
Is TCP Packet Reordering Always Harmful?

Giovanni Neglia(∗), Vincenzo Falletta(∗), Giuseppe Bianchi(+)

(∗) Dipartimento di Ingegneria Elettrica
Università degli Studi di Palermo, viale delle Scienze, ed. 9

90128 Palermo, Italy
{giovanni.neglia,vincenzo.falletta}@tti.unipa.it

(+) Dipartimento di Ingegneria Elettronica
Università degli Studi di Roma - Tor Vergata, Via del Politecnico,1

00133 - Roma, Italy
bianchi@elet.polimi.it

Abstract

IP networks do not provide any guarantee that pack-
ets belonging to the same flow are delivered in the cor-
rect order. It can be argued that out-of-order reception
of packets is limited to pathological network conditions
(such as link failures, etc). However, it has been ex-
perimentally proven in the past that packet reordering
is a phenomenon which do occurs even in normal net-
work operation, due to a number of link-level and/or
router-level implementation features such as local par-
allelism and load balancing. Packet reordering is in-
tuitively considered as a negative phenomenon, which
may severely affect TCP traffic performance since it is
expected to cause inefficient usage of the available link
bandwidth and is expected to induce bursty transmis-
sion behaviour. Instead, in this paper, we show that a
limited amount of reordering can improve network per-
formance. To the authors’ knowledge, this is the first
paper which claims that TCP packet reordering, rather
than being harmful, may be a beneficial phenomenon in
terms of overall network performance. In order to jus-
tify this perhaps counter-intuitive result, in addition to
extensive simulation results, we present a theoretical jus-
tification, by providing an analogy with the performance
improvements experienced when TCP flows encounter a
small dropping probability.

Introduction: Packet Reordering

Packet reordering is a phenomenon which occurs when
packets belonging to a same flow are received in a dif-
ferent order than the packet transmission one1. Packet
reordering was originally considered to be an uncommon
event, occurring only in pathological network conditions,
e.g. caused by router malfunctioning, route flapping, etc.
However, recent studies have shown that in present IP
networks there are several causes of reordering under ab-
solutely normal network operation.

Previous research work (Bennett & Partridge & Shect-
man, 1999) has identified two major causes for the oc-
currence of packet reordering: local parallelism and load
balancing.

Local parallelism implies that packets may follow mul-
tiple paths within a device or logical link. Examples
of local parallelism are link-level striping and switches
which allow packets traveling between the same source
and destination to take different paths through the

1Hence packet reordering refers to the disorder caused
by the network and not to the packet resequencing problem
considered often in queueing theory papers like (Kamoun &
Kleinrock & Muntz, 1981).

switch. Local parallelism is an increasing phenomenon in
modern Internet devices, because it leads to reduce the
cost of equipments and trunks. It is often more cost ef-
fective to put two components in parallel than to use one
component that has twice the speed. A concrete example
of local parallelism at the data link layer is represented
by the 802.3ad link aggregation control protocol, today
extensively used in giga-ethernet switches.

Load balancing means distributing processing and
communications activity evenly across a computer net-
work so that no single device is overwhelmed. For ex-
ample IS-IS, the Interior Gateway Protocol (IGP) used
by Sprint provides a load balancing mechanism based on
link weights (Iannaccone & Jaiswal & Diot, 2001) and
can cause reordering.

The amount of reordering in IP networks is quite de-
bated: early experimental results (Bennett et al., 1999)
suggest that the probability of a session experiencing re-
ordering is over 90%. More recent results (Iannaccone
et al., 2001, Iannaccone, & Jaiswal, & Diot, & Kurose,
& Towsley, 2003) state that the same probability ap-
pears to be below 3% and the number of packets that
are reordered is no more than 2%. Anyway, whatever
the amount of reordering is, reordering is usually con-
sidered harmful for TCP flows. In fact, in TCP, packets
received out of order cause the transmission of a dupli-
cate ACKs, which interfere with the normal operation
of the TCP congestion control algorithm. Due to re-
ordering, TCP flows may experience a great difficulty
in opening their congestion windows and may end up
in making inefficient usage of the available link band-
width. Moreover, TCP flows may lose self-clocking and
become highly bursty. The reader can refer to (Ben-
nett et al., 1999) for a detailed overview of the effects
caused by packet reordering. Here, we simply summa-
rize that forward-path reordering has five side-effects: 1)
it may trigger fast retransmission and cause unnecessary
retransmissions; 2) it may trigger fast recovery and cause
unnecessary slowdown of TCP window growth (cwnd
and ssthresh); 3) it may obscure actual packet losses; 4)
it may cause the round-trip estimator to poorly estimate
the roundtrip time; and 5) it may reduce the efficiency of
the receiving TCP. Reverse-path reordering has one ma-
jor effect: a loss of self-clocking leading to highly bursty
transmission patterns.

Notwithstanding these negative effects of reordering,
the goal of this paper is to show, via extensive simulation

results, that a limited amount of reordering may improve
the network performance in terms of delay versus utiliza-
tion. In order to explain these apparently surprising and
counter-intuitive results, we carry out an analogy with a
simplified system model where TCP sources experience
an artificially induced steady-state dropping probabil-
ity. This simplified scenario can be analytically evalu-
ated, and leads us to conclude that, in the presence of a
“small” (to be quantified in this paper) packet loss prob-
ability, an improvement in terms of network performance
is expected.

The rest of this paper is organized as follows. In the
next section, we present the simulation scenario and pa-
rameters, focusing in particular on the way reordering
has been obtained. We then follow up by presenting
simulation results which show that packet reordering
may have a beneficial effect on the network performance.
Then, we try to provide a theoretical justification for the
obtained results by making an analogy with a system
characterized by a given steady-state dropping probabil-
ity. Finally, in the last section, conclusive remarks are
drawn.

Simulation Scenario

We have run simulations using ns-2.1b9a (Network Sim-
ulator). In order to introduce packet reordering we have
modified an existing ns module (“hiccup” by Morten
Schlaeger, Technical University of Berlin). Hiccup pro-
vides functionalities to simulate link outages and seg-
ment reordering without loosing a packet. The hiccup
class is derived form the ns queue class and integrated
into the ns link object. The hiccup operates in four
different modes. In HICCUP IDLE mode, all packets
are directly passed to the next link object. In HIC-
CUP DELAY mode packets are queued until the mode
is changed back to HICCUP IDLE, then all packets are
passed to the neighbor object in a single, no time con-
suming, burst. In HICCUP RESORT mode, the queue-
ing of a single packet is delayed until resort len later
packets are queued. The last mode, HICCUP CONG,
allows to drop packets. The hiccup module drops all
packets until it is set to a different mode.

In our study we employed hiccup only in HIC-
CUP RESORT and HICCUP CONG modes. The hic-
cup operation in HICCUP RESORT mode allows one to
obtain specific packet lag2 patterns. Despite of this, one
can shortly see that this behavior is not directly related
to the physical phenomenon that causes packet reorder-
ing. Besides it can produce spurious timeouts when the
hiccup module operates on a per-flow basis (as in our
simulations), in fact the hiccup module could wait for
new packets before transmitting old ones, while the TCP
window do not allow the sender to transmit them.

In order to overcome this problem and to repro-
duce a more realistic behavior we modified the HIC-

2In (Iannaccone et al., 2001) the packet lag of a reordered
packet is defined as the number of packets with a sequence
number greater than the one of the reordered packet, that are
seen before the reordered packet itself; if the hiccup module
operates on a per-flow basis, the packet lag coincides with
the resort len parameter.

C1 C2

E1

E2

E3

E4

6Mbps
19ms

30Mbps

30Mbps
0.5 ÷ 4.5ms

60Mbps
19ms

60Mbps
19ms

0.5 ÷ 4.5ms
S3

S4

S5

S6

S7

S10

S1
S2

9S

S8

D1
D2

D3

D4

D5

D10

D9

D8

D7

D6

hiccup

Figure 1: Network topology

CUP RESORT mode so that it introduces a tunable per-
packet random delay. The random delay is the sum of an
exponential random variable with expected value τ and
a constant term equal to T−τ . So τ can be changed, but
the average delay introduced by hiccup is constant and
equal to T . Finally we have also modified the way the
module works in HICCUP CONG: packet are dropped
independently with a constant probability (ps) selected
during the simulation set-up.

Our analysis has been developed on the network topol-
ogy shown in figure 1. The central part has a simple
structure, with a 6Mbps single-bottleneck link between
the core routers C1 and C2, where C1 implements RED.

We have set up 10 sources (Si, i = 1, 2, ...10), each one
connected to one of the edges E1 and E2 by a 30Mbps
link. We considered long-lived flows. The sources em-
ploy TCP Reno and have always data to transmit to
destinations (Di, i = 1, 2, ...10), so the throughput is de-
termined only by the network conditions.

A hiccup module has been located between each source
and the edge. It introduces an average delay T = 6 ms.

In order to avoid synchronization among the sources,
each source starts to transmit randomly in the interval 0-
1 s, and propagation delays of the access links are chosen
so that Round Trip Time are different (from 124ms to
156ms, the average value is 140ms).

Each router deploys RED (Floyd & Jacobson, 1993)
as Active Queue Management. RED gateway calculates
the average queue size (avg), using a low-pass filter with
an exponential weighted moving average of the instanta-
neous queue (x): avg = wqx+(1−wq)avg. The average
queue size is compared to two thresholds, a minimum
threshold (minth) and a maximum threshold (maxth).
When the average queue size is less than the minimum
threshold, no packets are dropped. When the average
queue size is greater than the maximum threshold, ev-
ery incoming packet is dropped. When the average queue
size is between the minimum and the maximum thresh-
olds, each arriving packet is dropped with probability
p, where p is a linearly increasing function of the av-
erage queue size. RED configuration is hence specified
through three parameters: the minimum and the maxi-

Table 1: RED thresholds settings

minth (packets) maxth (packets)

8 24

16 48

24 72

32 96

48 144

64 192

96 288

mum threshold and the maximum dropping probability
in the region of random discard (Pmax). The thresholds
and Pmax are chosen according to (Floyd, 1997), the fil-
ter coefficient wq according to (Floyd & Gummadi &
Shenker, 2001), i.e. maxth = 3minth, Pmax = 0.1 and
wq = 1− exp(−M/(10 ∗RTT ∗C)) = 0.0012, where C is
the link capacity, M is the packet size and RTT is the
Round Trip Time.

RED configuration allows the network provider to
trade off link utilization and delay performance: the
higher the RED thresholds, the higher link utilization
and delay. Different settings were considered and they
are reported in table 1.

Lastly queue physical lengths were chosen so that
packet losses occurred only in the core router C1, due
to RED (not to physical queue overflow).

For each configuration at least 10 simulations with dif-
ferent random seeds were run. Each simulation lasted
1000 simulated seconds, statistics were collected after 50
seconds.

Simulation Results

The thorough performance evaluation of TCP traffic in
the presence of RED routers is by no means a simple
task. In fact, the specific configuration of the RED
thresholds is proven to strongly affect the TCP traffic
performance in terms of throughput and delay. Rather
than pre-selecting a given RED threshold configuration
(and thus evaluate the TCP traffic performance for the
very specific RED configuration chosen), we have found
very useful in the past (Neglia & Bianchi & Sottile, 2003)
to rely on the so-called concept of “performance fron-
tier”.

A performace frontier is a delay versus utilization plot,
where different network utilization levels are obtained
via different settings of the RED thresholds. As regards
link utilization we have not considered the throughput of
the TCP sources, but rather the goodput, i.e. the data
amount delivered to the applications at the receivers,
without losses and retransmissions, because it is more
significant from the user point of view. Figure 2 shows
the effect of reordering on the achievable performance
frontiers. Each curve represents the average queueing
delay versus the link utilization (goodput), for a specific

20

40

60

80

100

120

140

160

180

200

220

70 75 80 85 90 95 100

av
er

ag
e

qu
eu

ei
ng

-d
el

ay
 (

m
s)

link utilization (%)

RED thresholds 16,48

no reord
8.4% reord

14.2% reord

Figure 2: Delay vs link utilization with packet reordering

setting of the hiccup module. In particular τ = 0, 2, 4 ms
have been chosen respectively for the continuous curve,
the dashed one and the dotted one. The resulting per-
centage of packet reordering is reported in the legends of
the figure3. Each point in a given curve corresponds to a
specific configuration of the RED thresholds. The arrows
in the figure show the points corresponding to a partic-
ular RED configuration (minth = 16, maxth = 48). The
other points are obtained with the RED threshold con-
figurations summarized in table 1.

We can note that, as reordering increases, each point
moves towards lower queuing delay and higher link uti-
lization. At first sight, we could be surprised seeing the
frontiers moving right-down when we increase reorder-
ing, since this appears as an overall improvement of net-
work performance. On the contrary we would expect
a disturb like reordering to cause impairments to TCP
operation.

An analogy: constant dropping probability

In order to explain this counter-intuitive result, we con-
sider the effect of another form of disturb: a steady-state
dropping probability independent from the network con-
gestion status, as it could be introduced by a wireless
link. It is advantageous because a lot of research has
been done on the effect of random losses on TCP perfor-
mance and different formulas are available which relate
the throughput of a TCP source to the network dropping
probability and the average Round Trip Time (RTT).

In order to introduce an additional dropping probabil-
ity we configured the hiccup module in HICCUP CONG
mode. In figure 3, the performance frontiers for different
values of the dropping probability ps appear similar to
those in figure 2.

3Actually, as τ increases, the packet reordering probabil-
ity increases. Being τ constant, the reordering probability de-
creases slightly as we move from left (lower RED thresholds)
to right (higher RED thresholds). Hence, to avoid complex
notation, we have found simpler to label each curve with the
average value of reordering probability.

20

40

60

80

100

120

140

160

180

200

220

70 75 80 85 90 95 100

av
er

ag
e

qu
eu

ei
ng

-d
el

ay
 (

m
s)

link utilization (%)

no loss
0.5% loss

1% loss

Figure 3: Delay vs Link Utilization with packet dropping

The improvement for high threshold values is essen-
tially a decrease of the average queueing delay. This
reduction can be easily explained by the relation be-
tween throughput, average buffer occupancy (q) and
packet dropping probability (p), we indicate it with
T (q, p) (see for example (Padhye & Firoiu & Towsley
& Kurose, 1998) for a common formula). T () is a de-
creasing function of q and p. Usually packet discards
are caused by routers, hence in well-configured AQM
mechanism, dropping probability is a function of queue
occupancy through the AQM law, i.e. p = fAQM (q) and
T = T (q, fAQM (q)) = T (q). For high threshold values,
the network equilibrium point can be found if we con-
sider that TCP sources are able to achieve almost 100%
utilization of the bottleneck bandwidth, i.e. T ≈ C. The
equilibrium point (pi, qi, Ti) satisfies the following rela-
tions: T (qi, fAQM (qi)) = C, pi = fAQM (qi) and Ti = C.

When we add a steady dropping probability it holds:
p = ps + fAQM (q) and T = T (q, ps + fAQM (q)) =
T (q, ps). If ps < pi, then we can assume that T ≈ C
still holds and the new equilibrium point (pf , qf , Tf) sat-
isfies the following relations: T (qf , ps + fAQM (qf)) = C,
pf = fAQM (qf) and Tf = C. Being T () a decreasing
function of q and p, from the comparison of previous
equations it follows qf < qi. Hence the queueing de-
lay is reduced by the additional dropping probability. If
ps > pi no solution is admissible with T = C, in partic-
ular it will be Tf < C. These arguments are inspired to
those presented in (Firoiu & Borden, 2000) and justify
the curves behavior in figure 3 for high link utilization.

As regards low link utilization, i.e. low RED thresh-
olds, this kind of justification is not adequate, and we
have to proceed in a different way. Let us suppose that
an analytical expression exists relating the average queue
value to offered TCP traffic, i.e. a relation q = q(T) sim-
ilar to the relation for M/M/1 queue system q = ρ

1−ρ
,

where ρ is the normalized offered load. Using such rela-
tion and the previous one (T = T (q)) one would obtain
the network equilibrium point EPi, according to a fixed
point approach. Even if such relation is not known, it

EPiEP’f

EPf

q

T
C=500 packets/s

T(q,p =0.5%)s

T(q,p =0)s
~q(T)

q(T)

 0
 0 5 10 15 20

Figure 4: Determination of equilibrium points

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

oc
cu

rr
en

ce
s

(%
)

cwnd

p(w) 5% loss
p(w) 1% loss

p(w) 0.5% loss
p(w) 0.1% loss

Figure 5: cwnd probability density with packet dropping

is reasonable to assume that it is an increasing function
of T and that q diverges as T approaches C. A qualita-
tive curve for q(T) is shown in figure 4 together with the
curve T = T (q) for RED settings (8,24) predicted by the
formula in (Padhye et al., 1998). The intersection of the
two curves identifies the equilibrium point EPi. Note
that for high values of link utilization the curve q(T) ap-
proaches the line T = C, hence this approach recovers
the above considerations. At the same time it predicts
that the introduction of ps would move the equilibrium
point towards lower delay but also to lower throughput.
In facts, in figure 4 the curve T = T (q, ps = 0.5%) inter-
sects the curve q = q(T) in a new equilibrium point EP ′

f

with q′f < qi, T ′

f < Ti, and p′f > pi. On the contrary fig-
ure 3 shows that for low link utilization the throughput
increases and the queueing delay is almost constant (a
bit smaller).

The error of the previous reasoning is that the aver-
age TCP throughput is not sufficient to characterize the
stochastic arrival process at the queue -as it is for expo-
nential arrival-, but more complex statistics are needed.

The purpose to adequately characterize the TCP pack-
ets arrival is out of the scope of this paper. Anyway we

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

P
ro

ba
bi

lit
y

time (msec)

no loss
0.5% loss

Figure 6: Probability distribution of interloss time inter-
vals

assert that the additional dropping probability makes
TCP throughput less variable, producing better network
performance. In order to support such thesis, firstly,
we present some results showing that TCP throughput
is indeed more regular in the presence of the additional
packet dropping probability; secondly we justify such re-
sults by RED operation; lastly we try to extend fixed-
point argument to identify the new equilibrium point.

Figure 5 shows the congestion window cwnd probabil-
ity density for a fixed RED setting and for different val-
ues of loss rate introduced by hiccup. This figure shows
that increasing the loss rate results into a restraint of
cwnd values so that the cwnd of each flow exhibits less
variability and it has a lower average value. If the drop-
ping probability exceeds a certain threshold the conse-
quent average window reduction is excessive and network
resources utilization is limited by the dropping probabil-
ity, hence performance dramatically collapses. In partic-
ular, a loss rate of 5% is enough to heavily downgrade
the functioning of the network, as is visible in the figure:
the corresponding curve is extremely shrunk. We did not
show the relative performance frontier in previous figure
3 since it is out of range (throughput below 70%).

The different cwnd behavior can be explained look-
ing at the packet discards pattern. Figure 6 shows the
probability distribution of the time intervals between two
consequent losses for ps = 0 and ps = 0.5%. It appears
that for ps = 0.5% the curve resembles that for an ex-
ponential process4, while for ps = 0 the curve suggests
a bimodal dropping process. This can be explained by
queue oscillation5 between the region of null dropping
probability (q < minth) and the region of linear increas-
ing dropping probability (minth < q < maxth). Such os-

4The exponential distribution may be viewed as a con-
tinuous counterpart of the geometric distribution originating
from i.i.d. losses.

5For the sake of simplicity we do not distinguish between
the instantaneous queue value and the filtered queue value
calculated by RED in order to determine the dropping prob-
ability.

qi

minth

minth

ps q’f

p

p

qt

t

qt

t

Figure 7: The effect of queue oscillation on dropping
probability

cillation causes the dropping probability oscillation and
the consequent variability of the TCP window.

Let us observe that this oscillation is not due to an
improper RED configuration: the parameters have been
chosen according to commonly accepted heuristics (see
previous section) and also control theoretic analysis de-
veloped in (Hollot & Misra & Towsley & Gong, 2001)
predicts stable behavior. Simulations with Pmax = 0.05,
which increases stability margins according to (Hollot et
al., 2001), show similar results.

Let us consider what happens for ps 6= 0. In order
to determine the new equilibrium point we can assume
as a starting point for our consideration the equilibrium
EP ′

f shown in figure 4, where q′f < qi, T ′

f < Ti and

p′f > pi. The queue is expected to assume lower val-
ues and to exceed minth threshold less frequently. As a
consequence dropping probability is more constant. Fig-
ure 7 illustrates qualitatively such behavior. In partic-
ular note how an equivalent RED curve has been con-
sidered, where the dropping probability is increased by
ps all over the range of queue values, with q < maxth.
These considerations explain the quantitative results in
figure 6.

As we said, the lower variability of the dropping prob-
ability produces a lower variability of the TCP cwnd. If
the throughput offered to the network is more regular,
then the queue occupancy is lower, i.e. in the terms of
the previous fixed-point approach, we should consider a
different relation q = q̃(T), where q̃(T) < q(T). An hy-
pothetical curve for this new relation is shown in figure

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

oc
cu

rr
en

ce
s

(%
)

cwnd

p(w) 0.5% reord
p(w) 8.4% reord

p(w) 14.2% reord

Figure 8: cwnd probability density with packet reorder-
ing

4, and it shows that the new equilibrium point EPf is
characterized by: qf < q′f < qi and Tf > T ′

f
6.

In particular from figure 4 we note that Tf can even
exceed Ti, as it appears from our simulative results.

In this subsection we have presented different results
showing that an additional steady dropping probability
can lead to better network performance, basically due to
a better RED operation, and we have extended a fixed
point approach in order to support such results.

Back to reordering

If we consider the introduction of reordering, we find sim-
ilar results as regards the TCP cwnd and the inter-loss
time interval. For example figure 8 shows how cwnd den-
sity function varies as we introduce reordering. These
results confirm the validity of the parallel between re-
ordering and dropping. Now we are going to justify it in
details.

In TCP Reno fast retransmit and fast recovery al-
gorithms are implemented (Stevens, 1997). According
to these mechanisms if the sender receives three dupli-
cate acknowledgements, it assumes that the data seg-
ment indicated by the acknowledgements is lost, it im-
mediately retransmits the lost segment (fast retransmit)
and it halves the congestion window (fast recovery). We
note that if reordering causes a packet lag greater than
or equal to three, the receiver sends three duplicate ac-
knowledgements and the event for the TCP sources is
indistinguishable from a loss event. This is the reason of
analogous effects on network performance.

In order to verify such hypothesis we have run some
simulations where ps has been chosen equal to the prob-
ability of a reorder with packet lag greater than or equal
to three, that has been measured in the simulations cor-

6We should evaluate the new packet discards pattern in
correspondence to EPf , and repeat again the same reasoning
to iteratively evaluate better approximations for the equilib-
rium point, anyway the final results should satisfies the rela-
tions indicated for EPf .

0

50

100

150

200

250

300

70 75 80 85 90 95 100

av
er

ag
e

qu
eu

ei
ng

-d
el

ay
 (

m
s)

link utilization (%)

8.4% reord
14.2% reord
0.18% loss
0.69% loss

Figure 9: Reordering frontiers versus Losses frontiers

responding to figure 2. The resulting overlapping fron-
tiers are shown in figure 9. We observe that correspond-
ing performance frontiers overlap, with the exception of
the utmost RED configurations for high reordering per-
centage, where the frontiers branch. In particular the
points obtained in HICCUP RESORT mode are above
the ones found in HICCUP CONG mode. This differ-
ence is mainly due to the particular performance metric
chosen, as we are going to explain. Even if beyond the
threshold of packet lag three the TCP sources behave
as if a packet loss happened, yet this is not the case:
packets are only shuffled, they arrive at the receiver and
retransmissions are useless. In figure 9 we are consider-
ing goodput, hence such useless retransmissions do not
appear, but we can note their effect on the delay. In
facts, even if they constitute a small share of the total
throughput (0.69%), for high link utilization, the delay
is high dependent from the offered load, and they may
produce a significantly increase of the delay. In order to
support our thesis, we can plot the performance frontiers
considering the traffic offered to the bottleneck. In the
case of reordering the traffic offered to the bottleneck is
the throughput of the TCP sources, while in the case
of dropping losses due to hiccup have to be taken into
account. For high link utilization losses due to AQM
are negligible in comparison to additional losses, hence
the traffic offered to the queue is almost equal to the
goodput of the TCP sources. Figure 10 shows the delay
versus throughput and versus goodput respectively for
the reordering case and the dropping case. It appears
that the two frontiers do not split.

In this subsection we have shown that the similarity
of results for reordering and dropping is due to the fact
that packet reordering with packet lag greater than or
equal to three triggers fast retransmit and fast recov-
ery algorithms. Performance frontiers overlap when the
dropping probability and reordering probability are cho-
sen according to this consideration.

20

40

60

80

100

120

140

160

78 80 82 84 86 88 90 92 94 96 98

av
er

ag
e

qu
eu

ei
ng

-d
el

ay
 (

m
s)

link utilization (%)

14.2% reord
0.69% loss

Figure 10: Performance frontiers in terms of throughput
and goodput respectively for congestion and resort mode

Conclusions

The main contribution of this paper is that it shows that
packet reordering is not necessarily a harmful effect in
terms of network performance. In fact, our results show
that a small amount of reordering can actually improve
the network performance. Small is referred to the aver-
age dropping probability in absence of reordering.

In the attempt to find a justification for this result, we
have made an analogy with a system characterized by a
constant steady-state dropping probability not related
to the congestion status of the network (as it happens
in wireless links), and we have shown (via both simula-
tion and theoretical analysis) that it produces the same
beneficial effects.

Even if the result can appear counter-intuitive and
somewhat suprising, in reality we note three strong lim-
itations:

• the improvement is highly dependant from the unifor-
mity of the reordering (or dropping) probability;

• we think that the improvement is highly reduced if
short lived flows are considered, or if reverse traffic
reordering is taken into account;

• the amount of helpful reordering (dropping) depends
from the specific network scenario, the same probabil-
ity may be harmful for a different configuration.

We remark that the improvement is essentially due to
a better operation of RED: basically we have shown that
a RED with a different configuration, i.e. with a small
dropping probability for low queue values would have
performed better for the specific network scenario.

Ongoing research work is dedicated to a more thor-
ough understanding of the effect of reordering, in the
presence of different traffic mixtures including short-
lived TCP flows and reverse path reordering.

References

Bennett, J.C.R., & Partridge, C., & Shectman, N.,
Packet Reordering is Not Pathological Network Behav-
ior, IEEE/ACM Transactions on Networking Volume
7, Issue 6, December 1999, Pages: 789 - 798

Firoiu V., & Borden M., A Study of Active Queue Man-
agement for Congestion Control, IEEE INFOCOM
2000, Tel-Aviv, March 26 - 30, 2000

Floyd S., RED: Discussions of Set-
ting Parameters, email November 1997,
http://www.icir.org/floyd/REDparameters.txt

Floyd S., & Gummadi R., & Shenker S., Adap-
tive RED:An Algorithm for Increasing the Ro-
bustness of RED’s Active Queue Management,
http://www.icir.org/floyd/red.html, August 1, 2001

Floyd S., & Jacobson V., Random Early Detection gate-
ways for Congestion Avoidance IEEE/ACM Transac-
tions on Networking Volume 1, Issue 4, August 1993,
Pages: 397-413

Hollot C. V., & Misra V., & Towsley D., & Gong W. A
Control Theoretic Analysis of RED, IEEE INFOCOM
2001, Anchorage, April 22-26, 2001

http://www.isi.edu/nsnam/ns/

http://www-tkn.ee.tu-berlin.de/∼morten/eifel/ns-
eifel.html

Iannaccone G., & Jaiswal S., & Diot C., Packet reorder-
ing inside the Sprint backbone, Sprintlabs technical re-
port TR01-ATL-062917, June 2001.

Iannaccone, G., & Jaiswal, S., & Diot, C., & Kurose, J.,
& Towsley, D. Measurement and Classification of Out-
of-Sequence Packets in a Tier-1 IP Backbone, IEEE
INFOCOM 2003, San Francisco, March 30-April 3,
2003

Kamoun, F., & Kleinrock, L., & Muntz, R. , Queue-
ing Analysis of the Ordering Issue in a Distributed
Database Concurrency Control Mechanism, Proceed-
ings of the Second International Conference on Dis-
tributed Computing Systems, Paris, April 8-10, 1981

Neglia G., & Bianchi G., & Sottile M., Performance eval-
uation of a new adaptive packet marking scheme for
TCP over DiffServ networks, GLOBECOM 2003, De-
cember 1-5, 2003

Padhye J., & Firoiu V., & Towsley D., & Kurose J., Mod-
eling TCP Throughput: A Simple Model and its Em-
pirical Validation, ACM SIGCOMM 1998, Vancouver,
September 2-4, 1998

Stevens W., TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms, RFC
2001, January 1997

