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ABSTRACT
In this paper we present a first attempt to study analytically
the tradeoff between delivery delay and resource consump-
tion for epidemic routing in Delay Tolerant Networks. We
assume that the nodes cooperate in order to minimize a
common cost equal to a weighted sum of the packet deliv-
ery delay and the total number of copies, which is strongly
related to the power consumption. In this framework we
determine the best policy each node should deploy in a very
simple scenario where all the nodes have perfect knowledge
of the system status. The result is used as an ideal reference
to evaluate the performance of some heuristics proposed, in-
vestigating potential performance improvements and config-
uration criteria.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols; H.1.0 [Models
and Principles]: Resource Tradeoffs

General Terms
Algorithms, Design, Performance

Keywords
Delay Tolerant Networks, Epidemic Routing, Performance
tradeoff

1. INTRODUCTION
Epidemic routing [10] has been proposed as an approach

for routing in sparse and/or highly mobile networks in which
there may not be a contemporaneous path from source to
destination. Epidemic routing adopts a so-called “store-
carry-forward” paradigm – a node receiving a packet buffers
and carries that packet as it moves, and passes the packet
on to new nodes that it encounters. Analogous to the spread
of infectious diseases, each time a packet-carrying node en-
counters a new node that does not have a copy of that
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packet, the carrier is said to infect this new node by pass-
ing on a packet copy; newly infected nodes, in turn, behave
similarly. The destination receives the packet when it first
meets an infected node. Epidemic routing is able to achieve
minimum delivery delay at the expense of increased use of
resources such as buffer space, bandwidth, and transmission
power.

Variations of epidemic routing have recently been pro-
posed in order to exploit the trade-off between delivery delay
and resource consumption. For example, under probabilistic
forwarding [5, 4], an infected node does not copy the packet
at every encounter, but it copies the packet to other relay
nodes with probability p. The higher the probability, the
lower the delay and the higher the consumption of resources.
When p = 0 the scheme reduces to direct forwarding from
the source to the destination, while when p = 1 it reduces
to standard epidemic routing. Other variations take into
consideration the fact that the copies made at the start of
the epidemic spreading are more useful than those made at
the end. For example in K-hop schemes [6, 3] a path to
the destination cannot be longer than K hops: each packet
has a Time To Live (TTL), that is decreased by one from
each node receiving a new copy, when the TTL is one, the
node can deliver the packet only to the destination. Spray-
and-wait [9, 8] (or token-based forwarding), on the other
hand, limits the total number of copies that can be made
for each packet using tokens. When the packet is generated,
the source has T tokens available. Every time an infected
node copies a packet to another node, it also transfers to
the node half of its tokens. When an infected node has only
one token, it can only deliver the packet to the destination.
This way, the number of tokens T is the maximum number
of copies in the system. Note that both K-hop and token-
based forwarding behave as classic epidemic routing at the
beginning of the infection, while they reduce the number of
copies as the infection spreads.

Although many schemes have been proposed, nobody, to
the best of our knowledge, has tried so far to study analyt-
ically the tradeoff issue. In this paper we assume that all
nodes in the network cooperate (a reasonable assumption in
sensor networks) in order to minimize a common cost equal
to a weighted sum of the delivery delay of the packet and
the total number of copies made in the system. The total
number of copies made for each packet is strongly related
to the transmission power consumption. In this framework
we address the problem of determining the best policy each
node should deploy in order to minimize the cost: the policy
prescribes if the node, according to its available information,



should copy or not the packet when it encounters another
non-infected node. In general the policy depends on the
information available to the node. In this paper we ana-
lytically determine the best policy in the most favourable
case where each node has perfect knowledge of the current
system state, for example it knows the current number of
copies present in the system1. This is clearly an ideal case,
as, in reality, the spreading of state information in the sys-
tem is limited by the same encounter process that limits
the spreading of the packet. Nevertheless it can be con-
sidered a best case reference to compare the performance
of existing heuristics and estimate potential improvements.
As regards this issue, we consider in this paper probabilis-
tic forwarding and token-based forwarding: our study shows
that token-based forwarding is able to achieve near-optimal
performance under an appropriate setting, and our analysis
of the ideal case study provides some hints to identify such
setting.

In our study we mainly rely on Markovian models for the
packet spreading process: the inter-meeting times between
nodes are assumed to be independent and identically dis-
tributed exponential random variables. Markovian models
have been used to study the performance of epidemic rout-
ing [7, 3, 4], 2-hop forwarding [3], and spray-and-wait [9, 8]
and fluid models have been derived from Markovian mod-
els [12]. A support for this assumption comes from [3],
where the authors consider common node mobility models
(e.g., random waypoint and random direction mobility) and
show that nodal inter-meeting times are nearly exponen-
tially distributed when transmission ranges are small com-
pared to the network’s area, and node velocity is sufficiently
high. This observation suggests that Markovian models of
epidemic routing can lead to quite accurate performance
predictions. Indeed [3] develops Markov chain models for
epidemic routing and 2-hop forwarding, and derives the av-
erage source-to-destination delivery delay and the number
of extant copies of a packet at the time of delivery; model
predictions are validated through simulations.

2. THE MODEL
We consider a set of N + 1 nodes with a finite transmis-

sion range moving in a closed area. We say that two nodes
“meet” when they come within transmission range of each
other, at which point they can exchange packets. There can
be multiple source-destination pairs, but we assume that at
a given time there is a single packet, eventually with many
copies, spreading in the network2. The source of the packet
can be viewed as the first carrier of a new disease, the first
infected node. Every time it meets another node, it can de-
cide to copy the packet to (infects) the other or not. The
transmission of the packet copy requires energy, hence it
reduces the lifetime of the node battery, at the same time
it decreases the expected delivery delay. The new infected
nodes act in the same way. As a result, the population of
susceptible nodes –i.e., nodes without a copy of the packet–
decreases over time. Once a node carrying a copy of the
packet meets the destination, it passes the packet on to the

1The rigorous definition of the system state is in Section 2.
2Nothing changes if we consider many packets, but we as-
sume that the bandwidth and the buffer are large enough to
assure that the different propagation processes are indepen-
dent.

destination, deletes the packet from its own buffer, and re-
tains “packet-delivered” information (an anti-packet) which
will prevent it from receiving another copy of this packet in
the future; such a node has recovered from the disease. Dif-
ferent recovery schemes can be deployed [12]. In this work
we ignore the recovery process because we assume that nodes
know instantaneously when the packet has been delivered to
the destination3.

As we said in the introduction, we consider a Poisson
process for the meetings among the nodes: the pairwise
inter-meeting times are exponential random variable with
rate β. [3] showed that the pairwise meeting time between
nodes is nearly exponentially distributed, if nodes move in
a limited region (of area A) according to common mobility
models (such as the random waypoint or random direction
model [2]) and if their transmission range (d) is small com-
pared to A, and their speed is sufficiently high. The authors
also derived the following formula for estimating the pair-
wise meeting rate β:

β ≈
2wdE{V ∗}

A
, (1)

where w is a constant specific to the mobility model, and
E{V ∗} is the average relative speed between two nodes.

Let us define nI(t) the number of infected nodes at time t.
The superposition of independent Poisson processes is a
Poisson process with rate equal to the sum of the rates.
Hence the meeting process between infected nodes and the
destination is a nonhomogeneous Poisson process with rate
βnI (t). Similarly it can be shown that the meeting process
between infected nodes and susceptible nodes is a nonhomo-
geneous Poisson process with rate βnI (t)(N − nI(t)).

We want to determine the optimal policy of each node,
i.e., the decision criterium according to which an infected
node decides if copying or not the packet when it meets a
susceptible node. The optimization goal is to minimize the
following cost:

J = E{Td + γ ∗ MC}, (2)

where Td is the delivery delay to the destination, MC is
the total number of copies done in the network and γ is a
parameter which allows one to relate time and energy con-
sumption. The parameter γ is a design choice, the higher
its value the more we give importance to the energy issue in
comparison to timely delivery.

For the sake of clarity we start introducing our notation
in the following simple scenario.

2.1 Simple Epidemic Spreading
Let us consider the following scenario: each infected node

copies the packet every time it can, i.e., every time it meets
a susceptible node, and the whole process instantaneously
stops when the destination receives a copy –i.e., all the nodes
are immediately informed that the destination has received
the packet.

We denote the beginning of the infection (when the packet
is generated at the source) as t0 = 0 and consider nI(0) = 1.
The state can assume values 0, 1, 2, . . . N , where nI (t) = 0

3Note that in some cases the cost of the recovery process
does not affect the determination of the optimal policy. For
example under Vaccine scheme [12], the anti-packet is prop-
agated to all the nodes, hence the recovery cost is constant
(equal to the cost of transmitting N anti-packets).



corresponds to the final absorbing state when the packet
has been delivered to the destination. The state changes
whenever an infected node meets a susceptible one or the
destination. If we denote the time of the k-th meeting as
tk, then the new state is n(tk) = n(tk−1) + 1 for a meeting
with a susceptible node, n(tk) = 0 for a meeting with the
destination4.

We will show that the optimal policy depends on the tran-
sition probabilities and the average transition times. Let us
define mi,j the probability of transition from state i to state
j, and G(i) the average transition time from state i. In this
simple case if the state at time tk is n(tk) = i, then the prob-
ability to move to the state i + 1 is the probability that in-
fected nodes meet another susceptible node before the desti-
nation, i.e., mi,i+1 = (N−i)/(N−i+1). Similarly the prob-
ability to move to state 0 is mi,0 = 1/(N−i+1) = 1−mi,i+1.
All the other transition probabilities are zero. The average
transition time from state i is equal to 1/(βi(N − i + 1)).

2.2 The Optimal Forwarding Scheme under
Perfect State Information

Here we introduce the decision process of the nodes: when
an infected node meets a susceptible one it can decide to
make a copy or not. The decision at time tk is denoted uk,
where uk = c if the packet is copied, while uk = c otherwise.
The transition probabilities and the average transition times
are now a function of the decision at time tk as we are going
to detail.

We assume perfect state information at each node, i.e., all
the nodes know exactly the number of infected nodes in the
system at time t (nI(t)) and if the destination has already
received the packet. The performance in this ideal case rep-
resents a lower bound for the cost of each real system. In the
more general case we deal with a distributed stochastic opti-
mal control problem, but under the previous assumption all
the nodes have the same information, hence the distributed
nature of the decision process is lost and we can consider a
single controller which decides, whereas the actuator of the
decision is the specific infected node. For this reason the
problem can be studied as a stochastic shortest path with
finite state and exponential transition time.

In order to present the derivation coherently with the com-
mon description of stochastic shortest path (see for exam-
ple [1]), we need to define in a more elaborated way the
state of the system. We want introduce the decisions as
functions of the current state of the system. For this rea-
son we define the state of the system at the meeting time
tk, xk = x(tk), as the number of infected nodes before the
decision, which in general changes such number. However
the meeting with the destination has to be considered dif-
ferently. In this case there is no decision to be made by
the node and we consider that the state of the system im-
mediately becomes zero (x(tk) = 0). Formally, x(t) = 0
if at time t an infected node meets the destination, other-
wise x(t) = nI(t

−) = limτ→t− nI(t). Besides we assume
x(0) = 1.

Now we are able to define clearly what is an optimal cri-
terium. An admissible policy is the (infinite) set of functions
π = {µ1, . . . , µk, . . .}, where µk maps state xk into controls
uk. The cost function of an admissible policy starting at

4The packet will not be copied anymore after the delivery
to the destination, and we can assume that all the copies
will be deleted at each node.

time t1 from state i is the limit of the cost from t1 to tK ,
when K diverges, i.e.:

Jπ(i) = lim
K→∞

K−1
∑

k=1

E

{(

ĝ(xk, µk(xk)) +

+

∫ tk+1

tk

g(xk, µk(xk))dt

)

∣

∣

∣
x1 = i

}

, (3)

where ĝ(xk, µk(xk)) is the finite cost of the decision taken
at time tk, while g(xk, µk(xk)) is the cost per unit time. If
we want that the total cost is expressed by equation (2),
we have to consider g(xk, µk(xk)) = 1, ĝ(xk, c) = γ and
ĝ(xk, c) = 0. The total cost Jπ includes also the time cost
from the begin of the infection t0 = 0 to the first meeting
time t1 and the cost of the last copy to the destination. It
holds:

Jπ = E

{
∫ t1

t0

1dt
∣

∣

∣
x0 = 1

}

+ Jπ(1) + γ =

= E
{

t1

∣

∣

∣
x0 = 1

}

+ Jπ(1) + γ. (4)

Note that in [t0, t1) there is no decision from the node, hence
this additional term does not depend on the policy, and
we can simply consider equation (3) to identify the best
policy. Similarly as regards the cost of the last copy which
is constant and has to be borne in any case.

Equation (3) can be written in the form:

Jπ(i) = ĝ(i, µ1(i)) + G(i, µ1(i)) +
N

∑

j=0

mi,j(µ1(i))Jπ2
(j)

= ĝ(i, µ1(i)) + G(i, µ1(i)) +

+

N
∑

j=1

mi,j(µ1(i))Jπ2
(j), (5)

where Jπ2
is the cost-to-go of the policy π2 = {µ2, µ3, · · · }

that is used from the second meeting time, mi,j(u) is the
probability of transition from state i to state j under the
decision u, and G(i, u) is the average transition time from
state i to another state, when the decision is u. The second
equality is a consequence of zero cost in the final absorbing
state (Jπ(0) = 0). The following expressions for G(i, u) and
mi,j (with i, j 6= 0) are derived in Appendix A.

G(i, u) =











1

βi(N − i + 1)
if u = c,

1

β(i + 1)(N − i)
if u = c,

mi,j(u) =



























N − i

N − i + 1
if j = i and u = c,

N − i − 1

N − i
if j = i + 1 and u = c,

0 otherwise.

The optimal cost function J∗ is the unique solution of
Bellman’s equation [1]:

J∗(i) = min
u∈{c,c}

{

ĝ(i, u) + G(i, u) +

N
∑

j=1

mi,j(u)J∗(j)

}

(6)

A stationary policy is an admissible policy of the form
π = {µ, µ . . .}. For brevity we refer to {µ, µ . . .} as the sta-



tionary policy µ. A stationary policy is optimal if and only
if for every state i, µ(i) attains the minimum in Bellman’s
equation [1].

Now we are ready to introduce the main analytical con-
tribution of the paper.

Proposition 1. There is an optimal stationary policy µ
with a threshold behavior, i.e., ∃h ∈ {1, 2, . . . , N}, such that

µ(i) =

{

c if i < h,
c otherwise,

and the threshold h is the minimum between N and the so-
lution of the following inequalities:

h(h − 1) <
1

βγ
≤ h(h + 1).

The proposition states that the optimal policy for each node
is to copy the packet every time it is possible until the total
number of infected nodes is equal to h (h − 1 copies are
done), or the packet is delivered to the destination.

It is interesting to note that, as far as there are enough
nodes, the threshold value does not depend on the total
number of nodes in the network, but simply on their pair-
wise meeting rate and on weight γ in the cost function. This
appears evident if one considers the following problem: how
many infected nodes we should start the infection with, as-
suming that we want to minimize the cost (2) and we have
to pay γ for each infected node but the first one? The opti-
mal number is equal to h. The total number of nodes N can
only act as a constraint, when we would like to pay for more
infected nodes but we do not have enough nodes, otherwise
the choice of initial infected nodes does not depend on N ,
because these nodes will interact only with the destination
and the cost depends only on the pairwise meeting rate.
While the optimal policy for our original problem does not
depend on N , the expected cost does. In fact the total num-
ber of nodes has an effect on the speed of the infection before
reaching h infected nodes, and also on the expected num-
ber of copies which will be done before the delivery to the
destination. The proof of Proposition 1 is in Appendix B.

The following proposition presents an interesting interpre-
tation of the optimal policy.

Proposition 2. An equivalent representation for the op-
timal stationary policy is

µ(i) =







c if γ +
1

β(i + 1)
<

1

βi
,

c otherwise.

Hence we can think that each node compares two costs in
order to decide if copying or not the packet: 1/(βi) is the
expected residual (i.e., from current state) cost if the packet
is not copied, while γ +1/(β(i+1)) is the expected residual
cost if the packet is copied only one more time. The nodes
decides to copy or not respectively if the second cost or the
first one is lower. While the first cost looks intuitive, we
could expect the node to consider the possibility to add more
than one copy (it has now the possibility to add one more,
but other nodes or it itself could make more copies in the fu-
ture). This particular structure of the policy comes out from
the specific marginal costs of the problem. Figure 1 shows
the expected time cost E{Td} versus the number of infected
nodes i (E{Td} = 1/(βi)), it appears that the marginal ben-
efit from increasing the number of infected nodes by one

E{Td}

infected
nodes #

h

�

Figure 1: Expected Time Cost vs Number of In-
fected Nodes

Table 1: Delivery Delay and Number of Copies
Mechanism E{Td} E{MC,del} E{MC}

opt γ = 0.5 17.62 19.42 19.42
opt γ = 4 33.34 7.64 7.64

prob 0.1% 209.18 1.09 1.09
prob 1% 176.98 1.96 1.97
prob 2% 153.53 3.02 3.14
prob 4% 102.73 5.01 5.53
prob 10% 57.61 9.90 12.51
prob 20% 39.01 17.07 25.46
prob 40% 24.53 30.88 52.98
prob 60% 19.45 39.84 71.36
prob 80% 15.22 43.33 79.08
prob 100% 12.77 48.85 87.35

token 2 114.30 1.95 1.95
token 5 57.78 4.86 4.91
token 10 29.33 8.81 9.44
token 20 18.44 15.91 18.31
token 30 17.43 21.79 27.02
token 40 16.75 27.50 34.98
token 50 15.04 29.68 41.69
token 60 16.04 33.96 48.68
token 80 14.78 37.76 57.44
token 100 14.11 40.02 64.30

decreases as i increases, while the marginal power cost γ is
constant. When i = h the marginal power cost exceeds the
marginal benefit coming from time cost decrease. The proof
of Proposition 2 is in Appendix C.

3. COMPARISON WITH HEURISTICS
In this section we compare the performance of the ideal

algorithm and two heuristics we described in the introduc-
tion: probabilistic forwarding [5, 4] and Spray-and-Wait [9,
8]. Both schemes enable the trade-off between delivery de-
lay and number of copies through a tunable parameter: the
forwarding probability p and the number of token T . In this
paper we consider a variant of Spray-and-Wait where two
infected nodes equilibrate their number of tokens when they
meet [11]. We refer to this variant as token-based forward-
ing.

As reference we consider N + 1 = 101 nodes and expo-
nential pairwise meeting times with rate β = 0.0045 . Also

5Note that, under exponential assumption, the performance
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Figure 2: Probabilistic forwarding vs Optimal for-
warding

when we recur to simulations we directly consider exponen-
tial inter-meeting times according to [3]. As regards the cost
(J = E{Td + γ ∗ MC}) at the moment we consider γ1 = 0.5
and γ2 = 4. Clearly in the second case the energy consump-
tion has a higher relevance. The corresponding thresholds
for the optimal scheme can be determined from the inequal-
ities in Proposition 1, they are h1 = 22 and h2 = 8 re-
spectively. The corresponding expected costs (evaluated re-
cursively from equations (5) and (4)) are 27.94 and 66.42.
Table 1 shows also the average delivery delay E{Td} and the
average number of copies E{MC}. E{MC,del} is the average
number of copies at the moment of the delivery to the des-
tination, it clearly coincides with E{MC} in this ideal case.
These numerical values have been obtained by simulations
of the corresponding Markov processes, the relative width
of the 95% confidence interval is below 2%.

Table 1 shows the same metrics for the two heuristics
schemes for 10 different settings of p and T . Both schemes
can exploit the trade-off between delivery delay and num-
ber of copies: for probabilistic (token-based) forwarding the
average delivery delay decreases as p(T ) increases, but at
the same time the number of copies increases. These values
have been determined using an event-driven simulator, the
relative width of the 95% confidence intervals is lower than
15%.

Now we consider the performance of the different schemes
in terms of the weighted cost J = E{Td + γ ∗ MC}. In Fig-
ure 2 the two horizontal dashed lines correspond to the costs
achieved by the optimal algorithm for γ1 = 0.5 and γ2 = 4.
The solid curves are obtained from the values in Table 1
(considering also other settings), they represent the average
costs that probabilistic forwarding achieves for different val-
ues of p: one curve corresponds to γ1, the other to γ2. For
small values of p the main contribution to the cost is the
delivery delay and the cost decreases as p increases, because
the delivery delay decreases. On the contrary for higher

depends on the product βγ, hence it is not restrictive to
consider a single value for β as far as we consider different
values for γ.
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Figure 3: Token-based forwarding vs Optimal for-
warding

Table 2: Configuration of Token-based forwarding
on the basis of the Optimal forwarding scheme

γ threshold Loss% Loss%
(h) (@T = h) (Min,Avg)

0.25 32 15% (4.1%,55%)
0.5 22 12% (6.0%,41%)
1 16 11% (5.0%,37%)
2 11 0.0% (-0.6%,47%)
4 8 -2.6% (-2.6%,72%)
8 6 -3.2% (-3.2%,120%)

probability p the number of copies becomes the larger term
in equation (2) and the cost increases as p increases. The
slope of the curve for high p is clearly less steep for γ = 0.5
than for γ = 4. The best settings for probabilistic forward-
ing are p ≈ 0.4 and p ≈ 0.1 respectively for γ = 0.5 and
γ = 4. The increase in cost in comparison to the optimal
scheme is respectively 50% and 60%. The dashed curves rep-
resent the costs of probabilistic forwarding if we assume that
when the packet is delivered to the destination, this infor-
mation is instantaneously propagated to all the nodes which
stop copying the packet. In other words, these are the costs
accumulated up to the delivery time and they have been
evaluated considering the average number of copies at the
moment of the delivery (E{MC,del}) in Table 1. Under this
assumption the performance loss of the scheme is reduced
but it is still significant for large γ.

Figure 3 shows the corresponding curves for the token-
based mechanism. It appears that this mechanism not only
achieves better performance than probabilistic forwarding,
but also achieves a cost which is close to optimal with a care-
ful setting. The performance loss is almost not appreciable:
the confidence intervals corresponding to the best settings
of token-based forwarding include the minimum cost achiev-
able from the optimal scheme. It is also interesting to ob-
serve that the best setting for token-based forwarding (as de-
rived from simulations) seems strongly related to the thresh-
old of the optimal algorithm. This is not surprising since
both the threshold and the number of tokens correspond



to the maximum number of infected nodes in the network.
In particular, Table 2 shows the optimal threshold values
(second column) for different γ and the performance loss of
token-based forwarding (third column) when the number of
tokens is set equal to the thresholds, i.e., T = h. The per-
formance loss is evaluated as the difference between the cost
under token-based forwarding and the optimal cost divided
by the optimal cost6. The results of such configurations are
compared with the minimum and the average loss over all
the possible token configurations (forth column). When the
cost sensitivity to γ is higher7 (e.g. for γ = 4, γ = 8), such
configuration criterium seems to achieves the best perfor-
mance. For smaller values of γ (flat curves, like that for
γ = 0.5 in Figure 3) it becomes harder to identify correctly
the best setting, anyway the proposed criterium achieves
good results in comparison to a blind setting, which would
produce the average loss in Table 2.

4. CONCLUSIONS
This work presents the first attempt to study analytically

the tradeoff between delivery delay and resource consump-
tion for epidemic routing in Delay Tolerant Networks. We
considered the ideal scenario where all the nodes have per-
fect knowledge of the system status and we have been able
to completely characterize the optimal policy under this as-
sumption. The optimal policy confirms the intuition that
copies of the packet are more useful at the beginning of the
infection.

Two heuristics have been compared with the optimal for-
warding scheme: probabilistic forwarding and token-based
forwarding. The preliminary results suggest that, in a real-
istic scenario, it is probably hard to design new schemes able
to achieve better performance than token-based forwarding
does; it could be more profitable to identify configuration
criteria for token-based forwarding. Our study of the opti-
mal scheme seems to provide also some directions to inves-
tigate such configuration criteria.
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APPENDIX
A. G(i, u) AND mi,j(u)

G(i, u) is the average transition time from state i to an-
other state when the decision is u. The state changes when
an infected node meets a susceptible node or the destina-
tion. If u = c, then the number of infected nodes does not
change. The transition rate is βi(N − i+1) and the average
transition time:

G(i, c) =
1

βi(N − i + 1)
.

Otherwise, if u = c the number of infected node increases to
i+1, the transition rate is β(i+1)(N − i) and the transition
time:

G(i, c) =
1

β(i + 1)(N − i)
.

mi,j(u) is the probability of transition from state i to state
j under the decision u. We consider i, j 6= 0 because we
assume zero cost in the final absorbing state 0, hence tran-
sitions to this state do not appear in equation (5) and we do
not need to evaluate transition probabilities mi,0. If u = c,
the number of infected nodes keeps constant equal to i, and
the state at the next meeting time is still i with probabil-
ity (N − i)/(N − i + 1), i.e., the probability that infected
node meet another susceptible node before the destination.
If u = c, the number of infected nodes increases to i+1, and
the state at the next meeting time is i + 1 with probability
(N − i − 1)/(N − i).

B. PROOF OF PROPOSITION 1
Proof. The proof is divided into four parts:

1) we show that we can restrict our attention to stationary
policy;

2) we evaluate Bellman’s equation (6) and derive some use-
ful relations;

3) we prove that the optimal stationary policy is a threshold
policy;

4) we derive the threshold value.

1) Due to the markovian assumption, the decision process
can take into account only the current number of infected
nodes, without considering the number of previous encoun-
ters. For this reason we can restrict our attention to sta-
tionary policy µ. A stationary policy is optimal if and only
if it achieves the minimum in Bellman’s equation (6).

2) We evaluate Bellman’s equation (6):

J∗(i) = min

{

ĝ(i, c) + G(i, c) +
N

∑

j=1

mi,j(c)J
∗(j),

ĝ(i, c) + G(i, c) +
N

∑

j=1

mi,j(c)J
∗(j)

}

=

= min {γ + G(i, c) + mi,i+1J
∗(i + 1),

G(i, c) + mi,iJ
∗(i)} . (7)

We observe that under an optimal scheme if the best de-
cision in state l is “not-copy” (µ(l) = c), then we can have
at most l copies in the system, in fact the system will never
reach state l + 1 and the expected cost from state l is equal

to the expected time to meet the destination from state l,
i.e., 1/(βl). This can be derived from equation (7), in fact
µ(l) = c implies that the minimum is achieved with the
second term, i.e.:

J∗(l) = G(l, c) + ml,lJ
∗(l),

and after some calculations we derive

J∗(l) =
1

βl
.

We define Jc(i) = 1/(βi) and Jc(i) = γ+G(i, c)+mi,i+1J
∗(i+

1). The Bellman’s equation can be simply rewritten as:

J∗(i) = min {Jc(i), Jc(i)}

The following relation holds:

Jc(i) = G(i, c) + mi,iJc(i).

In fact it can be interpreted in the following way considering
the regeneration process: the average time to meet the des-
tination is equal to the average time to meet the destination
or a susceptible node plus the expected time to meet the
destination times the probability that the node has not met
the destination (mi,i). Similarly:

Jc(i + 1) = G(i, c) + mi,i+1Jc(i + 1). (8)

3) We want to prove that an optimal policy µ is a thresh-
old policy, more specifically there exists 0 < h ≤ N such
that

µ(i) =

{

c if i < h,
c otherwise

In particular we are going to show that if

a) J∗(i+1) = Jc(i+1) (it is always satisfied for i+1 = N)
and

b) J∗(i) = Jc(i),

then J∗(i − k) = Jc(i − k) for all k ≥ 1.

J∗(i)=
b

Jc(i) = γ + J∗(i + 1) =
a

γ + Jc(i + 1) = γ +
1

β(i + 1)
,

and from

J∗(i)<
b

Jc(i),

it follows:

γ +
1

β(i + 1)
<

1

βi
. (9)

Note that

γ +
1

β(j + 1)
<

1

βj
, for all j ≤ i. (10)

For k ≥ 1:

Jc(i − k) = γ + G(i − k, c) + mi,i+1J
∗(i − k + 1)

≤ γ + G(i − k, c) + mi,i+1Jc(i − k + 1)

= γ + Jc(i − k + 1)

= γ +
1

β(i − k + 1)

<
1

β(i − k)

= Jc(i − k),



where the first inequality is a consequence of J∗(i − k) =
min{Jc(i − k), Jc(i − k)}, the second equality follows from
equation (8) and the second inequality follows from inequal-
ity (10).

4) Once that we proved that the optimum policy is a
threshold policy, we can determine the threshold value h. It
is equal to N , if i = N − 1 satisfies equation (9): in this
case the number of infected nodes can reach its maximum
value N . Otherwise h is smaller than N and it is equal to
the smallest value that does not satisfies equation (9), i.e.:

γ +
1

βh
<

1

β(h − 1)

γ +
1

β(h + 1)
≥

1

βh
.

The inequalities above can also be written in the following
way:

h(h − 1) <
1

βγ
≤ h(h + 1).

C. PROOF OF PROPOSITION 2
Proof. It is easy to verify that i < h if and only if γ +

1/(β(i + 1)) < 1/(βi). It follows from the inequalities in
Proposition 1 and from:

• i < h if and only if i(i + 1) ≤ h(h − 1);

• γ + 1
β(i+1)

< 1
βi

if and only if i(i + 1) < 1
βγ

.

Then we can just replace the condition i < h in the opti-
mal policy definition with the equivalent one, and we get:

µ(i) =







c if γ +
1

β(i + 1)
<

1

βi
,

c otherwise.


