
Simulated Annealing for Edge Partitioning
Hlib Mykhailenko

Université Côte d’Azur, Inria
Sophia Antipolis 06902, France

Email: hlib.mykhailenko@inria.fr

Giovanni Neglia
Université Côte d’Azur, Inria

Sophia Antipolis 06902, France
Email: giovanni.neglia@inria.fr

Fabrice Huet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis 06902, France
Email: fabrice.huet@unice.fr

Abstract—In distributed graph computation, graph partition-
ing is an important preliminary step, because the computation
time can significantly depend on how the graph has been split
among the different executors. In this paper, we propose a
framework for distributed edge partitioning based on simulated
annealing. The framework can be used to optimize a large
family of partitioning metrics. We provide sufficient conditions
for convergence to the optimum as well as discuss which
metrics can be efficiently optimized in a distributed way. We
implemented our partitioners in Apache GraphX and performed
a preliminary comparison with JA-BE-JA-VC, a state-of-the-
art partitioner that inspired our approach. We show that our
approach can provide improvements, but further research is
required to identify suitable metrics to optimize as well as to
design a more efficient exploration phase for our algorithm
without sacrificing convergence properties.

I. INTRODUCTION

Analyzing large graphs is a space intensive operation which
usually cannot be performed on a single machine. Hence, there
has been a lot of work dedicated to designing programming
models and building distributed middleware to perform such
a computation on a set of machines, often called slaves or
executors. Usually, the first step consists in partitioning the
graph and distributing it over the set of executors. That way,
each executor processes its own part of the graph locally, and
then, it shares it with other executors. A good partitioning
reduces graph processing time achieving computational bal-
ance and limited communication requirements, respectively
if the partitions have roughly the same size and have low
intersection.

There are two approaches to partition the graph—vertex and
edge partitioning—depending if vertices or edges are assigned
to the partition. Recently, it has been advocated [6] [4]
that edge partitioning is more effective for power-law graphs
and some recent distributed computation frameworks like
GraphX [11] and PowerGraph [6] rely indeed on it. Edge par-
titioning is also referred to as vertex-cut partitioning because a
vertex is “cut,” if its edges are assigned to different partitions.
These partitions will in general need to communicate during
the graph processing phase to synchronize their computation.
For this reason the number of vertices cut, and the number of
their pieces are two common indicators of the partition quality
in terms of communication requirements.

A new edge partitioning algorithm, called JA-BE-JA-VC, has
been proposed in [10] and shown to significantly outperform
existing algorithms. It iteratively improves on an initial (ar-
bitrary) edge partition assignment, by allowing two edges to

swap their assignment if this seems to be beneficial to reduce
the number of cuts of the corresponding vertices. In order
to avoid to get stuck at local minima, JA-BE-JA-VC borrows
from simulated annealing (SA) the idea to permit apparently
detrimentals swaps at early stages of the partitioning.

In this paper, we develop this initial inspiration and propose
graph partitioners based on SA for Spark. To this purpose,
we first reverse engineer JA-BE-JA-VC to show which metric
it is targeting. Second, we propose a general SA framework
that can optimize a large spectrum of objective functions,
and for which convergence results can be proven. A naive
implementation of this approach (as well as of JA-BE-JA-VC)
would require a significant number of costly synchronization
operations during the partitioning. Then, a third contribution of
this paper, is to explain how these algorithms can be efficiently
implemented in a distributed architecture as Spark. As a proof
of concept, we perform some preliminary experiments con-
sidering a different objective function that takes into account
both communication cost and computational balance. We show
that this objective function may obtain even better partitions
than JA-BE-JA-VC, but this does not happen consistently and
further investigation is required to choose the edges to swap.

The rest of the paper is organized as follows. We first start
by introducing the notation and tools used in this work (Sec-
tion II). After we reverse-engineer JA-BE-JA-VC algorithm
in Section III. Then we present SA framework for edge are
presented in Section V. Finally, we conclude in Section VI.

II. BACKGROUND AND NOTATION

Apache Spark [14] [13] is a large-scale distributed frame-
work for data processing. It is built on the notion of Resilient
Distributed Dataset (RDD) [11]. RDD is an immutable lazy-
evaluated distributed collections with predefined functions
which can be applied to them. Apache GraphX [12] is a
widely-used Spark’s API for graph processing. GraphX pro-
grams are executed as Apache Spark Jobs. In this framework,
graphs are composed of two RDDs: a vertex RDD and an edge
RDD and partitions are built using a vertex-cut partitioner. In
this paper, we propose new edge partitioners for GraphX, in
the sense that i) GraphX is used first to partition the graph, ii)
the graph is later loaded in GraphX according to this partition
in order to be processed.

Consider an undirected graph G = (V,E) with V and E
representing the set of vertices and edges respectively. The
graph will be partitioned in N distinct partitions, that we

identify with N different colors in the set C. Let E(c) denote
the set of edges with color c ∈ C, then E =

⋃
c∈C

E(c). Given

a vertex v ∈ V , its degree is denoted by dv and the number
of its edges with color c is denoted by nv(c).

The quality of a partition can be evaluated using multiple
metrics [10], [7], [8] . We introduce 4 of them which will be
used in the remaining of the paper.
Balance (denoted as BAL) is the ratio between the

maximum and the average number of edges in the partitions:

BAL =
maxc=1,...N (|E(c)|)

|E|/N
. (1)

STD is the normalized standard deviation of partition sizes
(in terms of number of edges):

STD =

√√√√∑
c∈C

(
|E(c)|
|E|/N

− 1

)2
1

N
. (2)

Vertex-cut (denoted as VC) represents the number of
pieces in which the vertices were cut:

VC = |V | −
∑
v∈V

∑
c∈C

1(nv(c) = dv). (3)

Communication cost (denoted as CC) is the total num-
ber of vertices in partitioned graph excluding those vertices
that were not cut:

CC =
∑
v∈V

∑
c∈C

1(0 < nv(c) < dv). (4)

The first two metrics quantify the different number of edges
across partitions and indicate how balanced the partitioning is.
The other two metrics are related to the vertices which are cut
and will cause communication among executors during the
computation phase.

JA-BE-JA-VC [10] is a recently proposed edge partitioner.
Given an initial color assignment to edges (e.g. a random one),
the algorithm iteratively selects two vertices u and u′. For each
of this two vertices, it then selects an edge among those whose
color is less represented in their neighborhood. For example,
considering u, it will select an edge of color ĉ ∈ argminnu(c).
Let us denote these two edges as (u, v) and (u′, v′) with color
respectively c and c′. The algorithm always swaps the colors
of the two edges if

g(u, v, c) + g(u′, v′, c′) < g(u, v, c′) + g(u′, v′, c)

+
1

du
+

1

dv
+

1

du′
+

1

dv′
, (5)

where g(u, v, c) , nu(c)
du

+ nv(c)
dv

. The more links of color c the
two nodes u and v have, the larger g(u, v, c) is, and then the
two nodes are potentially cut in a smaller number of pieces.
In particular, if all edges of u and v have color c, g(u, v, c)
attains its maximum value equal to 2. If we consider that
g(u, v, c) is a measure of the quality of the current assignment,
(5) compares the current assignment with an assignment were

colors are swapped.1 While we have provided an interpretation
of g(u, v, c), one may wonder which objective function (if
any) JA-BE-JA-VC is optimizing by swapping color according
to the criterium in (5) and if it is related to one of the usual
partitioning quality metrics like VC or CC defined above. In
Sec. III we provide an answer to such questions.

The authors of [10] state that, in order to avoid to get stuck
in local optima (of this still unknown objective function),
one can introduce the possibility to accept changes that do
not satisfy (5), especially during the first iterations. To this
purpose, inspired by simulated annealing (SA) [5, Chapter 7]
they introduce a positive parameter T (the temperature) and
change condition (5) as follows:

g(u, v, c) + g(u′, v′, c) <(1 + T)

[
g(u, v, c′) + g(u′, v′, c)

+
1

du
+

1

dv
+

1

du′
+

1

dv′

]
, (6)

where T decreases linearly from some initial value to zero.
JA-BE-JA-VC is presented in [10] as a distributed algorithm,

because an edge swap requires only information available to
the nodes involved, i.e. u, v, u′ and v′. We observe that
this property is not necessarily helpful for performing the
partitioning operation on distributed computation frameworks
like Spark, because this information is not necessarily local to
the executor that processes the two edges. Indeed, while the
executor may have access to both the edges (u, v) and (u′, v′),
it may not know the current value of edges of a given color
that each vertex has (e.g. it may not know nu(c)), because
these other edges might be assigned to other partitioners.
Moreover, the color of these remote edges might have their
color changed concurrently. Hence, expensive communication
exchange among executors could be required to implement JA-
BE-JA-VC in Spark. In Sec. IV we discuss how to modify JA-
BE-JA-VC and our algorithm in order to prevent this problem.

III. REVERSE ENGINEERING JA-BE-JA-VC

The first contribution of this paper is to identify the global
objective function JA-BE-JA-VC is optimizing when links are
swapped according to (5). Let mc be the initial number of
edges with color c. Condition (5) corresponds to greedily
minimizing the function

Ecomm =
1

2|E|(1− 1
N)

(
2|E| −

∑
v∈V

∑
c∈C

nv(c)2

dv

)
, (7)

under the constraint that at each step |E(c)| = mc for any
color c. The constraint is easy to understand, because JA-BE-
JA-VC simply swaps colors of two edges so the number of
edges of a given color is always equal to the initial value.
It is easy to show that a swap makes Ecomm decrease if and
only if condition (5) is satisfied. Due to space constraints,
the calculations are in the companion technical report [9]. We

1The additional terms on the right hand side correspond to the fact that
there is one link more of color c′ (resp. c) for u and v (resp. c′)

could equivalently, and more succinctly, state that JA-BE-JA-
VC is maximizing

∑
v∈V

∑
c∈C

nv(c)2

dv
. The advantage of (7)

is that Ecomm belongs to [0, 1] and SA algorithms are usually
presented as minimizing an energy function.

Because of the above considerations, JA-BE-JA-VC can be
thought as a heuristic to solve the following problem:

minimize
c∈C|E|

Ecomm, subject to E(c) = mc

where c denotes the vectors of colors chosen for all the edges
in the network.

While the greedy rule (5) would lead, in general, to a local
minimum of Ecomm, one may wonder if rule (6), together with
the specific criterium to choose the edges to swap in JA-BE-
JA-VC and to change the temperature, can lead to a solution
of the problem stated above. Unfortunately, it is possible to
show that this is not the case in general.

A second remark is that (7) appears to be a quite arbitrary
metric, and is not directly related to metrics like VC or CC.
Our experiments show indeed that Ecomm can decrease while
both VC and CC increases, even if the evaluation in [10]
indicates that this is not usually the case.

In the next section we address these two remarks.

IV. A GENERAL SA FRAMEWORK FOR EDGE PARTITIONING

Let us consider a general optimization problem

minimize
c∈C|E|

E(c)

subject to c ∈ D,

where D is a generic set of constraints. We can solve this
problem with SA as follows.
• given the current solution c, select a possible alternative

c′ ∈ D with probability qc,c′

• if E(c′) ≤ E(c) accept the change, otherwise accept it
with probability exp

(
E(c)−E(c′)

T

)
< 1.

If the selection probabilities qc,c′ are symmetric (qc,c′ = qc′,c)
and if the temperature decreases as T0/ log(1+k), where k ≥
0 is the iteration number and the initial temperature T0 is large
enough, then this algorithm is guaranteed to converge (with
probability 1) to the optimal solution of the above problem.2

This algorithm is very general and can be applied to any
energy function E including the metrics described in Section II.
A practical limit is that the algorithm may not be easy to dis-
tribute for a generic function E(c), because of its dependency
on the whole vector c. Nevertheless, we can observe that an
SA algorithm needs to evaluate only the energy differences
E(c′)−E(c). Then, as far as such differences depend only on
a few elements of the vectors c and c′, the algorithm has still
a possibility to be implemented in a distributed way.

More in general if the function E can be expressed as sum of
potentials of the cliques of order not larger than r,3 evaluating
the energy difference requires only to evaluate the value of the

2JA-BE-JA-VC does not satisfy any of these conditions, and then it is not
guaranteed to converge to the optimal solution.

3Cliques of order 1 are nodes, cliques of order 2 are edges, etc..

potentials for the corresponding cliques (see [5, Chapter 7]).
The energy function Ecomm considered by JA-BE-JA-VC falls
in this category and in fact at each step the energy difference
between two states requires to count only the edges of those
colors that u, v, u′ and v′ have (5). But, as we said, our
framework is more general and can accommodate any function
that can be expressed as sum of clique potentials. For example
in what follows we consider the following function

E = Ecomm + αEbal (8)

Ebal =
1

|E|2(1− 1
N)2

∑
c∈C

(
|E(c)| − |E|

N

)2

, (9)

that allows to trade off the communication requirements asso-
ciated to a partition, captured by Ecomm, and the computational
balance, captured by Ebal.4 The term Ebal indeed range from 0
for a perfectly balanced partition to 1 for a partition where all
the edges have been assigned the same color. The parameter
α > 0 allows the user to tune the relative importance of the
two terms.

The function E can be optimized according to the general
framework we described above as follows. We select an edge
uniformly at random (say it (u, v) with color c) from E and
decide probabilistically if we want to swap its color with
another edge ((u′, v′) with color c′) or change the color c to
another color c′′ without affecting other edges. Both the edge
(u′, v′) and the color c′′ are selected uniformly at random
from the corresponding sets. For a color swapping operation
the difference of energy is equal to

∆E =
1

|E|(1− 1
N)

(g(u, v, c)− g(u, v, c′) + g(u′, v′, c′)

− g(u′, v′, c)− 1

du
− 1

dv
− 1

du′
− 1

du′
), (10)

similarly to the condition (5) for JA-BE-JA-VC. For a simple
color change operation, the change of energy is:

∆E =
1

|E|(1− 1
N)

(
g(u, v, c)− g(u, v, c′′)− 1

du
− 1

dv

)
+α

2

|E|2(1− 1
N)2

(nu(c′′) + nv(c′′)− nu(c)− nv(c) + 1) .

(11)

In both cases, only information about the nodes involved and
their neighborhood is required as it was the case for JA-BE-
JA-VC. At the same time, the same difficulty noted in Sec. II
holds. In an edge-centric distributed framework, in general the
edges for a node are processed by different executors. A naive
implementation of our SA algorithm of JA-BE-JA-VC would
require each executor to propagate color updates (e.g. the new
values of nu(c), nv(c), etc.) to other executors at each iteration
leading to an unacceptable partitioning time.

In order to prevent this problem, we implemented the
following distributed version of the algorithm. First, edges are

4In [8] we have shown that linear combinations of similar metrics can be
good predictors for the final computation time.

randomly distributed among the executors, and each of them
executes the general SA algorithm described above on the local
set of edges for L iterations. No communication can take place
among executors during this phase. After this phase is finished,
communication is allowed, the correct values are computed
and all the edges are again distributed at random among the
executors. This reshuffle guarantees that any pair of edges
has a probability to be considered for color swapping. We
observe that during a local phase, an executor may compute
erroneously the energy differences, if other executors are
changing the color of local edges involving the same nodes.
While the algorithm is intrinsically robust to such “errors,”
they can still prevent the convergence to the global optimum if
they happen too often. It is then important to limit the number
L of iterations during the local phase so that such errors do
not happen to often.

In [9] we show that the number of nodes potentially
affected by this problem during a local phase is bounded by
L2(1+2d̄Ne−2d̄), where d̄ is the average degree in the graph.
Imposing that this number is negligible in comparison to the
total number of vertices, we obtain the configuration rule:

L <<
|V |

2(1 + 2d̄Ne−2d̄)
. (12)

Given the same number of potential changes considered,
this implementation requires L times less synchronization
phases among the executors. Due to the large time required
for the synchronization phase, one can expect the total par-
titioning time to be reduced by roughly the same factor.
Our experiments show that this is the case. In the setting
described in the following section, with L = 200, there is
no difference between the final partitions produced by the two
implementations, but the partitioning time for the naive one is
100 times larger.

The detailed steps of our algorithm are described in Alg. 1.

V. EVALUATION

We present here some preliminary experimental results.
All our experiments were performed on a cluster of 2

nodes (1 master and 1 slave) with dual-Xeon E5-2680 v2
@2.80GHz with 192GB RAM and 10 cores (20 threads).
We used Spark version 1.4.0 and Spark standalone cluster
as a resource manager. We configured 5 Spark’s proper-
ties: spark.executor.memory 20g; spark.driver.memory 40g;
spark.cores.max 10; spark.local.dir ”/tmp”; spark.cleaner.ttl
20. Since GraphX does not have a built-in function which
provides values for the metrics introduced in II, we wrote
code which extracts these metric information [1].

We used two undirected graphs: the email-Enron graph
(36,692 vertices/ 367,662 edges) and the com-Amazon
graph (334,863 vertices/ 925,863 edges) provided by SNAP
project [3].

We implemented JA-BE-JA-VC and SA (Alg. 1) for GraphX.
In both cases we considered the distributed operation de-
scribed at the end of the previous section: L(= 200) steps
are performed locally at each executor before performing a

Algorithm 1 Implementation of SA for GraphX

1: procedure SIMULATEDANNEALING
2: G← randomlyAssignColors(G)
3: round← 0
4: while T > 0 do
5: G← partitionRandomly(G)
6: G← propagateV alues(G)
7: for i < L do . Executes locally on each partition
8: if tossCoin(2/3) == ”head” then .

swapping with probability 2/3...
9: e← randomEdge(partition)

10: e′ ← randomEdge(partition)
11: ∆E ← computeDelta(e, e′)
12: if ∆E < 0 then
13: swapColors(e, e′)
14: else
15: swapColorsWithProb(e, e′, e−

∆E
T)

16: end if
17: else . changing...
18: e← randomEdge(partition)
19: c′ ← anotherColor(c)
20: ∆E ← computeDelta(e, c′)
21: if ∆E < 0 then
22: changeColor(e, c′)
23: else
24: changeColorWithProb(e, c′, e−

∆E
T)

25: end if
26: end if
27: i+ +
28: end for
29: round+ +
30: T ← newTemperature(round)
31: end while
32: G = partitionBasedOnColor(G)
33: end procedure

synchronization phase. For a fair comparison between the two
algorithms, L corresponds in both cases to the number of
alternative configurations considered (i.e. those for which the
energy variation is computed). The source code is available
online [2].

Each experiment consists of the following steps: i) launch
the computational cluster; ii) load the given graph; iii) color
the graph according to random partitioner (CanonicalRan-
domVertexCut); iv) re-color with JA-BE-JA-VC or SA; v)
compute the partition metrics.

While SA is guaranteed to converge if T decreases as
the inverse of the logarithm of the number of iterations, the
convergence would be too slow for practical purposes. For this
reason and to permit a simpler comparison of SA and JA-BE-
JA-VC, in both cases the initial temperature decreases linearly
from T0 till 0 in 100 or 1000 iterations.

As we said our SA partitioner can be used to optimize
different functions. We start by comparing JA-BE-JA-VC and

SA when they have the same target Ecomm in (7). When
the objective function is the same, the two main differences
between the algorithms are i) the way to choose the edges
to swap, and ii) the rule to accept a change. In particular,
JA-BE-JA-VC chooses edges whose color is the rarest in a
neighborhood, while SA selects them uniformly at random. JA-
BE-JA-VC then decides to swap or not the colors according
to the deterministic rule 6, while SA adopts the probabilistic
rule (see Section IV)

The corresponding results are in Table I, row I and II ,
for different values of the initial temperature for email-Enron.
Both the algorithms reduce the value of Ecomm, but the
decrease is larger of JA-BE-JA-VC. This is essentially due to
the fact that JA-BE-JA-VC performs more swaps, although the
number of pairs of links to swap considered is the same (equal
to L times the number of iterations). For example for the
initial temperature 5∗10−11 SA swaps the color of 8808 edges,
while JA-BE-JA-VC swaps the color of 37057 edges. In fact,
SA random edge selection leads to consider a large number
of pairs that is not useful to swap, while JA-BE-JA-VC only
considers candidates that are more likely to be advantageous
to swap. In this sense JA-BE-JA-VC is greedier than SA: JA-
BE-JA-VC exploits more, while SA explore more. Adopting
the same choice for SA would lead to lose the condition
qc,c′ = qc′,c, that is required to guarantee convergence to the
global minimum of the function. We plan to investigate in the
future how to bias the selection process so that edges whose
color is less represented are more likely to be selected, but
still the condition qc,c′ = qc′,c is satisfied.

Although SA seems to be less effective to reduce the energy,
the results in Table I also shows that the function Ecomm is
not a necessarily a good proxy for the usual partition metrics
like VC or CC. If fact, we see that for 100 iterations SA
slightly outperforms JA-BE-JA-VC both in terms of VC and
CC for the initial temperature values, even if its final energy
is always larger. For 1000 iterations JA-BE-JA-VC performs
better in terms of VC and worse in terms of CC. What is even
more striking is that the increase in the number of iterations
leads to a decrease of the energy value (as expected), but not
necessarily to a decrease of VC and CC! These results suggest
that more meaningful energy functions should probably be
considered and our framework has the advantage to work for
a large family of different objectives.

We now move to compare JA-BE-JA-VC with SA when
the function E = Ecomm + αEbal is considered. Figure 1
shows the evolution of the energy after each local phase
and then after L = 200 local iterations5. While the two
energies have different expression, the initial energy values
are indistinguishable, because the starting point is an almost
balanced partition and then Ebal << Ecomm and E ≈ Ebal.
As in the previous case, JA-BE-JA-VC appears to be greedier
in reducing the energy function. Table I shows that this does
not lead necessarily to a better partition. Indeed, after 100

5Note that after a given iteration the energy can increase both for JA-BE-
JA-VC and SA, but the figure shows that every L iterations, the energy always
decrease.

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0 200 400 600 800 1000

E
n
e
rg

y

Iterations

JABEJAVC 10e-11
JABEJAVC 10e-10

JABEJAVC 10e-9
JABEJAVC 10e-8

SA 10e-11
SA 10e-10

SA 10e-9
SA 10e-8

Fig. 1: Energy value for JA-BE-JA-VC and SA using email-
Enron graph (1000 iterations were performed)

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 27000

1.00E-11 1.00E-10 1.00E-09 1.00E-08

V
e
rt

e
x
-c

u
t

m
e
tr

ic

Initial temperature

JA-BE-JA-VC
SA

Fig. 2: Vertex-cut metric for JA-BE-JA-VC and SA using email-
Enron graph (1000 iterations were performed)

iterations, SA minimizing E provides the best partitions in
terms of VC, CC and BAL, while STD is slightly worse. After
1000 iterations, SA has further improved VC and CC at the
expenses of the balance metrics like BAL and STD.

Figures 2 and 3 show similar results comparing the final
metrics VC and CC for an even larger range of initial temper-
atures.

While for email-Enron we have shown how SA can improve
communication metrics at the expenses of balance metrics, we
show that the opposite result can be obtained on a different
graph (com-Amazon) in Figs. 4 and 5. Moreover, for a given
graph, it is possible to tune the relative importance of the
different metrics by varying the parameter α.

VI. CONCLUSIONS

In this paper, we have proposed a framework for dis-
tributed edge partitioning based on simulated annealing and
originally inspired by JA-BE-JA-VC. Our framework is more
general because it can be used to optimize a large family of
partitioning metrics and convergence is guaranteed as long
as the temperature is decreased slowly enough. We have
discussed how our approach can be implemented in distributed
computation frameworks like GraphX. Our preliminary results
have revealed potential improvements in comparison to JA-BE-
JA-VC, but have also shown that further research is required to

TABLE I: Shows final partitioning metrics obtained by partitioners (I - JA-BE-JA-VC partitioner; II - SA using only Ecomm

as energy function, III - SA using Ecomm + 0.5Ebal as energy function). Temperature decreases linearly from T0 till 0.0 by
100 or 1000 iterations.

100 iterations 1000 iterations
T0 Final E Vertex-cut Comm. cost Balance STD T0 Final E Vertex-cut Comm. cost Balance STD

I
5.00E-11 0.888788 25091 122477 1.0091 0.0055 5.00E-11 0.8197 25685 118453 1.0091 0.0055
1.00E-10 0.888638 25096 122572 1.0091 0.0055 1.00E-10 0.8202 25656 118588 1.0091 0.0055
5.00E-10 0.888634 25085 122350 1.0091 0.0055 5.00E-10 0.8193 25603 118455 1.0091 0.0055

II
5.00E-11 0.900026 25046 120083 1.0091 0.0055 5.00E-11 0.8989 25048 120648 1.0091 0.0055
1.00E-10 0.900027 25046 120087 1.0091 0.0055 1.00E-10 0.8990 25049 120634 1.0091 0.0055
5.00E-10 0.900006 25046 120080 1.0091 0.0055 5.00E-10 0.8989 25046 120664 1.0091 0.0055

III
5.00E-11 0.894742 25044 120768 1.0088 0.0058 5.00E-11 0.8466 24795 113008 1.0144 0.0114
1.00E-10 0.894692 25043 120751 1.0079 0.0058 1.00E-10 0.8467 24794 112951 1.0178 0.0099
5.00E-10 0.894617 25043 120782 1.0084 0.0061 5.00E-10 0.8466 24771 112946 1.0332 0.0211

 112000

 113000

 114000

 115000

 116000

 117000

 118000

 119000

 120000

1.00E-11 1.00E-10 1.00E-09 1.00E-08

C
o
m

m
u
n
ic

a
ti

o
n
 c

o
st

 m
e
tr

ic

Initial temperature

JA-BE-JA-VC
SA

Fig. 3: Communication cost metric for JA-BE-JA-VC and SA
using email-Enron graph (1000 iterations were performed)

 250000

 260000

 270000

 280000

 290000

 300000

 310000

1E-11 1E-10 1E-9 1E-8

V
e
rt

e
x
-c

u
t

m
e
tr

ic

Initial temperature

JA-BE-JA-VC
SA

Fig. 4: Vertex-cut metric value for JA-BE-JA-VC and SA using
com-Amazon graph (1000 iterations were performed)

identify energy functions that are good indicators of the quality
of a partition. Moreover, the experiments have shown that a
completely unbiased edge selection procedure (where any pair
is equally likely to be drawn) can be very inefficient and we
plan to investigate how a more intelligent exploration phase
can be introduced without losing the theoretical guarantees
about convergence.

REFERENCES

[1] Code to gather metric information. https://github.com/
Mykhailenko/scala-graphx-tw-g5k/

[2] Source code of JA-BE-JA-VC and SA.
https://bitbucket.org/hlibmykhailenko/jabejavc/

[3] Stanford Large Network Dataset Collection.
https://snap.stanford.edu/data/

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 1.007

1E-11 1E-10 1E-9 1E-8
B

a
la

n
ce

 m
e
tr

ic

Initial temperature

JA-BE-JA-VC
SA

Fig. 5: Balance metric value for JA-BE-JA-VC and SA using
com-Amazon graph (1000 iterations were performed)

[4] Bourse, F., Lelarge, M., Vojnovic, M.: Balanced graph edge partition.
In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 1456–1465. ACM (2014)

[5] Brémaud, P.: Markov chains: Gibbs fields, Monte Carlo simulation, and
queues, vol. 31. Springer Science & Business Media (2013)

[6] Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph:
Distributed graph-parallel computation on natural graphs. In: Presented
as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). pp. 17–30 (2012)

[7] Guerrieri, A., Montresor, A.: Dfep: Distributed funding-based edge
partitioning. In: European Conference on Parallel Processing. pp. 346–
358. Springer (2015)

[8] Mykhailenko, H., Neglia, G., Huet, F.: Which Metrics for Vertex-Cut
Partitioning? In: Proceedings of the 11th International Conference for
Internet Technology and Secured Transactions (2016)

[9] Mykhailenko, H., Neglia, G., Huet, F.: Simulated Annealing for Edge
Partitioning. Tech. Rep. RT-486, Inria (January 2017)

[10] Rahimian, F., Payberah, A.H., Girdzijauskas, S., Haridi, S.: Distributed
Vertex-Cut Partitioning. In: 4th International Conference on Distributed
Applications and Interoperable Systems (DAIS). vol. LNCS-8460, pp.
186–200. Berlin, Germany (2014)

[11] Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A
resilient distributed graph system on spark. In: First International
Workshop on Graph Data Management Experiences and Systems.
pp. 2:1–2:6. GRADES ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2484425.2484427

[12] Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A resilient
distributed graph system on spark. In: First International Workshop on
Graph Data Management Experiences and Systems. p. 2. ACM (2013)

[13] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,
Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In: Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation (2012)

[14] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.:
Spark: cluster computing with working sets. HotCloud 10, 10–10 (2010)

