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Résumé : Dans ce rapport, nous nous intéressons aux réseaux tolérant les
délais et, plus particulièrement, à la transmission de messages dans ce type de
réseaux. L’objectif est de concevoir des mécanismes adaptatifs, qui relaieraient
les messages de proche en proche jusqu’à leurs destinations. Notre approche re-
pose sur des résultats récents en optimisation multi-agent, qui mettent en œuvre
des méthodes de sous-gradient distribuées. Nous cherchons comment de telles
méthodes pourraient être appliquées dans le contexte des réseaux tolérant les
délais et menons une étude préliminaire sur leurs performances. Les résultats
obtenus sont encourageants, en particulier ceux concernant la vitesse de conver-
gence vers la solution optimale qui minimise une fonction de coût prédéfinie.

Mots-clés : Réseaux tolérant les délais, routage épidémique, optimisation en
ligne, optimisation distribuée par descente de gradient
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Distributed Gradient Optimization for Epidemic

Routing: a preliminary Evaluation

Abstract: In this research report we address the problem of designing adaptive
epidemic-style forwarding mechanisms for message delivery in Delay Tolerant
Networks. Our approach is based on a new analytical framework for multi-agent
optimization through distributed subgradient methods. We investigate how this
framework can be adapted to the considered networking problem and we perform
a preliminary evaluation, which shows promising results in terms of convergence
speed.

Key-words: Delay tolerant networks, epidemic routing, online optimization,
distributed gradient optimization
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Distributed Gradient Optimization for Epidemic Routing: a preliminary Evaluation3
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1 Introduction

Delay Tolerant Networks (DTNs) are sparse and/or highly mobile wireless ad
hoc networks where no continuous connectivity guarantee can be assumed [1, 2].
One central problem in DTNs is related to the routing of packets towards the
intended destination. Protocols developed in the mobile ad hoc networks field,
indeed, fail since a complete route to the destination may not exist most of the
time. One common technique for overcoming such problem is to disseminate
multiple copies of the message in the network, enhancing the probability that
at least one of them will reach, within a suitable time-frame, the destination
node [3]. This is referred to as epidemic-style forwarding [4]. Alike the spread of
infectious diseases, each time a message-carrying node encounters a new node
not having a copy thereof, it may infect this new node by passing on a message
copy ; newly infected nodes, in turn, may behave similarly. The destination
receives the message when it meets an infected node.

An unconstrained epidemic forwarding scheme (in which an infected node
spreads messages to all nodes it encounters) is able to achieve minimum delivery
delay at the expense of an increased use of resources such as buffer space, band-
width, and transmission power. Variations of epidemic forwarding have been
recently proposed in order to exploit the trade-off between delivery delay and
resource consumption. This family includes, among others, K-hop schemes [5],
probabilistic forwarding [6], and spray-and-wait [7]. These schemes differ in their
“infection process,” i.e., the spreading of a message in network.

Depending on the specific application scenario, different performance metrics
could be envisaged, such as the probability to successfully deliver a message to
destination, the delivery time, the total energy consumption in the system or
a combination of the previous ones. Optimal policies have been identified for
specific metrics in restricted set of policies. For example [8] and [9] focus on
2-hop schemes (only the source can copy the message and infected nodes act as
relays to the destination) and derive optimal configurations for the two following
cases : 1) the source can select the maximum number of copies that minimizes
a weighted sum of the delivery time and the energy consumption [8] ; 2) the
source copies a message with a (time-dependent) probability to maximize the
delivery probability under energy consumption constraints [9]. In both cases,
parameters configuration depends on the specific network scenario, e.g., on the
number of nodes in the system and on their mobility patterns. In many cases,
these characteristics may not be known at system design and deployment time
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4 Neglia & et al.

and may drastically change across time and space. Consider for instance a per-
sonal digital assistant (PDA) carried by a user in its daily activities. During the
day, the PDA may travel at different speeds (e.g. from zero up to car speed),
moving from highly crowded areas (supermarkets, classrooms, etc.) to sparse
ones, with very different trajectories (straight along a highway or following a
random walk from shop to shop) and different levels of power availability. Inter-
estingly, [9] proposes also an algorithm based on stochastic approximation for
online learning. Nevertheless the problem of deriving optimal forwarding poli-
cies for general optimization goals and in large sets of possible behaviours is
mainly open.

For this reason, our interest is to develop online adaptive policies able to
optimize generic performance metrics. A previous attempt in such direction has
been carried on by some of the authors who have applied concepts and tools
from the Genetic Algorithms (GAs) field. Each node employs a (potentially
different) forwarding policy, which prescribes the operations to be undertaken
when receiving a message destined to another node. Such a policy is described
by an array of parameters called the genotype. Genotypes are associated with
a fitness measure which, roughly speaking, indicates the ability of the current
set of parameters to achieve good performance in the local environment. Fit-
ness is evaluated using local information and feedback which is sent from the
destination backwards. Some results have been presented in [10] and in [11].
A criticism to this approach is that GAs (and evolutionary algorithms in gene-
ral) are suited for problems with ill-behaved functions having multiple minima
for which gradient based methods would fail. On the contrary, it seems natural
to expect that network performance metrics of possible interest exhibit a more
regular behaviour. For this reason, in this work, we start exploring how to imple-
ment a distributed gradient algorithm. Our approach is based on the analytical
framework recently proposed in [12] : the authors study a distributed computa-
tion model for optimizing a sum of convex objective functions corresponding to
multiple agents. The method involves every agent minimizing its own objective
function while exchanging information locally with other agents in the network
over a time-varying topology. The contribution of this work is twofold : first, we
show how this approach can be used to optimize routing in a DTN, and second,
we perform a preliminary evaluation in terms of convergence speed and quality
of the solution identified.

The report is organized as follows. Section 2 provides the required back-
ground on the distributed subgradient method proposed in [12]. In Section 3,
we show how this approach can be adapted to work in a DTN scenario and
stress the key issues to be solved. Section 4 presents a preliminary evaluation
of a case study and finally Section 5 concludes the report and illustrates future
research directions.

2 Background on Distributed Gradient Methods

In [12], the authors study a distributed computation model for optimizing
a sum of convex objective functions corresponding to m agents. The method
involves every agent minimizing a local convex cost function fi : R

n → R while
exchanging information locally with other agents in the network over a deter-
ministically time-varying topology.
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Distributed Gradient Optimization for Epidemic Routing: a preliminary Evaluation5

The agents want to cooperatively solve the following unconstrained optimi-
zation problem :

minimize
x∈Rn

F (x); F (x) :=

m
∑

i=1

fi(x). (1)

Let F ∗ be the minimum value of F and S∗ be the optimal solution set, i.e., for
all x in S∗, F (x) = F ∗.

To solve (1), the distributed gradient method works on a time slot basis. At
any point in time, each agent has available an estimate of an optimal solution
of the problem (1). During a time slot, an agent can communicate its estimate
to a subset of the other agents. We denote by x̂i(k) the estimate maintained by
agent i at the k-th slot.

At the end of a time slot, each agent updates its estimate according to the
following relation :

x̂i(k + 1) =

m
∑

j=1

ai
j(k)x̂j(k) − ζdi(k), (2)

where ai(k) is an m-length vector of non-negative weights such that
∑m

j=1 ai
j =

1, ζ > 0 is a tunable step size and di(k) is a subgradient of the function fi

at the point x̂i(k). 1 In this report, we consider di(k) to be the gradient of the
function fi, i.e., di(k) = ∇fi(x)|

x=x̂
i(k). Hence, the last addend in (2) acts in

the direction of minimizing the function fi (not F ). At the same time, the first
sum corresponds to averaging the estimate of all the other nodes, similarly to
what is done in consensus protocols. In order to present the main results of [12]
in a simple form, we consider that agent i sets the weights in the following way :
if the estimate of agent j is available at agent i 6= j during time slot k then
ai

j(k) = 1/m, otherwise ai
j(k) = 0 ; last, ai

i(k) = 1 −
∑

j 6=i ai
j(k).

In [12], it is shown that the update rule (2) leads the estimate x̂i(k) to
converge near the optimal solution set if the following assumptions are satisfied :

– Connectivity : The information of each agent influences the information
of any other agent infinitely often (eventually through a sequence of inter-
mediate agents). Formally, consider the graph (V, E∞), where V is the set
of agents and E∞ is the set of links such that link (i, j) exists if and only
if i and j communicate directly infinitely often. Then, the connectivity
assumption corresponds to the graph (V, E∞) being connected.

– Bounded intercommunication interval : The time between two conse-
cutive communications between two agents that communicate infinitely
often is upper bounded. Formally, there exists a positive integer B such
that for every (i, j) ∈ E∞, i and j exchange information status at least
once every B consecutive time slots.

– Bounded gradients : There exists L such that ||∇fi|| ≤ L.
Under the above assumptions, the authors of [12] prove that

F (xi(k)) − F ∗ ≤
m dist2(y(0), S∗)

2ζk
+ ζL2C(m), (3)

where xi(k) := 1
k

∑k−1
h=0 x̂i(h) is the time average vector, y(0) := 1

m

∑m

i=1 x̂i(0) is
the average initial estimate, dist(y(0), S∗) denotes the 2-norm distance between
the vector y(0) and the set S∗, and

1. By definition of a subgradient, the vector di(k) satisfies di(k)(x − x̂i(k)) ≤ fi(x) −
fi(x̂i(k)) for any x in R

n.

RR n° 7016

in
ria

-0
04

35
18

4,
 v

er
si

on
 2

 - 
24

 N
ov

 2
00

9



6 Neglia & et al.

C(m) =
1

2
+ 6m +

+
6m2(1 + m(m−1)B)/(1 − 1/m(m−1)B)

1 −
(

1 − 1/m(m−1)B
)

1
(m−1)B

.

Inequality (3) states that, at any time slot k, the distance between the function
F evaluated at xi(k) and its minimum is bounded by the sum of two terms. The
first of these terms converges to zero as k goes to infinity, but the second one
is constant and can be reduced only by decreasing the step size ζ. We observe
that the bound in (3) is not very tight, in fact C(m) is larger than m(m−1)B

which is very large already for a system with tens of nodes. This observation
also justifies our numerical analysis in Section 4.

3 Application to Epidemic Routing

In this section, we explore how the analytical framework presented in the
previous section can be adapted to optimize routing performance metrics in a
DTN.

Consider a DTN with m nodes. Each of them implements its own forwarding
policy that can be different from node to node, e.g., a node could implement a
K-hop scheme, i.e., it would not forward a message that has already traveled
more than K hops, while another one could implement a probabilistic scheme,
where each message is forwarded with probability p. Even nodes applying the
same kind of policy could have different values of the parameters.

Let us denote zi ∈ R
si the array of si parameters characterizing the policy

of node i. Routing performance in the network is determined by the vector
z = (z1, z2 · · · , zm) ∈ R

n, where n =
∑m

i=1 si, which we refer to as the system
status. It will prove useful to simply identify the component of a vector in R

n

which corresponds to the parameters of node i’s policy. Hence, we introduce the
notation [x]i to refer to the following subvector of x : (xli+1, xli+2, · · · , xli+si

),

with li =
∑i−1

j=1 sj . Using this notation, we have [z]i = zi. We consider that node
i can change its parameters at runtime in order to optimize a global performance
metric. For simplicity, we assume that such changes occur synchronously at all
nodes every T seconds, so that the system can be modeled as a discrete-time
system where the slot length is T . Let z(k) denote the set of parameters used
during the time slot k.

We next show that there is a large class of interesting performance metrics
that can be mapped to the problem (1). Most of the performance metrics are
related to nodes (e.g., energy consumption at each node) or to messages (e.g.,
delivery time, delivery probability or energy consumption per message). In either
case, the performance metrics can naturally be expressed as a sum of local
cost functions relative to each node. Let us develop a specific example (that
we will consider in Section 4 as a case study). Our target is to minimize a
weighted sum of the message delivery time TD and the number of copies C
done for each message, the latter number being roughly proportional to the
energy consumption needed to deliver the message. Such quantities are random
variables because they depend on the underlying node random mobilities. Hence,
we can define our performance metric as :

F (z) = E[TD + γC], (4)
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Distributed Gradient Optimization for Epidemic Routing: a preliminary Evaluation7

where the parameter γ can be interpreted as the time-equivalent cost of a copy,
and we put in evidence that F depends on all the policy parameters of all the
nodes in the network (it depends also on the traffic matrix, but we assume that
it is given). The optimization problem we are interested in is to find a parameter
vector z that minimizes F . We observe that (4) can be rewritten as

F (z) =

m
∑

i=1

E

[

λi

λT

TD,i +
µi

µT

γCi

]

, (5)

where TD,i is the expected delivery time of a packet generated at node i, Ci is
the expected number of copies done by node i for a generic message (generated
or not at node i), λi is the message generation rate at node i (message for which
node i is the source), µi is the message arrival rate at node i (accounting for
messages generated at or forwarded to node i), λT =

∑m

i=1 λi and µT =
∑m

i=1 µi.
According to (5), F is the sum of functions fi, each of which is relative to a
specific node :

fi(z) = E

[

λi

λT

TD,i +
µi

µT

γCi

]

. (6)

Even if the optimization problem looks similar to the one stated in (1), there
are two capital differences :

1. fi is not in general convex,

2. a closed form expression of fi (nor of ∇fi) is not in general available at
node i.

Convexity in problem (1) guarantees the absence of local minima. Having non-
convex fi no longer assures that ; nevertheless, the algorithm would in any case
converge to a local minimum that may have acceptable performance.

The second point requires a more thorough discussion. Node i cannot eva-
luate fi at a generic point z, but, at the end of the k-th time slot, it can estimate
fi(z(k)) where z(k) is the set of policy parameters used by nodes during time
slot k. 2 For instance, in order to have an estimate of E[TD,i], node i can ave-
rage the delivery times of the messages it has generated during the slot. This
means that a possibly noisy estimate of fi(z(k)) can be available. Evaluating
the gradient is more complex. We believe that derivative-free optimization tech-
niques [13] can be introduced in order to rely only on the estimations of fi at
each node. We do not address this issue in this work, but assume from now on
that the gradient of fi at a given point can be evaluated.

Relying on measurements has another implication for the original algo-
rithm (2). In fact, according to (2), each node should be able to evaluate the
gradient in a solution estimate x̂i(k) that is potentially different for each node.
On the contrary, in a real DTN setting, every node may only have an estimation
of its own function fi evaluated at the same point z(k). Estimating the value of
fi (or of ∇fi) at different points appears difficult. We discuss more this issue in
the next paragraph.

Let us consider what would an immediate implementation of (2) be, referring
to the following set of equations :

zi(k) = [x̂i(k)]i, (7a)

x̂i(k + 1) =

m
∑

j=1

ai
j(k)x̂j(k) − ζ∇fi(ẑ

i(k)). (7b)

2. In reality, as we discuss in the following of this section, node i does not know in general
the system status z(k), but it has an estimate ẑi(k).
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8 Neglia & et al.

At the end of the (k − 1)-st time slot, node i has available a new estimate of an
optimal solution x̂i(k). It can extract from this estimate the set of parameters
zi(k) to use during the k-th time slot (cf. (7a)). We observe that the system
status is z(k) = (z1(k), z2(k), · · · , zm(k)) and it is unknown to node i, but
for the component zi(k). During the k-th time slot node i spreads its current
estimate x̂i(k) and collects other nodes’ estimates. If node i has collected all
estimates x̂j(k), with j 6= i, it can exactly reconstruct z(k), but in general
only a subset of estimates is available so that it can only produce an estimate
of system status denoted ẑi(k). 3 Once such estimate has been obtained, the
gradient ∇fi can be evaluated at ẑi(k) yielding a new estimate of an optimal
solution (cf. (7b)).

We note two problems in the above algorithm. First, it is not clear how
ẑi(k) should be produced. In fact if node i has not met node j, then it has no
information about zj(k). Second, letting each node select its policy parameters
from its own solution estimate x̂i(k) leads to a biased system status. In fact,
∇fi contributes to changing all the components of the vector x̂i(k + 1) and
subvectors of ∇fi relative to node i’s policy and to other nodes’ policies have
different directions in general. 4 However, only the i-th component of x̂i(k + 1)
will effectively be used (by node i) ; thus, ∇fi only affects [z(k + 1)]i.

In order to solve these two issues we have changed the algorithm (7) as
follows :

x̂i(k + 1) = ẑi(k) − ζ∇fi(ẑ
i(k)), (8a)

ẑi(k + 1) =
m

∑

j=1

ai
j(k)x̂j(k + 1), (8b)

zi(k + 1) = [ẑi(k + 1)]i. (8c)

In this new procedure a time slot is split into two parts. Since the beginning of
the k-th time slot the node has an estimate of the current system status ẑi(k).
During the first part of the time slot, it estimates ∇fi(ẑ

i(k)). At the end of the
first part, it will produce a new estimate of the optimal solution by correcting
ẑi(k), taking into account only the gradient ∇fi (cf. (8a)). The second part of
the time slot is then devoted to spreading such estimate and collecting other
nodes’ estimates. Then, an estimate of the system status in slot k+1, ẑi(k +1),
is obtained by averaging optimal solution estimates (cf. (8b)). This estimate
determines also the policy parameters used by node i in slot k + 1 (cf. (8c)).

We observe that the accuracy of status estimation ẑi(k) increases as nodes
communication opportunities increase. In particular, if every node can collect
estimates of every other node in the second part of time slot k, then ai

j(k) = 1/m

for any i and j and it follows that ẑi(k+1) = z(k+1) for any i. Hence all nodes
have the same estimate of the vector of parameters used in the system during
the slot k + 1. We believe results similar to those proved in [12] for (2), and in
particular bounds like (3), also hold for our variant (8), but we currently do not

3. Note the difference between ẑi(k), the estimate of status z(k) produced by node i, and
zi(k), the vector of parameters used by node i and a subvector of z(k).

4. For example, in a completely symmetric scenario, nodes will have the same type of policy
and any two nodes can exchange their policy vectors without affecting the total cost F . More
formally, F (z1, z2, · · · , zm) is invariant to permutations of zi. For x

∗ ∈ S∗, we naturally have
∇F (x∗) = 0 and this implies, due to the symmetry, that [∇fi(x∗)]i = −(m − 1)[∇fi(x∗)]j
for j 6= i. The corrections introduced by fi have opposite directions.
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Distributed Gradient Optimization for Epidemic Routing: a preliminary Evaluation9

set α β γ δ ǫ ζ λi m
A 0.01 1 10 1 0.1 3.35e−5 1 ∀i 20
B 0.02 1 10 1 0.1 10−4 → 0.5 1 ∀i 10

Table 1 – Parameters settings

have a proof. For the particular case when all estimates are available at every
nodes in every time slot, then it can be proved that (8) reduces to a distributed
implementation of a classic gradient method, so that all standard convergence
results apply. We will refer to this case as the global knowledge scenario.

4 A Case Study

In this section we perform a preliminary numerical evaluation of the algo-
rithm (8) for cost function F (x) = E[TD + γC]. In particular, we are interested
to investigate if the algorithm converges, how much time is required and how
good is the final selected operation point.

We consider a DTN with m mobile nodes, all of them implementing proba-
bilistic forwarding with a different probability value : pi(k) is the value used
by node i during slot k. The system status vector during the k-th slot is
z = p = (p1(k), p2(k), · · · pm(k)) ∈ R

m. We assume a global knowledge sce-
nario.

For our purpose we have considered the following approximation for the local
cost function fi() :

fi(p) =
λi

pi + α
∑

j 6=i pj + ι
+ γ

(

1 − e−βpi

) (

λiδ + ǫλ−i

)

, (9)

where λ−i =
∑

j 6=i λj . In fact, for opportune values of the parameters α, β, γ,
ǫ and ι, this function can produce the same qualitative behaviour of our cost
function. For example Fig. 1 shows contour plots for the total cost F =

∑

fi for
a network with 100 nodes, where half of them adopt probability p1 and the other
adopt probability p2. Values in Fig. 1(a) have been obtained by simulations 5,
while those in Fig. 1(b) have been obtained through (9) with an appropriate
choice of the parameters. Unless otherwise specified, results in this report have
been obtained for one of the two sets of parameters specified in Table 4. The ζ
value in set A has been selected inversely proportional to the maximum gradient
of the function F (p). This choice prevents algorithm oscillations. In set B we
explore a large range of values for parameter ζ.

Fig. 2 shows a temporal evolution of the cost function for the parameter set
A. After 105 iterations p(k) converges to a homogeneous vector (pi ≈ 0.3241 ∀i)
and the value of the total cost is F ≈ 112.6. We conducted different experiments
changing the initial vector p(0) but the algorithm has always converged to the
same value. Moreover by sampling directly the function F (p) it seems that the
algorithm has correctly identified the global minimum.

5. The complete description of the network setting (mobility model, network area, trans-
mission range, message generation process . . .) can be found in Section 4.2 of [11]. For the
purpose of such qualitative comparison, we thought it was not needed to provide a complete
description.
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10 Neglia & et al.
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(a) Simulation results

(b) Approximated results

Figure 1 – Total cost F (p) when half of the nodes adopt probability p1 and
half adopt probability p2

For different values of α, e.g. for α = 0.1, the function has multiple local
minima, in particular the set of global minima seems to be the set of all the
heterogeneous vector p, where 5 components have value equal to 1 and the
others equal to zero. Most of the time the algorithm has been converging to one
of these equivalent configurations. In a few cases it has converged to a different
local minimum.

The order of magnitude of the convergence time in the above example is
around 105 iterations, that is probably unacceptable in a real implementation.
In fact, during each iteration, a node has to estimate ∇fi for the current setting
and this can require the delivery of many messages in order to have acceptable
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Distributed Gradient Optimization for Epidemic Routing: a preliminary Evaluation11
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Figure 2 – Convergence time plot
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Figure 3 – The effect of the parameter ζ on convergence time.

levels of estimation noise. For this reason we have explored the behaviour of the
algorithm for larger values of ζ, that should allow faster convergence.

Figure 3 shows the convergence time starting from a given initial system
status z(0) for different values of the parameter ζ. The convergence time is
evaluated as the number of iterations of (8) until the value of each component
of ẑ(k) does not change more than 10−15 (Matlab floating point precision).
Whenever convergence has been reached, the final value of F (z) -say it Fstop-
has been equal to 56.53, which seems to be the global minimum of the function
(again by sampling directly the function F ). Spikes for ζ > 0.2 correspond to
ζ values for which the algorithm does not converge by 107 iterations (we stop
calculations when such iteration number is reached). This is the case for all the
values larger than 0.43. Analyzing some of these time series, it appears that z(k)
reaches a periodic orbit. In any case, if we average the last 10 values of F (z)
we obtain again 56.53. This means that such periodic orbits are very close to
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Figure 4 – Convergence to an interval

the global minimum. Hence, from a practical point of view, the algorithm has
identified the same minimum for all the tested values.

It is interesting to observe the behaviour of the convergence time if we filter
away the spikes. As ζ increases, the convergence time first decreases and then
increases (for ζ > 0.31). This can be explained as follows. There are two phases
that can be in general identified in a sequence z(k) that converges to z∗. In
the first phase, z(k) moves more or less in the same direction approaching z∗,
then it start bouncing around z∗ until it does not fall in the interval of values
that are considered equivalent to z∗. As ζ increases, the length of the first phase
decreases (less jumps are needed to arrive close to z∗), but, on the other side the
length of the second phase increases (more jumps are needed to fall exactly in
the interval). Finally, we observe that under the best setting, only 30 iterations
are needed to reach the optimal configuration.

The convergence time can be further reduced if we sacrifice the accuracy of
the solution. In Figure 4 the algorithm is stopped once F (z(k)) falls below F̃ =
56.62. This value has been calculated as F̃ = F ∗+0.01|F−F ∗|, where F ∗ = 56.3
is the minimum of the function and F is its average value 6. Figure 4(a) shows
a reduction of one order of magnitude of the convergence time ; in some cases

6. Both values have been estimated by sampling the function.
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Figure 5 – Convergence time vs nodes number

only a couple of iterations. Figure 4(b) shows the corresponding loss of accuracy
(remember that the minimum is F ∗ = 56.3).

Finally, we wanted to study how the convergence time scales with the number
of nodes m. Being that it is not easy to select the optimal value of ζ for each m
and performance are very sensitive to such value, we have considered a variant
of (8a), where at each step the correction to the status vector has a constant
module equal to φ. This is achieved by replacing Eq. (8a) with

x̂i(k + 1) = ẑi(k) − φ
∇fi(ẑ

i(k))

||
∑

j ∇fj(ẑj(k))||
. (10a)

Figure 5 shows the convergence time until F (z(k)) < F̃ for φ = 0.01 7.
Interestingly, the convergence time appears to scale less then linearly with the
number of nodes.

5 Conclusions

In this report we have proposed to use the new analytical framework for
multi-agent optimization proposed in [12] in order to optimize routing in Delay
Tolerant Networks. In Section 3, we have pointed out some issues to be addressed
in order to apply this framework in a realistic case where no analytical expression
is available for the function to optimize nor for its derivatives, but estimates
can be obtained from measurements. We have changed the original algorithm in
order to partially addresses these issues, but further research is needed in order
to complement the framework with derivative-free optimization techniques. The
preliminary evaluation in Section 4 shows promising results. The convergence
of the algorithm does not seem to be significantly dependent on the gradient
step size ζ and a careful tuning of such value allows to achieve practically useful
convergence time values. Finally, the algorithm appears to scale well with the
number of nodes.

7. Note that F̃ has to be evaluated separately for each m. In fact the function F depends
on m, so that both minimum and average values changes as m change.
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