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Abstract—The classical water filling problem is concerned throughput). Moreover, the set of possible allocations may
with optimally assigning powers overn independent channels pe more complex than those corresponding to the split of
so as to maximize the total transmitted throughput. If €ach = 4 fiyeq quantity. As an example, if we split the throughput
channel is associated with another mobile then it is natural . :
to consider also the problem of fair assignment and to study of a CDM_A link, then the-sum of throughputs may itself
tradeoffs between fairmess and optimality. The object which is Pe a function of the allocation. Indeed, when more than one
allocated is the transmission power, and we are interested in mobile shares a radio link then the interference adds to the
assigning it so as to obtain fairess between either one of three nojse at each terminal thus decreasing the SNR (Signal to
resulting performance measures: the signal to noise rafio, a Npjse Ratio) and hence the throughput. This more general
shifted version of it, or the Shannon capacity. We suggest the . . . .
generalized a-fairness concept. We obtain explicit solutions for context of falr.resource aIIocat|.on has been introduced "_1 f[he
and insight on the fair assignment corresponding to the various game theory literature already in [12] as the Nash Bargaining
performance measures. For the case of a large number of users concept (of which the proportional fairness is a special case).
we consider a variational formulation of the problem. The |t was extended to the context of-fairness in [14].
varlathnal form_ulatlon allows us to design distributed resource We investigate and compare in this paper generalized
allocation algorithms. . . . .

fairness resource allocations in downlink cellular networks,
. INTRODUCTION related to thea-fairness applied to the SNR, to the shifted

Fairness concepts have been playing a central role $NR and to the throughput. All three can be viewed as
networking. In the ATM standards [13], the maxmin fairnesgtilities (of the power assignments) that we wish to assign
and its weighted versions appear as the way to allocateirly. We study and compare the properties of the vari-
throughput to connections using the ABR (Available Bitous fairness criteria. We show that in all three cases the
Rate) best effort service. The proportional fairness hdgirness improves monotonously asgoes to infinity. The
been introduced in [6], [7]. Later it was implemented ingeneralizedx-fairness applied to SNR and the shifted SNR
wireless communications (e.g. in the Qualcomm High Datadmit explicit solutions. Thex-fair sharing of the shifted
Rate (HDR) scheduler) as a way to allocate throughpuf8NR incorporates as particular cases: the SNR maximization
(through time slots); it has also been shown to correspori@ = 0), the Shannon capacity maximizatiam< 1) and the
to the way that some versions of the TCP Internet Protoc#iax-min fairnessd¢ — 0).
share bottleneck capacities [10]. A unifying mathematical The paper is organized in two parts. In the first part
formulation to fair throughput assignment (which we calwe formulate the generalized-fair resource allocations as
the “a-fairness”) has been proposed in [11]; the “degree” ogonvex optimization problems. It turns out that many of
fairness is expressed by a parametedefined on the whole these optimization problems have explicit solutions. In the
half line [0,); it controls the tradeoff between efficiency second part, using the law of large numbers, we approximate
(total throughput maximization) on one hand, and fairnesﬁje generalizedx-fair resource allocation problems for the
on the other. In particular, the cage— o corresponds to case of many users by variational problems. The variational
the maxmin fairness (that can be considered to be the mdetmulation allows us to design distributed power control
fair allocation), the casex = 2 corresponds to the delay algorithms. The example of the Rayleigh fading is analyzed
minimization, the case: — 1 corresponds to the proportional in details.
fair assignment and the case = 0 corresponds to the
throughput maximization (that can be considered to be the II. DISCRETE MODEL
mc_)rsr;[ efficient). . ) . . We consider the following allocation problem. There is a

he above notlons_ have be_:en de}tme‘j in the te_lecommuryi-ngle decision maker (the Base Station) that decides how
cation context for splitting a given available capacity betwee

) . i . [ allocate the power betweendifferent users. We further
connections. Fairness can, however, be defined with respeg

" . . 1i:)w there to be a weight of; related to the resource of
to a utility function f of the resource that is allocated (e'g'useri. There is a gain parametér related to the channel
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for different sub-carriers [16]). In that case we may takd&Jsually it is supposed that the background noise in all the
m = 1/n for all i. sub-carriers is the same, so in that caife= N°.

(i) The BS transmits to the mobiles using a general periodic The first choicefi(x) = log(1+ hix/NC) corresponds to
polling order. The BS spends a fractianof a cycle to the a-fair assignment of throughputs in a downlink CDMA
transmit to mobilei. There is a hard constraint on thesystem. The second choiégx) = hix/N? corresponds to the
total energy available during the cycle. The problenu-fair assignment of SNRs. In the ca$gx) = 1+ hjx/N°
is how to assign the available transmission energy peve assign the shifted SNR according to thdairness. The
cycle among the mobiles. latter choice allows us to treat the SNR maximization, the

The strategy of the decision makersis= (x1,...,%,) such throughput maximization and the maxmin fairness as partic-

thatx >0 fori € [1,n] and T mx = X, wherex> 0 and ular cases of a unified spectrum of optimization problems.

m >0 fori e [1,n]. The elemenk; corresponds to a power First we study each criterion separately and then we

level assigned to theth user. discuss the relation among them.
As a payoff to the decision maker we take theneralized A. General results
a-fairessdutility function (o € [0, »)): First we note that the first and second assignments cor-
1 0 L respond to the maximization of the following objective
vX)=1—4 Zﬂi (fix)™“, for a #1, (1)  function Lo
i=
v(x) = —— § mU%(xhi /N,
- n %=1 3 AU /N
V(X) 1= Zlm log(fi(x)), for o =1, (2) subject to
= n
| o . > mx =X 3)
where f; is concave and increasing function [iBy ). &

Note that even though the optimal solution of (1) con-
verges to the optimal solution of (2) whem — 1, the
objective function is discontinuous at= 1. If one wants to I i o L
deal with an objective function continuous én we suggest Ve = 1-« i;”‘ (U= 706hi/N) = 1),
to make the following small modification:

and the third assignment corresponds to a shifted version

This change by shift influences only the payoff but not the
1 2 T ((f_ ()% — 1) optimal strategy. For our three cases, we Haye) =log(1+
1-a ; MY ' 7),7,1+ 1. So,U(7) is either linear int; or U(7) is strictly

increasing and positive if0, ), U’(7) is strictly decreasing,
There is the following interpretation to the above payofo (0)=0, U (+0) = 40 andU’(04) < +oo,

the decision maker wants to share fairly (in the sense (Beflne the Lagrangian

a-fairness) some function of the resourceFor example, ] ]

in the context of the downlink power allocation problem in 1 i N - — -
wireless networks, we could wish to share fairly the utility o(x):= 1-a 21 U Gshi/N) +w(x7|;ﬂ'x')'
of a throughput instead of sharing fairly the available power,
Is the theory that applies to sharing fairkyapplicable to
sharing f (x)?

In [6], [7] and in [11], a fixed amoun€ of resource is
shared. The sum of shares does not depend on the way M{D
resource is shared. In contrast, unldsss linear, the sum a
SN | fa(%n) will no more be constant.

If f is concave, then the set df(x) obtained over alk
such that the sum of its componentsdgor is less than or
equal toC) is a convex set. But, more generallyxibelongs I
to a convex seX then the seF := {f(x): x € X} is a convex T(8)= E(U U (0/8). “)
set. Thus we can view the fair allocation of the utilit . : .
over X as the fair allocation off overF, if f is concg)\?e. The casea =0 is a particular one sincg (0+,6) < . In

We note that iff is strictly concave an& is convex then this case, we have

V(X) :=

Since the optimization problem is convex, thefair as-
signment is obtained by taking the derivative of the La-
grangiari_g, Thus, the optimal strategy has the foxmw) =

,hi /NP):

) if U is nonlinear andx > 0 thenT (w, &) with £ >0 is
the positive root of the equatidh(x, &) = w whereF (x,&) =
EU’(x€) /U *(x€) which exists and unique sindg(0+,&) =
+oo, F(+0,&) =0 andF (-, &) is strictly decreasing. So,

for eacha, there is a uniquex-fair assignment. T(w,&) = 1 [(U/)(—l)(w/g)}
In the present work we shall consider the following three 3
assignments fof;(x): (b) if U is linear then folU (0) > 0, T(w, &) has the form:

log(1+hix/ND),  hix/N?, 1+ hix/N,

1 _
T(0.8) =7 [V /)] (5)
where h; is the fading coefficient for the sub-carrierand +
NC is the level of the background noise in the sub-cariier If U(0) =0 thenT(w,&) is given by (4).



The Lagrangian multipliero can be found as the uniqueis monotonuously decreasing to one af> 1 and it is

positive root of the following equation monotonuously increasing to oneaf 1. Therefore, we can
n say that there is monotone improvement of fairness wien
H(w) = zlmT(w,hi/Nio) =X increases to infinity.
1=

D. Alpha-fair sharing of shifted SNR

In the case of the shifted SN&-fair sharing, we maximize
e following objective function

B. Alpha-fair sharing of throughput

The a-fair sharing of the throughput corresponds to tht%h
maximization of the following objective function

i 1 n hi N\ 1-a
w09 = 122 3 mlogt (1 n /) ST )T <(1+ v) - 1)

subject to (3). Thus, the optimal strategy has the for,ﬁupjegt to (3). In two important part_icqlar.subcases the

% (@) =T (o, hi/N®) whereT (o, &) with & > 0 is the unique objective corresponds to the SNR maximizations 0, and

positive root of the equation: the throughput (Shannon capacity) maximizatian= 1.
Namely, we have

F(Xaé) = 5 a = = o, n hiXi
14+x& log*(1+x¢) v(X) = Zmln (1+N0) fora=1
where w can be found as the unique positive root of the = i
following equation and " b
n v =S 1% for a = 0.
0y _ & 0
H(w):= ZmT(w,hi/Ni ) =X =R

» In addition to the above observation note that the definition
The casea = 0 corresponds to the water filling problem.of v(.) is closely related to the definition of Tsallis entropy

Namely, the optimal strategy takes the forfw) = [1/o—  [15]. The Tsallis entropy is defined far > 0 as follows
NO/hi]; and the optimale = w. is defined as the unique

root of the equation H) = £ 1a (ilxil—oc B 1)
“a\2

n

_Zﬂi [1/0—NP/hi]; =X

& andH(x) reduces to Shannon entropy far— 1.

C. Alpha-fair sharing of SNR Wh:an o >0, tPe optimal solution has the form{w*) =
(X1 (@%),...,%(@*)) where

The SNRa-fair sharing corresponds to the maximization

. . . . 0 _ 1/a
of the following objective function X (@) = N* ( h; 0) . fori e [1,n
n o1 hi oN,; .
v(X) = —— 5 m(hixi /N°) %,
) l-«a i; (P /N5 and o* is the unique root of the equation
subject to (3). Thus, the optimal strategy is given as follows: n _
i 3) p gyisg H(w):zzlnm(w)zx.
% = X (hi/N2) ot =
' 3 §_q mj(hj/ND) /-1 When o = 0, the utility function is linear irx, and then the

problem has the solution as in the case of the Sadfair
haring with o = 0. Namely, only mobiles with maximal
i/Ni0 receive positive assignment. It is worthy to note that
the solution is not unique if there are a few users with the
same maximal ratiok; /N°.

Now we investigate the case when> 0. Without loss of
generality, we can assume that the users are arranged by the
Nio/hi following ratios in the decreasing order:

For o — 1 we getx; = X. It is interesting to note that in the
case of the proportional fair assignment of SNR the optim%
solution does not depend on the ratiagN?. The a-fair

assignment gives strictly positive power for all> 0. For
a =0, only mobiles with maximunhi/NiO receive positive
assignment. Foor — co we obtain

Xi = X n NO/hi)’
Y =1 (7 N;/hy) hy/NO < hy /NS < ... < hy/N.

so that for alli the same value of SNR is obtained: Intuitively, we expect that the decision maker gives a higher

SNR = X ) power level to a user with a larger index. We also note that
> ia(m; Njo/hj) some users for some valuesafcan be assigned zero power
We note that the ratio level. In particular, this can happen if th_e d_ecision maker
uses the Shannon capacity £ 1) as the objective function.
% — al/® with a-— hi/Ni0 This provides a further motivation to use the generalized
SNR " hy/NY a-fairness criterion with larger values @f. Thus, we are




interested to determine which users obtain zero power levEl Numerical example for discrete model

for a given value oftx. For this purpose developing approach | o s demonstrate the closed form approach by a numer-
suggested in [1] we provide an explicit solution to the shifteg. example. Suppose that=i fori=1,....,n andNC = 1.
SNR a-fair sharing problem. Namely, we can prove that theyq |et m = Cxi~% with ¥ > 0 andC = (k — 1)/(1(6 —1).
solution to the shifted SNRe-fair sharing problem is given aqsume thatx = 5, n=5 k=07 and a = 0.5. Then,

by as the first step we calculai for t € [1,5]. In our case
we get (13.298, 1.979, 0.422, 0.075, 0). Then, by (7),

n 0 op \ Ve : o .
& mﬁ (1 (Ni h[) ) k = 2. Thus, by (6), the opt|mal_water-f|II|ng strategy is
gk hy hiNO , x* = (0,0.400,1.017,1.551, 2.051) with payoff 10.419.

Xt = n NOR ) VT , Telkn], ) Now, we will demonstrate how the optimal strategy de-
Z{m (h-l 0) pends onca. Namely, leta = 0,0.5,...,2.5,3. Then, the
t= iN optimal strategies are given in Figure 1. Thus, the optimal

0, otherwise strategies with change @f continuously changes from (0,0,
0, 0, 7.510) with payoff equals 25 far = 0 through (0.491,
wherek can be found from the conditions 0.723, 0.756, 0.753, 0.741) with payoff equals 5.546 for
B o =14 to (1.095, 0.547, 0.365, 0.274, 0.219) with zero
P <X Q-1 (7)  payoff for a = . For the Shannon capacity the optimal
strategy is (0.244, 0.744, 0.911, 0.994, 1.044) with payoff

where 5.952.

O NIOhI 10 Also, we calculate thatr)]al = ? oy = 0%3126 o3 ? 05519, )

. N . o4 = 0.684, o5 = 0.821. Thus, if we prefer that all the sub-

"= Ztn. hi [(Nioh) 1 forteLnl, go=co. (8) carriers were in use we have to etto a value larger than
0.821.

*_

We can considetp; as a functiong:(a) on a. It is clear
that ¢ () is decreasing om and

¢ (0) = 00 and g () = 0. 7 e

Thus, for eacht € [1,n] there is unique positivex such
that ¢x(oz) = x and 0= o0y < op < .... Then, we have ]
the following result establishing when the optimal strategy ,
assigns non-zero power level kousers.

Proposition 1: For a-utility function with o € [ok, 01),
k € [1,n— 1] there arek users with non-zero power level. If
o > oy all users obtain non-zero power levels.

rrverr st et bttbbbibbiie

The next proposition describes the limiting case wben
0,
Proposition 2: If o — o then the optimal strategy tends
to (Xj,...,%;) where T3
. )?NO Fig. 1. Dependence of the optimal strategiesocon
L 3lamNe
Proposition 2 implies that the SNR$/Ni° have the same
value for each user. In turn the latter implies that the
Shannon capacities of the users are equal. Besides, sific
the users are arranged in increasing order, the componentd.et us discuss the relation among differemtfair allo-
of the optimal strategy are also arranged in increasing ordeations. In the next proposition we discuss the important
Recall that whernx tends to zero the elements of the optimaparticular casesoe =0, & — 1, o =2 and o — oo.
solution are all zero except the elements corresponding to theProposition 3: (i) For a = 0, with the functionfij(x) =
minimal noise level and for smaik the components of the log(1+hix/N°), the throughputShannon capacijyis max-
optimal strategy are arranged in decreasing order. Therefdnsized. With the the functiond(x) = hix/N° and fi(x) =
by changing parameter we can tune thex-utility function 1+ hix/NiO, SNR is maximized.
to represent a large variety of criteria from complete fairness (ii) For o — 1, with the functionf;(x) = log(1+ hix/NiO),
to pure efficiency maximization (which results in completeahe throughputs are assigned according to the proportional
unfairness). fair paradigm. With the functiorfi(x) = hix/NO, the SNRs

forie[1,n].

eRelation among different alpha-fair allocations



are assigned proportionally fair. And wifh(x) = 1+ hix/NiO, 1. VARIATIONAL MODEL

the throughput is maximized. Consider the case when = 1/n for i = 1,...,n, the gain
(iif) For o = 2, with the functionfi(x) = log(1+hix/N°)  coefficientsh; are i.i.d. random variables distributed with the
the delay is minimized. density functiono(-), N° = N° (without loss of generality,

(iv) For a — oo, the allocation under all three utilities is we takeN°® = 1), and the number of users is large. Then,
the same and corresponds to the maxmin fair assignmentaxdcording to the law of large numbers, the objective

SNRs. 1 n 1
We note that v(X) = mziﬂi ((fi (6) %~ 1) ,
=
log(x) < log(1+x) <x. can be replaced by the expectation

Moreover, for the left hand bound becomes tight for large LE (f; (xi))lfa —1}=
x and the right hand side becomes tight for smallThis 1-a
suggests that maximizing the sum of the Shannon capacity is 1 /°° o.(h)[(f(hx(h)))lfa —1]dh.
equivalent to maximizing the sum of SNR at a regime of low 1-alo
SNRs, and is equivalent to the proportional fair assignmefithe constraint "
of the SNRs at the regime of large SNRs. X = X

Curiously enough, in the case of the SNR proportional fair gi

sharing the optimal allocation does not depend on the ratieain be respectively replaced by
hi /NO.

Next, for eacha-fair allocation we plot Jain’s fairness /o o(hx(hjdh=x. 9)
index . ) Now the optimal strategy depends on the gain coefficient
_ (3iL1SNR) h. This allows us to design distributed algorithms that do not
n(sP,SNK) require the knowledge of the gains for all the users. We also

] ] _do not need anymore to know the number of mobiles.
as a function ofa (see Figure 2). We calculate the Jain’s

index with respect to SNRs. A. Alpha-fair sharing of throughput
In the case of the variational version of the through@ut
fair sharing, we maximize the following objective function

v(x) = %a /Ow o(h)log*(1+ hx(h)) dh,

subject to (9).

The problem has the unique optimal solution for positive
o and it is of the formx(h, *) wherex(h, ) is the unique
positive root of the equation:

h 1
PO = I g —
and o* is the unique root of the equation

03F /f b ——"Shifted SKR || / G(h)x(h7 a)) :)Z
0

N (s L1 B. Alpha-fair sharing of SNR
In the case of the variational version of SNé&-fair
sharing, we maximize the following objective function

_ 1 " -«
V(= /0 a(h) (hx(h)) =~ dh.
The problem has the unique optimal solution for positive

We can see that the Jain's fairness index improves monot@-9iven as follows: 3
nously.in the all three cases of the generalizefhir resource x(h) = ht/e—1__ X _ (11)
allocation. / o(t)t/e 1dt

Both SNRa-fair sharing and the shifted SN&-fair shar- 0
ing have the same limiting cases.af— 0, they correspond In the important particular case whéris distributed accord-
to the SNR maximization, and tk — o they correspond to ing to the Rayleigh’s laws (t) = Kk exp(—«t) with k¥ > 0, we
maxmin fair sharing. However, as one can see from Figure bave —

. . . . . XK+~ /o

the shifted SNRa-fair sharing provides a finer tuned scale x(h) = h-%/@ )
of the resource allocations. r(1/a)

o, (10)

Fig. 2. Jain’s fairness index as a function ef




C. Alpha-fair sharing of shifted SNR variant is that the Base Station is not obliged to disclose

In the case of the variational version offair sharing of the value of the parameter and the total available power
shifted SNR, we maximize the following objective functiontesource and the nodes do not need to perform arithmetic
- operations for the computation of the optimal strategy.
- l-o
— 1706/0 o(h) ((1+hx(h)*"*~ 1) dh

The problem has the unique optimal solution for positive
and it is of the formx(h, w,) where

X(h’w*):% [<a:<)1/a_ ]
N

V(%) IV. CONCLUSIONS
The classical water filling problem is concerned with
optimally assigning powers over independent channels so
as to maximize the total transmitted throughput. If each
channel is associated with another mobile then it is natural
to consider also the problem of fair assignment and study
. . ) tradeoffs between fairness and optimality. The object which
and " is the unique root of the equation is allocated is the transmission power, and we are interested
“ o(h h\ e in assigning it so as to obtain fairness between either one
H(w) ;:/ M [() — 1] dh=x (13) of three resulting performance measures: the signal to noise
o h @ ratio, a shifted version of it, or the Shannon capacity.
Let us now establish some properties of the optima{/e Suggest the generalizezHaimess concept. By means

solution. We will show that the optimal strategy has som@f Parametere it is possible to perform a spectrum of
monotonous property, namely, that for smalit is increas- fair allocations resolving the tradeoff between fairness and

ing function, but for largec there is a switching point efficiency. Furthermore, we obtain explicit solutions for and

between increasing and decreasing branches of the optirff&#ight on the fair assignment corresponding to the various
strategy and this switching point is very closely related performance measures. For the case of large number of users

for h e [0, ) (12)

the base of the natural logarithm. we suggest variational formulations, which lead to the design

Proposition 4: The optimal strategy has the following mo- ©f distributed algorithms.

notonous properties:
(@) if a <1 then the optimal strategy(h, w) is increasing

onhin [@,), g
(b) o > 1 then the optimal strategy(h, ) is increasing
onhin [w,z,w) and strictly decreasing ifwzy,»), where 2

Z = (ot/ (@~ 1))

This optimal strategy has the following very nice property
connecting limit switching point and the base of the natural{il
logarithm. Namelyz, — e asa — .

Proposition 5: For any positivew one can find amx(w)
utility function such that the optimal strategy will employ all
the sub-carries from the intervéd, ) and will not employ
any the sub-carries from the intenjél o].

(5]

6
D. Distributed approach for alpha-fair sharing allocations []
We note that in the variational model the optimal strategym
depends only on the parametet the gain coefficienth,
the level of the background noi$¢’ and the total available
power resourcex. This observation allows us to design
distributed algorithms for the implementation of the general-[€]
ized o-fair resource allocation. There is a particular nee?lo]
for distributed algorithms in Ad Hoc, Sensor and Mesh
networks, see e.g. [2], [4], [9], [8]. We suggest here two
variants of the distributed algorithm. In the first variant, wetll
assume that the nodes are capable of arithmetic operatigg
and the Base Station trusts them so that it conveys them the
total available power resourceand the parametex. In this [13]
variant the nodes themselves compute the optimal strategy
either by solving equation (10) or by using formula (11) or
(12) depending on the choice of the objective function. 15!
the second variant, the Base Station computes the optimad
strategy as a function of the gain coefficient and distributes
this strategy to all nodes. The advantages of the second

(8]
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