput see [7, 8]. The validity of this can be seen e.g. in [5, p. 151, 222,
239]. As we see from [5, Fig. 10.4, p. 222], the ratio between the throughput and
the SINR is close to a constant throughout long range of bit rates. For example,
between 16Kbps and 256Kbps, the maximum variation around the median value
is less than 20%.

We finally note that with an SINR objective we are able to characterize
fully cooperative and non-cooperative. In [2] with the Shannon capacity as an
objective we have dealt only with the symmetric case. An interested reader can
find more relevant literature on Gaussian Interference Game in [2, 4]. In the
present work we restrict ourselves to the case of two users. We believe that the
two user case is good for illustration and many techniques of this paper apply
to the case of more than two users which we leave as a topic for future research.

In the non-cooperative scenario we look for a NE (Nash Equilibrium), that
is, we want to find such couple of strategies (T 1∗, T 2∗) that for any (T 1, T 2) the
inequalities hold: v1(T 1, T 2∗) ≤ v1(T 1∗, T 2∗), v2(T 1∗, T 2) ≤ v2(T 1∗, T 2∗).

In the cooperative scenario, both users want to maximize v1 + v2. We shall
show that in some parameter settings cooperative and non-cooperative strategies
coincide.

It is worth to note that in [3] one of results concerns a game which can be
considered as a game with the SINR as object function in the jamming scenario
the first user wants to maximize the objective function v1 and the second user
wants to minimize this objective function. For this game the jammer in his
optimal behaviour tends to equalize the quality of the best sub-carriers to as low
level as his power constraint allows.
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We will assume that all channels differ by their quality for both users. Namely,
we assume that for each user j (j = 1, 2) αj

i1
/N0

i1
6= αj

i2
/N0

i2
for any i1 6= i2.

Without lost of generality we can assume that {a(j, 1), a(j, 2), . . . , a(j, n)} is a
permutation of {1, 2, . . . , n} such that the sub-carriers are arranged in the fol-
lowing decreasing order by their quality: αj

a(j,1)/N
0
a(j,1) > . . . > αj

a(j,n)/N
0
a(j,n).

2 Non-cooperative scenario

2.1 The best sub-carriers differs for the users

Since vi is linear in T i the optimal strategy of user i can be nonnegative only for
sub-carriers where the compound SINR is maximal. So, we have the following
result describing the structure of the optimal strategies.

Theorem 1 (T 1, T 2) is a Nash equilibrium if and only if there are non-negative
ω1 and ω2 (which present the maximal compound SINR for the corresponding
user) such that for j = 1, 2 and i ∈ [1, n]:

T j
i ≥ 0 for

αj
i

N0
i + αĵ

i T
ĵ
i

= ωj and T j
i = 0 for

αj
i

N0
i + αĵ

i T
ĵ
i

< ωj .

The payoffs corresponding to these strategies are (ω1T̄ 1, ω2T̄ 2).

The strategy when user j (j = 1, 2) transmits all the signal through just
one sub-carrier (say, i) will be called a pure one and we will denote it by T j

i .
So, the pure strategy is T j

i = (T j
1 , . . . , T j

n) such that T j
k = T̄ j for k = i and

T j
k = 0 otherwise. The strategies when users employ more than one sub-carrier

to transmit signal will be called mixed strategies.
If the best sub-carriers are different for users, namely a(1, 1) 6= a(2, 1), then

by Theorem 1 the NE has time sharing form, namely the following result holds.

Theorem 2 If a(1, 1) 6= a(2, 1), then the game has the unique NE and it is the
pure one (T 1

a(1,1), T
2

a(2,1)).

It is worth to note that if there are more than one best quality sub-carrier
the NE is not unique at all since there is enough room for the users to share
these best quality channels.

So, our assumption that all sub-carriers are different by its quality is quite
reasonable. But as it will be shown in the next section even then if the the best
sub-carriers coincides a variety of NE is possible.

2.2 The best first sub-carriers coincides for users

Let the first best sub-carriers coincides for users, i.e. a(1, 1) = a(2, 1) = a(1).
Then some variety of cases arise depending on the quality of the second best
sub-carriers and the power of signal the users can apply.
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The SINRs for the best sub-carrier with the induced noise are big
enough for both users:

If the SINRs for the best sub-carrier with the induced noise are greater than
the SINRs with the natural noise for the second best sub-carriers for both users,
then each of them could manage to transmit all the signal just through the
best sub-carrier. The next theorem follows straighforward from Theorem 1 and
supplies the formulas describing the corresponding conditions on SINRs.

Theorem 3 Let the following inequalities hold

αj
a(1)

N0
a(1) + αĵ

a(1)T̄
ĵ
≥

αj
a(j,2)

N0
a(j,2)

for j = 1, 2. (1)

Then there is the unique NE and it is the pure one (T 1
a(1), T

2
a(1)).

Note that inequalities (1) can be rewritten in the following equivalent form

Aj ≥ X̄j for j = 1, 2, (2)

where Aĵ = αj
a(1)N

0
a(j,2)/αj

a(j,2) −N0
a(1) and X̄j = αj

a(1)T̄
j .

The SINR for the best sub-carrier with the induced noise is big enough
only for one user:

If the SINR for the best sub-carrier with the induced noise is greater than
the SINR with the natural noise for the second best sub-carriers only for one
user (say, user ĵ), then the other user (user j) could threaten to jam the best
sub-carrier and user ĵ has nothing to threaten back. This makes him to withdraw
and to use the second best sub-carrier. The next theorem follows straighforward
from Theorem 1 and supplies the formulas describing the corresponding relations
between SINRs.

Theorem 4 Let Aj > X̄j , Aĵ < X̄ ĵ hold either for j = 1 or j = 2: Then the
game has the unique NE and it is the pure one (T 1, T 2) where T j = T j

a(j,2) and

T ĵ = T ĵ
a(1).

Thus, the weaker user is squeezed out from the common best sub-carrier by the
threat from the stronger user.

The SINRs for the best sub-carrier with the induced noise are small
for both users:

If the SINRs for the best sub-carrier with the induced noise are less than the
SINRs with the natural noise for the second best sub-carriers for the both users,
then each user could threaten to jam the best sub-carrier for his opponent. The
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situation becomes very competitive and Hawk-Dove type strategies are possi-
ble. The next theorem follows straighforward from Theorem 1 and supplies the
formulas describing the corresponding relations between SINRs and Hawk-Dove
type strategies.

Theorem 5 Let Aj < X̄j hold for j = 1, 2. Then there are two pure NE equi-
libria (T 1

a(1), T
2

a(2,2)) and (T 1
a(1,2), T

2
a(1)).

In the first pure NE user 1 presents an aggressive (Hawk) player always fighting
for the best quality sub-carrier meanwhile user 2 is a withdrawing (Dove) player
escaping any fighting. In the second pure NE the users exchange the roles. On
Figure 1 possible pure NE are pointed out depending on power signals they have
to transmit.

Fig. 1. Pure NE strategies

Besides the two pure NE a mixed NE can take place. Let us consider the case
when the second best sub-carriers are different for users. Then by Theorem 1
we can see that in the mixed equilibrium both users at first take care about
the opponent by equalizing quality of the opponent’s two best by quality sub-
carriers. It allows users to transmit all the rest of the signal through the second
best sub-carriers. Of course, this strategy assumes some cooperation between
the users.

Theorem 6 Let Aj < X̄j hold for j = 1, 2 hold and a(1, 2) 6= a(2, 2), so the
second best sub-carriers are different for users. Then there is the unique mixed
NE, using only two first by quality sub-carriers, given by the following strategies
which equalize the first and second by quality sub-carriers and transmit the rest
power through the second sub-carriers:

T j
i =


αĵ

a(1)

αj
a(1)

(
1/ωĵ −N0

a(1)/αĵ
a(1)

)
, for i = a(1),

T̄ j − T j
a(1), for i = a(j, 2),

0, otherwise,

(3)

where ωj = αj
a(j,2)/N

0
a(j,2), j = 1, 2.
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2.3 The K best sub-carriers coincide:

In this subsection we consider situation when the K (K ≤ n) best sub-
carriers coincide for users, i.e. a(1, i) = a(2, i) = a(i), i ∈ [1,K] and a(1,K+1) 6=
a(2,K + 1) if K < n. Theorem 6 can be generalized as follows:

Theorem 7 Let k1 = k2 < K where kj(j = 1, 2) are integers such that

H ĵ(αj
a(j,kj)/N

0
kj ) < T̄ ĵ ≤ H ĵ(αj

a(j,kj+1)/N
0
kj+1),

where αj
a(j,n+1)/N

0
n+1 = 0 and

H ĵ(ω) =
n∑

i=1

αj
a(j,i)

αĵ
a(j,i)

[
1/ωj −N0

a(j,i)/αj
a(j,i)

]
+

.

Then the NE is given by the strategies (T 1, T 2) where

T ĵ
i =

αj
a(i)

αĵ
a(i)

[
1/ωj −N0

a(i)/αj
a(i)

]
+

, i ∈ [1, n]

for j = 1, 2, and ωj is the unique root of the equation H ĵ(ωj) = T̄ ĵ.

Thus, if the powers of signal to transmit are approximately equal then the equi-
librium mixed strategies have water-filling structure.

Theorem 8 Let K = k1 = k2 and a(1,K +1) 6= a(1,K +1). Then if the power
of signals allows to equalize the first K + 1 channels, so

H ĵ
(
αj

a(j,K+1)/N
0
a(j,K+1)

)
< T̄ ĵ

then the NE is given by the strategies (T 1, T 2) where

T j
i =


αĵ

a(i)

αj
a(i)

[
1/ωĵ −N0

a(i)/αĵ
a(i)

]
+

for i = a(1), . . . , a(k),

T̄ j −Hj(ωĵ) for i = a(j, K + 1),
0 otherwise,

where ωj = αj
a(j,K+1)/N

0
a(j,K+1), j = 1, 2.
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3 A cooperative scenario

In this section we assume that the users cooperate and they want to maximize
their joint payoff v = v1 + v2. Of course if the best sub-carriers are different for
users, then, time sharing strategies T 1

a(1,1), T
2

a(2,1) are the optimal one. Next let
us consider the case when the best sub-carriers coincide for the users, namely
a(1, 1) = a(2, 1) = a(1). The next theorem supplies the complete solution of
this problem where the second best sub-carriers are different, namely a(1, 2) 6=
a(2, 2).

Theorem 9 Let a(1, 1) = a(2, 1) = a(1) and a(1, 2) 6= a(2, 2).
(i) If

F j(X̄1, X̄2) ≥ ᾱj for j = 1, 2, (4)

where

F j(ξ1, ξ2) = αj
a(1)

(
1

N0
a(1) + ξĵ

− ξĵ

(N0
a(1) + ξj)2

)
, ᾱj =

αj
a(j,2)

N0
a(j,2)

(5)

then (T 1
a(1), T

2
a(1)) is optimal.

(ii) If
F 1(X̄1, X̄2) < ᾱ1 and F 2(X̄1, X̄2) > ᾱ2 (6)

then (T 1, T 2) is optimal, where T 2 = T 2
a(1), T 1 = (t, T̄ 1 − t, 0, . . . , 0), t =

max{0, T} and T is the maximal root of the equation:

α1
a(1)

(
1

N0
a(1) + α1

a(1)T̄
2
−

α1
a(1)T̄

2

(N0
a(1) + α2

a(1)T )2

)
= ᾱ1. (7)

(iii) The case F 1(X̄1, X̄2) > ᾱ1 and F 2(X̄1, X̄2) < ᾱ2 is symmetric to (ii).
(iv) If

F j(X̄1, X̄2) < ᾱj for j = 1, 2 (8)

then (T 1, T 2) is optimal, where T j = (xj/αj
a(1), T̄

j − xj/αj
a(1), 0, . . . , 0) and

(x1, x2) is the positive solution of the system F j(x1, x2) = ᾱj , j = 1, 2.

This theorem allows us to depict (see Figure 2) in coordinate system (X̄1, X̄2)
how NE and cooperative equilibria differ depending on the power signal users
can apply. The area {(X̄1, X̄2) : Xj ≤ Aj , j = 1, 2), where the pure equilibrium
(T 1

a(1), T
2

a(1)) is NE, is essentially larger than the area {(X̄1, X̄2) : F j(X̄1, X̄2) ≥
ᾱj} where it is also the cooperative equilibrium. Meanwhile the area {(X̄1, X̄2) :
F j(X̄1, X̄2) > ᾱj} where in cooperative behavior the users prefer to employ
mixed strategies include the corresponding area for NE as well as a part of the
area where in NE a user is squeezed from the best sub-carrier. Thus, in the
cooperative scenario in comparison with the non-cooperative scenario the area
where users prefer to employ pure strategies is essentially narrower.



8 E. Altman, K. Avrachenkov and A. Garnaev

The conditions that F j(X̄1, X̄2) > ᾱj} and X̄j < Āj can be interpreted as
if user j has a small signal to transmit for cooperative and selfish scenarious
respectively meanwhile the conditions that F j(X̄1, X̄2) < ᾱj} and X̄j > Āj can
be interpreted as if user j has a big signal to transmit. If one of the users has a big
signal to transmit (called a stronger user) for both scenarious meanwhile his rival
has small signal to transmit (weaker user) then behaviour of the stronger user
drastically changes in cooperative plot compare to selfish one. Namely, in selfish
one the stronger user squeezes the weaker one from the best channel meanwhile
in cooperative he allows the weaker user employs the best channel and himself
prefers to apply a mixed strategy. Finally note that the lines on Figure 2 can be
also interpreted as switching lines of cost of anarchy.

Fig. 2. Cooperative and Nash equilibria

4 Appendix

Proof of Theorem 6. Since a(1, 2) 6= a(1, 2) the users do not have colluded
interests in the second by quality sub-carriers which are different for them. Also,
T 1

a(1) > 0 and T 2
a(1) > 0 since the users apply mixed strategies. Thus, by Theo-

rem 1, ω1 = α1
a(1,2)/N

0
a(1,2), ω2 = α2

a(2,2)/N
0
a(2,2), and

α1
a(1)

N0
a(1) + α2

a(1)T
2
a(1)

= ω1,
α2

a(1)

N0
a(1) + α1

a(1)T
1
a(1)

= ω2.

Solving these equations for T 1 and T 2 implies (3).
Proof of Theorem 9. Since a(1, 2) 6= a(2, 2) and a(1, 1) = a(2, 1) the optimal
strategy T j , j = 1, 2 has to be of the form

T j
i =


tj for i = a(1),
T̄ j − tj for i = a(j, 2),
0 otherwise,
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where tj ∈ [0, T̄ j ] and the optimal t1 and t2 are the ones which maximize the
following function

v(t1, t2) =
α1

a(1)t
1

N0
a(1) + α2

a(1)t
2

+
α2

a(1)t
2

N0
a(1) + α1

a(1)t
1

+
2∑

i=1

αi
a(i,2)

N0
a(i,2)

(T̄ i − ti).

To find the optimal t1 and t2, we need to calculate the derivatives of v with
respect to t1 and t2:

vj(t1, t2) :=
∂v

∂tj
=

αj
a(1)

N0
a(1) + αtĵ

a(1)t
ĵ
−

α1
a(1)α

2
a(1)t

ĵ

(N0
a(1) + αtj

a(1)t
ĵ)2

−
αj

a(j,2)

N0
a(j,2)

, j = 1, 2.

It is clear that
vj(t1, t2) = ṽj(ξ1, ξ2) := F j(ξ1, ξ2)− ᾱj ,

where ξj = αj
a(1)t

j and ξj ∈ [0, T̃ j ] with T̃ j = αj
a(1)T̄

j , j = 1, 2.
ṽj has the following properties:

ṽj is increasing on ξj and decreasing on ξĵ , (9)

ṽ1(t, 0) =
α1

a(1)

N0
a(1)

−
α1

a(1,2)

N0
a(1,2)

> 0, ṽ2(0, t) =
α2

a(1)

N0
a(1)

−
α2

a(2,2)

N0
a(2,2)

> 0 for t ≥ 0. (10)

By (10) the points (0,0), (0, ξ), (ξ, 0) cannot be the maximal ones.
In Figure 3 we depict signs of ṽ1 and ṽ2 in the coordinate system (ξ1, ξ2).

Namely, the region (+,+) presents the set {(ξ1, ξ2) : ṽ1(ξ1, ξ2) > 0, ṽ2(ξ1, ξ2) >
0}, the region (–,–) is {(ξ1, ξ2) : ṽ1(ξ1, ξ2) < 0, ṽ2(ξ1, ξ2) < 0} and so on. Then, if
(T̃ 1, T̃ 2) ∈ (−,−) which corresponds to (5) then the maximum is at (T̃ 1, T̃ 2) and
(i) is proved. If (T̃ 1, T̃ 2) ∈ (+,+) which corresponds to (8) then the maximum is
at (ξ1, ξ2) which is the unique positive solution of the system ṽi(ξ1, ξ2) = 0, i =
1, 2 and (iv) is proved. Similarly, the cases (T̃ 1, T̃ 2) ∈ (+,−) and (T̃ 1, T̃ 2) ∈
(−,+) correspond to (8) respectively and are investigated similarly.

Fig. 3. Signs of ṽ1 and ṽ2
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