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ABSTRACT
The possibility to employ reaction-diffusion models to build
spatial patterns in sensor networks has been advocated in
other works. Nevertheless it has not been investigated how
the biologically-inspired solutions perform in comparison to
more traditional ones taking into account specificities of sen-
sor networks like severe energy constraints. In this paper
we present some preliminary results on the comparison be-
tween a biologically inspired coordination mechanism based
on activator-inhibitor interaction and a simple mechanism,
where nodes do not communicate but activate their sensing
circuitry according to some probability.
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1. INTRODUCTION
One of the challenges of sensor networks is the develop-

ment of long-lived sensor networks in spite of energy con-
straints of individual nodes. Depending on the specific ap-
plication (type and frequency of the events to capture, size
of the network) the main energy consuming activity can ei-
ther be sensing or communication. In order to spare en-
ergy, nodes can periodically turn off their sensing circuitry
or their radio. In both cases coordination among nodes is
needed. In fact nodes can stop sensing only if other nodes
in the neighborhood guarantee an adequate coverage of the
area to sense1. At the same time sensor networks usually
rely on multi-hop communications where sensors relay data
produced by other sensors to one or more data sinks. So
powering down radios on sensor nodes makes such nodes un-
available for multi-hop communication. Again coordination

1Usually the number of nodes deployed is significantly higher
than the minimum needed, in order to make up for random
deployment and failures.
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among nodes is needed in order to maintain communication
backbones in the sensor network.

This coordination could theoretically be managed by a
central authority which sends specific commands to each sin-
gle node, but in most cases this approach is unfeasible for
large sensor networks. In fact sensors are often randomly
deployed, are exposed to hostile environments, can exhaust
their batteries, moreover communication is subject to the
vagaries of the wireless channel. All these issues lead to dy-
namics much faster than those of wired networks, hard to
manage in a centralized way. Besides central management
could impose on the network a high cost in terms of band-
width and energy for communication. So the network should
be self-organizing, i.e. nodes should autonomously carry out
measurement and adaptive configuration.

Many protocols addressing the issue of node coordina-
tion have been proposed (see [5] and references there). In
this paper we propose a new coordination mechanism for
sensing activity based on activator-inhibitor interaction, a
model used to explain pattern formation in biological sys-
tem, e.g. how identical totipotent cells can differentiate in
the different parts of an organism [8].

The idea to use pattern formation models in sensor net-
works is not completely new. For example in [6], and some
subsequent papers of Thomas Henderson, reaction-diffusion
models are proposed to build a spatial pattern that could
help robot operation in a given area. Research in amorphous
computing [1] has been recently looking at sensor networks
as a instantiation of an amorphous computer [3]. The focus
of such research is mainly on developing robust primitives,
appropriate methods for analysis, and designing new high-
level programming languages.

Despite this research activity, to the best of our knowl-
edge, it has not been investigated how new biologically-
inspired solutions for sensor networks perform in compar-
ison to more traditional ones. In this paper we present some
preliminary results on the comparison between a coordina-
tion mechanism based on activator-inhibitor interaction and
a simpler one, where nodes do not communicate but activate
their sensing circuitry according to some probability.

Our preliminary results suggest that the biologically in-
spired mechanism is able to significantly reduce energy con-
sumption for sensing purpose, but more investigation is needed
to take into account increased communication costs.

The paper is organized as follows. In Sec. 2 we illustrate
the specific coordination problem we want to address. in
Sec. 3 and in Sec. 4 we respectively present the new biologi-
cally inspired coordination mechanism and the probabilistic



one. In Sec. 5 the performances of the two mechanisms are
compared. Conclusions and future research activity are in
Sec. 6.

2. NETWORK SCENARIO
We consider N wireless sensors deployed uniformly at ran-

dom in an area A. The communication model is simple: two
sensors can communicate if their distance is smaller than r,
the radio transmission range of each sensor. The network is
quite dense, i.e. each sensor has many other sensors in its
transmission range.

We assume that the most energy-consuming activity is
sensing, because of power requirement of sensing circuitry
or computation required to process data2. For this reason,
we would like some nodes to turn off their sensing circuitry in
order to spare battery and increase sensor network lifetime.
We assume that each node can sense up to a distance d,
where d >> r. As we are going to discuss in the follow-
ing section, for d < r an activator-inhibitor scheme would
require nodes to be able to estimate distances from other
nodes. Sensing coverage (α) is evaluated as the fraction of
the area A where events are sensed by at least one sensor.

3. THE ACTIVATOR-INHIBITOR
MECHANISM

Activator-inhibitor models have been able to explain spa-
tial concentration patterns with characteristic features known
from biological systems: in this case a strong short range
positive feedback -usually referred to as autocatalysis- is
coupled with a long range negative feedback -usually referred
to as lateral inhibition. Their interaction can produce po-
lar and periodic patterns as well as net-like structures, able
to adapt to disturbances while preserving some specific dis-
tances between activity centers. Both differential equation
and cellular automata modeling approaches have been suc-
cessfully applied to these systems (e.g. [8] and [4]).

Our starting point is the differential equation model in [8].
Let say a(x, y, t) and h(x, y, t) respectively activator and in-
hibitor densities in the area A. The following set of equations
with zero flux boundary conditions can produce periodical
patterns for specific values of the parameters:

8
>>>>>><
>>>>>>:

∂a

∂t
=

ca2

h
− µa + ρ0 + Da∇2a,

∂h

∂t
= ca2 − νh + ρ1 + Dh∇2h,

n · ∇a = 0 on ∂A,

n · ∇h = 0 on ∂A,

(1)

where ∇f and ∇2f respectively denote the gradient and the
laplacian of function f , and ∂A the boundary of the area
A. A possible stationary solution (i.e. which does not de-
pend on time t) of equation system (1) on a unitary area
is shown in Figure 1. Both inhibitor and activator densi-
ties (respectively represented by the meshed and the not-
meshed surface) exhibit a periodic pattern. The inhibitor
density varies over a narrower range than the activator den-
sity. This happens because the inhibitor diffuses faster then
the activator (Dh > Da). This condition is necessary to

2Some illustrative costs from [7]: a photocell can absorb
about 1 mW, transmission can require 1 µJ per bit and
execution of an instruction 0.01 µJ.

Figure 1: An example of a stationary solution of
equation system (1): the meshed surface represents
the inhibitor, the other surface the activator.

have non-homogeneous patterns and corresponds to the long
range versus short range characteristics of the two different
feedbacks.

In biological systems high levels of activator concentration
can activate other processes in cells. Hence this mechanism
can explain how differentiation can arise in a group of orig-
inally identical cells. We would like to use the same mecha-
nism to differentiate sensor status. In order to achieve this
purpose we will let the sensor field operate as a discrete ap-
proximation, in space and in time, of equation system (1).
In our algorithm, each sensor, say i, stores its own activator
and inhibitor values (respectively ai and hi) and it broad-
casts them every τ seconds. With the same periodicity sen-
sor i updates its own concentration values on the basis of
the information collected from its neighbours (let Ni denote
this set) according to the following equations, which can be
derived from a discretization of equation system (1):
8
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ai(tk+1) = ai(tk) + τ

0
@ca2

i

h
− µai + ρ0 +

+
9Da

4r2

X
j∈Ni

(aj,i(tk+1)− ai(tk))

1
A ,

hi(tk+1) = hi(tk) + τ

0
@ca2

i − νhi + ρ1 +

+
9Dh

4r2

X
j∈Ni

(hj,i(tk+1)− hi(tk))

1
A ,

(2)

where tk+1 = tk + τ and aj,i(t) and hj,i(t) denote the con-
centration values of sensor j known from sensor i at time
t. Sensors, whose activator concentration is above a given
threshold (ath) and is the highest value among the neigh-
bours, become active turning on their sensing circuitry.

Remarks. Note that the zero flux boundary conditions
are intrinsically satisfied because the algorithm simply re-
distribute activator and inhibitor among sensors in the net-
work. We observe also that this mechanism can work only
for d >> r. In fact for d < r we should have many active



sensors in the neighborhood of a node in order to guarantee
adequate coverage. This would require activator and in-
hibitor concentrations to vary significantly in this area, but
this is not possible as long as each sensor simply average its
neighbours concentration values as in Eq. (2).

Activator-Inhibitor Mechanism Configuration.
In this section we address the configuration of the pro-

posed mechanism, i.e. how to choose parameters in Eq. (2)
in order to create the desired pattern with active sensors
equidistant from each other and able to guarantee an ade-
quate coverage of the area.

Our starting point is the continuous model in equation
system (1). In [9] conditions are provided to guarantee the
emergence of patterns for a generic reaction-diffusion sys-
tem, imposing the stability of homogenous solutions and the
existence of unstable not-homogeneous solutions. To use the
notation in [9], equation system (1) can be rewritten as:

∂a

∂t
= f(a, h) + Da∇2a,

∂h

∂t
= g(a, h) + Dh∇2h.

where f(a, h) = ca2/h−µa+ρ0 and g(a, h) = ca2−νa+ρ1.
We carry the stability analysis at a homogeneous steady
state solution, (a(x, y, t), h(x, y, t)) = (a0, h0), which is a
positive solution of:

f(a0, h0) =
ca2

0

h0
− µa0 + ρ0 = c− µ + ρ0 = 0

g(a0, h0) = ca2
0 − νh0 + ρ1 = c− ν + ρ1 = 0

.
Being that we are designing the mechanism, we can choose

(a0, h0) = (1, 1). Let fa be the partial derivative of f with
respect to a evaluated at (a0, h0).

Linearizing around the steady state (a0, h0) we obtain that
the general solution for w(x, y, t) = (a(x, y, t)−a0, h(x, y, t)−
h0) is [9]:

w(x, y, t) =
X

k

“
ck,1e

λk,1t + ck,2e
λk,2t

”
Wk(x, y)

where Wk(x, y) is an eigenfunction corresponding to the
eigenvalue k2 of the following problem:

(
∇2Wk(x, y) = −k2Wk(x, y),

(n · ∇)Wk(x, y) = 0,

and λk,1, λk,2 are the roots of the following equation:

λ2 + λ[k2(Da + Dh)− (fa + gh)] + h(k2) = 0, (3)

where h(k2) = k4DaDh−k2(Dagh +Dhfa)+ (fagh− gafh).
The steady state (a0, h0) is linearly stable if both solutions

of Eq. (3) have Re(λk) < 0 for k2 = 0. For the steady state
to be unstable to spatial disturbances we require Re(λk) > 0
for some k 6= 0. The values of k2 corresponding to unsta-
ble modes are those eigenvalues for which h(k2) < 0. The
following inequalities can be derived [9]:

8
>>><
>>>:

fa + gh < 0,

fagh − fhga > 0,

Dhfa + Dagh > 0,

(Dhfa + Dagh)2 − 4DaDh (fagh − fhga) > 0.

(4)

The first two inequalities guarantee linear stability of the
steady state, the other two the existence of non-homogeneous
unstable modes. For equation system (1), conditions (4) are:

8
>>>><
>>>>:

2c− µ− ν < 0,

2c2 − (2c− µ)ν > 0,

Dh(2c− µ)−Daν > 0,

ν2D2
a − 2(4c2 − 2cν + µν)DaDh + (−2c + µ)2D2

h

(5)

and h(k2) has the following expression h
`
k2
´

= DaDhk4 −
(Dh(2c− µ)−Daν)k2 + 2c2 − (2c− µ)ν.

Conditions (4) do not determine the distance between ac-
tivator maxima. In order to control this distance we would
like to add more conditions to have a single spatially-periodic
unstable mode that should guarantee a fixed distance among
activator maxima and hence (hopefully) among active sen-
sors. Considering a rectangular domain, with 0 ≤ x ≤ Lx

and 0 ≤ y ≤ Ly, the following expressions hold for eigenval-
ues and eigenvectors:

k2
n,m =

n2π2

L2
x

+
m2π2

L2
y

Wkn,m(x, y) ∝ cos

„
nπx

Lx

«
cos

„
mπy

Ly

«
(6)

where n and m are integers. Given n and m the distance
between adjacent maxima is fixed and the number of max-
ima can be b(n+1)(m+1)/2c or d(n+1)(m+1)/2e. In our
study we consider for simplicity a squared area. Moreover
we want the same spatial period in both the dimension x
and y, so we want n = m = n0, selecting the eigenvalue k2

c :

k2
c = k2

n0,n0 = 2
n2

0π
2

L2

In order to let only the corresponding mode be unstable,
we can impose the following two conditions:

8
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Dhfa + Dagh

2DaDh
= k2

c

q
(Dhfa + Dagh)2 − 4DaDh (fagh − fhga)

2DaDh
<

π2

L2

(7)

The first one imposes that k2
c is the value for which h(k2) is

minimum (the vertex abscissa of the parabola individuated
by h(k2)). The second one strongly limits the possibility
for other modes to be excited imposing that the eigenvalue
k2

n0,n0−1 corresponds to a stable mode, i.e. h(k2
n0,n0−1) >

0. Note that this condition does not definitely exclude the
existence of other unstable modes. For instance if n0 = 5
then k2

c = k2
5,5 = 50π2/L2, but being that k2

7,1 = k2
1,7 = k2

5,5,
there can be also other unstable modes.

In our simulation we always observed the formation of
non homogenous patterns with local maxima of activator
density when conditions (5) are satisfied. On the other hand
the number of local maxima is in general lower than the
number determined by the eigenvalue k2

c we select through
conditions (7).

4. THE PROBABILISTIC MECHANISM
In the probabilistic coordination mechanism each node in-

dependently activates its sensing circuitry with probability



Table 1: Network and mechanisms parameters
network

A 1x1 N 6125
r 0.0228 d 0.22

activator-inhibitor mechanism
µ 0.75 ν 0.8

Da 0.000222273 Dh 0.00580619
ρ0 0.25 ρ1 0.3
c 0.5 τ 0.003

ath 1.8
probabilistic mechanism

p p1 =0.416%, p2 =0.509%

p. This mechanism does not require any form of communica-
tion among nodes, but we can expect that more active sen-
sor will be required in comparison to the activator-inhibitor
mechanism in order to guarantee the same sensing coverage.

Probabilistic Mechanism Configuration.
In order to determine the activation probability p for the

probabilistic mechanism, we can use the following formula
valid for the average coverage of an infinite Poisson field:

α = 1 − e−pλπd2
[10], where λ is node density (= N/L2 in

our case). For a finite area this formula provides an upper
bound for the coverage, because it also takes into account the
contribution of eventual nodes outside the area. Hence it can
be used to derive a lower bound for the actual probability
p needed to guarantee the desired average coverage α. The
smaller d/L, the tighter the bound.

5. PERFORMANCE EVALUATION
We want to study which active sensor patterns arise with

the two mechanisms and how efficient they are in terms of
sensing coverage of the field and power consumption. In
this section we present some preliminary results obtained
through a Java simulator we developed starting from the
Amorphous Gray-Scott simulator [2].

For the activator-inhibitor mechanism we chose n0 = 6.
All the parameters of the algorithm deriving from equation
system (1) (i.e. Da, Dh, µ, ν, ρ0, ρ1, c) have been selected
such that conditions (5) and the first of conditions (7) are
satisfied and there is single unstable mode corresponding to
k2

c = k2
n0,n0 . Concentrations at each node are initially set

equiprobably to a high (1.8) or a low (0.2) concentration
value. The activator threshold value ath is set equal to 1.8.
The area has been (without loss of generality) considered
unitary, while the number of nodes N and the transmission
range r have been selected imposing an average number of
neighbours higher than 10 and a number of disjoint neigh-
borhood (i.e. non overlapping circles of radius r) in the area
A higher than 121. These two conditions should let the sen-
sor field well approximate the continuous model described by
equation system (1). The first condition guarantees that the
network is well connected and in particular that the prob-
ability of a sensor having no neighbours is very small, the
second one guarantees that the desired distance between lo-
cal maxima is larger than the transmission range, otherwise
the concentration averaging operation at each node would
not let emerge a periodic pattern. The time step τ has been
selected by trial and error has a large value still assuring
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Figure 2: Sensor activated by the two mechanisms.

the emergence of the periodic pattern. Finally we have cho-
sen the sensing range d in order to have a sensing coverage
near to 95%. For the probabilistic mechanism two different
values of the activation probability have been considered:
p1 = 0.416% and p2 = 0.509% They have been selected in
order to achieve approximately the same performance of the
activator-inhibitor mechanism, respectively in terms of av-
erage coverage probability (α) and minimum coverage guar-
antee in 90% of the cases (α90%). Table 1 shows the values
of all the parameters.

We have generated 40 different sensor placements. For
each of them we have simulated the activator-inhibitor mech-
anism and the probabilistic one, logging the final number of
active nodes and their positions. For the activator-inhibitor
mechanism, we have also logged the number of messages
(M) exchanged until the whole concentration varies less than
0.008τ between two consecutive global updates. Figure 2
shows exemplificative patterns of active sensors obtained
with the two mechanisms.

Energy consumption for sensing purpose is clearly related
to the number of active nodes. In particular we can evaluate
it in two different ways. In the first case we just consider
sensing cost to be proportional to the number of active sen-
sors (S in Table 2). This corresponds to the case where the
sensing field really coincides with the 1x1 area with N nodes
we are simulating. In the second case we consider sensing
cost to be proportional to an equivalent number of sensors
(say it Seq) where each active node is weighted consider-
ing which fraction of its sensing area (a circle with radius d
centered in the sensor) is inside the unitary area. This cor-
responds to consider an infinite sensing field with N sensors
per area unit3. The difference among the two is significant
due to border effects (see remarks below).

Table 2 shows average performance of the two mecha-
nisms. The results show how sensing cost is much higher for
the probabilistic algorithm. When our target is the average
coverage (then we consider p1), the number of sensors acti-
vated is 100% higher in comparison to the activator-inhibitor

3Note that sensing coverage should be evaluated differently
for the infinite field scenario taking into account that also
nodes out of the unitary area contribute to its coverage.



Table 2: Results (95% confidence intervals)
activator- probabilistic
inhibitor p1 p2

S [14.91,16.59] [24.65,27.30] [30.42,33.00]
Seq [9.87,11.18] [20.04,22.06] [25.04,27.10]
α [0.93,0.95] [0.93,0.96] [0.95,0.97]

α90% 0.92 0.88 0.92
M [90038,111880] - -

mechanism for the infinite field. The reaction-diffusion pro-
cess proves to be able to space away the concentration max-
ima. The performance gap is smaller on the unitary field
(only 60%). In fact, as we can note from Figure 2 and as it is
predicted by the continuous model (Figure 1 and Eq. (6)) in
reaction-diffusion systems many concentration maxima are
on the boundaries of the area. These maxima correspond to
active sensors which only partially contribute to the cover-
age of the unitary area (but they would contribute to the
coverage of adjacent areas). This effect is particularly sig-
nificant in cases where the number of sensors to be activated
in the reference area is quite small (i.e. “large” d values). Fi-
nally when we consider minimum coverage guarantees, the
activator-inhibitor algorithm offers even better performance.
Probabilistic forwarding exhibits a much higher variability
in placement of active nodes, so that the average number of
active sensors with the probabilistic mechanism has to be
from 100% up to 160% higher under the two scenarios in
order to guarantee the same minimum coverage level.

6. CONCLUSIONS
AND FUTURE RESEARCH

From the previous results it appears that the activator-
inhibitor mechanism is able to spare energy for sensing pur-
pose, activating a smaller number of sensors. At the same
time Table 2 shows also that a high number of message is
needed in order to establish the pattern starting from a clean
slate status. Message exchange is needed until an almost
stable configuration is reached and active nodes are individ-
uated. Should nothing change, the initial communication
cost would become negligible after a long enough network
operation time. In reality active nodes can go out of battery
or can undergo temporary failures. For this reason the algo-
rithm should run continuously in order to keep track of the
changing scenario and select new active nodes if necessary.
An analysis of this issue requires assumptions on sensor fail-
ure phenomenon and is out of the purpose of this paper.
Therefore it is left for future research.
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