
Which Metrics for Vertex-Cut Partitioning?

Hlib Mykhailenko, Giovanni Neglia, Fabrice Huet

To cite this version:

Hlib Mykhailenko, Giovanni Neglia, Fabrice Huet. Which Metrics for Vertex-Cut Partitioning?.
The 11th International Conference for Internet Technology and Secured Transactions (ICITST),
Dec 2016, Barcelona, Spain. <hal-01401309>

HAL Id: hal-01401309

https://hal.inria.fr/hal-01401309

Submitted on 23 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01401309

Which Metrics for Vertex-Cut Partitioning?

Hlib Mykhailenko∗1, Giovanni Neglia†1, and Fabrice Huet‡2

1Université Côte d’Azur, Inria
2Université Côte d’Azur, CNRS, I3S

November 23, 2016

Abstract

In this paper we focus on vertex-cut graph partitioning and we investi-
gate how it is possible to evaluate the quality of a partition before running
the computation. To this purpose we scrutinize a set of metrics proposed
in literature. We carry experiments with the widely-used framework for
graph processing Apache GraphX and we perform an accurate statistical
analysis. Our preliminary experimental results show that communication
metrics like vertex-cut and communication cost are effective predictors on
most of the cases.

1 Introduction

Many distributed architectures have been proposed to process large graphs,
like for example GraphX [16], Pregel [13], PowerGraph [8], and GraphLab [12].
Before starting the actual computation, the graph is partitioned among the ex-
ecutors. Each executor then processes only a subset of the graph, but it needs
to periodically share intermediate-computation results with the other executors.
Partitioning affects then the total execution time in two different ways. First,
the executor computation time is related to the size of the subset it needs to
process. Second, the communication time depends on how much overlap there
is among the different subsets. As a trivial example, if the graph has different
components and each executor gets assigned one of them, executors can in many
cases work almost independently. While partitioning can significantly affect the
total execution time, finding the best partition for a given graph, cluster setting
and application task can be itself a hard computation problem. In practice,
existing partitioners rely on heuristics to find good enough trade-offs between

∗hlib.mykhailenko@inria.fr
†giovanni.neglia@inria.fr
‡fabrice.huet@unice.fr

1

balance (subsets should have roughly the same size), and communication (sub-
sets should be as disjoint as possible).

A classic way to distribute the graph is the edge-cut approach where each
vertex is assigned to a different partition. An edge is cut, if its vertices belong
to two different partitions. In most applications, the executor storing one of the
two vertices, say it the source, will need to be updated when the destination
value is modified. Edge-cut partioners try then to minimize the number of
edges cut. More recently, vertex-cut partitioning has been advocated as a
better approach to process graphs with a power-law degree distribution (very
common in real-world datasets) [8]. In this case, edges are mapped to partitions
and vertices are cut if their edges happen to be assigned to different partitions.
The effect can be qualitatively explained with the presence in a power-law graph
of hubs, i.e. nodes with degree much larger than the average. In an edge-cut
partition, attributing a hub to a given partition easily leads to i) computation
unbalance, if its neighbors are also assigned to the same partition, or ii) to a
large number of edges cut and then strong communication requirements. A
vertex-cut partitioner may instead achieve a better trade-off, by cutting only
a limited number of hubs. Analytical support to these findings is in [6]. For
this reason many new graph computation frameworks, like GraphX [16] and
PowerGraph [8], rely on vertex-cut partitioners.

In this paper we focus on vertex-cut partitioning and we investigate how it
is possible to evaluate the quality of a partition before running the computa-
tion. Answering this question would be useful both for the data analysts who
need to choose the partitioner appropriate for their graphs and for developers
who aim at proposing more efficient partitioners. In this paper we make a step
towards providing an answer by analysing a set of metrics proposed in literature
to evaluate the intrinsic quality of a partition. To this purpose we carry exper-
iments with the widely-used framework for graph processing Apache GraphX
and perform an accurate statistical analysis.

The paper is organized as follows. Apache GraphX is presented in Sec-
tion 2 together with the metrics for graph partitioning which we consider in our
study. In Section 3 we discuss the graph partitioning algorithms implemented
in GraphX. In Section 4 we discuss our statistical methodology to study the de-
pendency between the execution time of different graph-processing algorithms
and partitioning metrics. We discuss the experimental setup and illustrate the
results in Section 5. Finally, we conclude in Section 6.

The source code is available here [3].

2 Background

We start this section by presenting Apache GraphX. Then, we discuss the met-
rics used to evaluate the quality of graph partitions.

2

2.1 Apache GraphX

Apache Spark [1] is a large-scale distributed framework for data processing. It
relies on the concept of Resilient Distributed Dataset [17] (RDD) which is an
immutable distributed collection mainly stored in RAM memory. The basic
API provides methods for mapping and reducing RDDs.

Apache GraphX [16] is a widely-used Spark library for graph processing.
GraphX programs are executed as Spark jobs. The framework relies on a vertex-
cut partitioning approach where a vertex can be split among several partitions.
There exist many different algorithms for choosing where to map a given edge.
We discuss in Section 3 six such algorithms implemented in GraphX.

By default, GraphX considers all input graphs as directed ones, but then an
algorithm can work on its input as if it were undirected. This is for example
the case of the Connected Components algorithm built-in in GraphX. Other
algorithms, like GraphX implementation of PageRank [14], instead assume the
input is directed. In this case, if one wants to process an undirected graph,
he/she can modify directly the code or pre-processing the input and replace
each undirected edge by two edges with opposite directions.

GraphX is executed on a cluster with one master machine and Nm machines.
A graph is stored in GrahpX as two RDDs: a vertex RDD and an edge RDD. The
vertex RDD stores the ids of the vertices and their values. The edge RDD stores
source ids of the edges, destination ids of the edges, and the values assigned to
the edges. Each of these RDDs is split in N subsets each assigned to a different
executor1. The vertex RDD is always partitioned by a hash function based on
vertex ids, while the edge RDD is partitioned using a user-specified partitioner.
Note that the number of partitions N can be different from the number Nm of
machines (for example a machine can be assigned multiple executors). GraphX
distributes the N partitions among the machines in a round robin fashion.

2.2 Metrics for partitioning

We introduce here some additional notation to simplify the definitions.
Let us denote the input directed graph as G = (V, E), where V is a set of

vertices and E is a set of edges. Vertex-cut partitioning splits the set of edges
into N disjoint subsets, E1, E2, . . . , EN . With some abuse of terminology, we
also say that a vertex belongs to the (edge) partition Ei, if it is the source
or the destination of an edge in Ei. Using this convention, an edge can only
belong to one partition, but a vertex is at least in one partition and at most in
N partitions. Let V (Ei) denote the set of vertices that belong to partition Ei.
The vertices that appear in more than one partition are called frontier vertices.
Each frontier vertex has then been cut at least once. F (Ei) denotes the set
of frontier vertices that are inside partition Ei. F̄ (Ei) is the set of vertices in
partition Ei that were not cut, and this set equals to F̄ (Ei) = V (Ei)− F (Ei).

1It is also possible to assign multiple partitions to the same executor, but we do not consider
this possibility.

3

There exist several metrics to evaluate the quality of a graph partition. In
this paper we want to understand how well they fulfill this goal, i.e. to which
extent they can be used to predict the final performance. In our study we
considered six metrics which were used by the authors of graph partitioning
algorithms presented in [15] and [9]. The first three of them aim to quantify
how homogeneous are the sizes of the subsets in the partition and then how
balanced are the computation tasks across all the executors. The last three
instead target the communication cost, by considering how many vertices are
shared across the different subsets.

Balance (denoted as BAL) is the ratio between the maximum number of
edges in one partition and the average number of edges in all partitions, BAL =
maxi=1,...N (|Ei|)

|E|/N .

NSD is the normalized standard deviation of partition size,

NSD =

√
N∑
i=1

(
|Ei|

|E|/N − 1
)2

1
N .

Largest partition (denoted as LP) shows the number of vertices in the
largest partition of a graph, LP = maxi=1,...N |V (Ei)|.

Vertex-cut (denoted as VC) shows the number of vertices that were cut

during graph partitioning, VC = |V| −
N∑
i=1

|F̄ (Ei)|.

Replication factor (denoted as RF) is the ratio between the total number

of vertices in a partitioned graph and the original graph, RF =
N∑
i=1

|V (Ei)| 1
|V| .

Communication cost (denoted as CC) is the total number of frontier vertices

among all the partitions, CC =
N∑
i=1

|F (Ei)|.

It should be noticed that RF, CC, and VC metrics are linear combinations

of each others: RF =
N∑
i=1

|V (Ei)| 1
|V| =

N∑
i=1

(|F̄ (Ei)|+ |F (Ei)|) 1
|V| = 1− VC

|V| + CC
|V| .

For this reason it is sufficient to consider only 2 of them. We selected VC and
CC. 2

GraphX does not have a built-in function which provides values of these
metrics, this is why we have implemented new GraphX functions to compute
them [3].

3 GraphX partitioners

Six partitioning algorithms are considered in this work and described in this
section. The first four partitioners given below are the GraphX built-in ones.
The fifth (HybridCut) was proposed in [7] and implemented for GraphX by
Larry Xiao [2] together with its variant HybridCutPlus.

2We decided to sacrifice RF because including RF leads easily to negative coefficients in
the linear regression model.

4

RandomVertexCut (denoted as RVC) partitioner randomly assigns edges to
partitions to achieve good balance (with high probability). In particular it
computes the hash value for each pair (source vertex id, destination vertex id).
The hash space is partitioned in N sets with the same size. As a result, in a
multigraph all edges with the same source and destination vertices are assigned
to the same partition. On the contrary, two edges among the same nodes but
with opposite directions belong in general to different partitions.

CanonicalRandomVertexCut (denoted as CRVC) algorithm is similar to the
previous partitioner but in this case the two ids are ordered before calculating
the hash value. Hence, all edges between two vertices are allocated to the same
partition, regardless of their direction.

EdgePartition1D (denoted as EP1D) targets a small replication factor by
keeping all outgoing edges from one vertex in a single partition.3 More precisely,
the algorithm assigns each edge based on the hash value of its source vertex id.

EdgePartition2D (denoted as EP2D) guarantees a bound on the replication
factor metric and it can provide also good balance if the number of partitions
is appropriately chosen. The algorithm splits a set of vertices in M = d

√
Ne

subsets S1, S2, . . . , SM using a hash function. Then it is possible to partition
the adjacency matrix in M2 blocks, where the block (i, j) contains all edges
with a source in Si and a destination in Sj . Finally, the M2 blocks are assigned
to partitions in a round robin fashion. A vertex can then appear in at most
2M−1 ≤ 2(

√
N+1) partitions. If N is chosen to be a square number, partitions

will be on average well balanced.
HybridCut (denoted as HC) tries to reduce the number of frontier vertices

without sacrificing the balance. The basic idea is that hubs will be cut in any
case to avoid unbalance, while the edges of the nodes with small degree can be
kept in the same partition. In particular, the algorithm considers the destination
vertex of each edge. If this vertex is a hub, i.e. if its in-degree is larger than a
given threshold, then the edge is assigned to a partition based on the hash value
of its source id. Otherwise, the assignment is based on the destination vertex
id value.

HybridCutPlus (denoted as HCP) is a hybrid partitioner which combines
HC and EP2D. It computes the inDegree value (number of incoming edges) of
the source and the destination vertices. If both values are either greater or less
than a given threshold, then the EP2D partitioner is used for this edge. If the
inDegree value of the source vertex is less than the threshold and the inDegree
value of the destination vertex is greater than the threshold, then the hash value
of the source is used to assign the edge to a random partition. If the inDegree
value of the source vertex is greater than the threshold and the inDegree value of
the destination vertex is less than the threshold the hash value of the destination
is used to assign the edge to a random partition. The HCP partitioner targets
balance and communication efficiency properties.

3Still the vertex can appear in multiple partitions because of its incoming edges.

5

4 Statistical analysis methodology

We want to study if the partition metrics considered in literature and described
above in Sec. 2.2 are good predictors for the final execution time. To this pur-
pose, we would like ideally to design experiments where we could randomly and
independently select the 5 different metrics, generate an input graph with these
quintuple of characteristics, evaluate the execution time of the application of
interest and finally use some statistical tool like regression models to identify
the contribution of each metric to the execution time. Unfortunately, it is not
possible to select first the partition metrics and then produce a graph with such
characteristics. We can only use a partitioner on a given graph to produce a
partition and then evaluate its metrics. Their values will be far from indepen-
dent and in particular the structure of their correlation can be a function of the
specific partitioner used.

For this reason, in order to obtain a variety of different configurations, we
use all the 6 partitioners on the same graph. For each graph this leads to 6
different quintuples. A statistical model based on 6 points in a 5-dimension
space would very likely overfit the data. Considering other graphs allow us to
obtain other samples. The drawback is that if we use real datasets, they are
going to differ for the number of nodes and of edges. Now, these two metrics
are very likely to have an effect much more important on the execution time
than the partition metrics, which are the focus of our study.4 The contribution
of the partition metrics would be dwarfed by the size change.

In order to overcome this difficulty, we generated 10 input graphs with the
same size simply randomly permutating the ids of the vertices. Even if the
different graphs are homeomorphic, partitions are calculated using the ids, and
then each partitioner produces different subsets with different values for the
metrics of interest. This approach allowed us to have 60 different quintuples
for each graph: the ten permutations of the original graph multiplied by the six
partitioners. In this way the risk of an overfitting model is significantly reduced.

To identify the most important metrics, we then used a linear regression
model (denoted as LRM) with the 5 partition metrics as input variables (or
predictors) and the execution time as output variable (or response). We want
to find the most important predictors. Obviously the more predictors we have
in a LRM the smaller is the residual error, but which ones are really important?
For this purpose we used the best subset selection method [11, Chapter 6]. In
particular, given the small number of predictors (5), we were able to consider
all the possible 5! linear models for each original graph. Models with the same
number of predictors can be easily compared through their R2 value. In this way
5 models were selected, the best one was finally identified as the one with the
smallest Akaike information criterion [5].5 Once the best model was selected,
we ordered its predictors by considering those that lead to the largest increase

4Remember that our goal is choosing the best partitioner for a given input graph of interest,
whose size in terms of number of nodes and edges is out of our control.

5We looked at other indices (Bayesian Information Criteria, sample-size corrected AIC, R2

adjusted) and in most cases the results did not differ.

6

of the R2 when added as predictors.

5 Experiments

All our experiments were performed on a cluster of nodes with dual-Xeon E5-
2680 v2 @2.80GHz with 192GB RAM and 10 cores (20 threads). We used Spark
version 1.4.0 and Spark standalone cluster as a resource manager. We used two
different cluster configurations. In the first configuration, master and executor
share the same machine. In the second case, one machine is dedicated to the
master and one to each of ten executors. We configured 4 Spark properties:
spark.executor.memory equals to 4 GB (if there are 10 executors) or 40 GB
(if there is 1 executor), spark.driver.memory equals to 10 GB, spark.cores.max
equals to 10, spark.local.dir points to local directory.

Two different processing algorithms were evaluated: Connected Components

and PageRank with 10 iterations. PageRank exhibits the same computation
and communication pattern at each stage (the PageRank of each vertex value
is updated according to the same formula and then propagated to the neigh-
bors), while Connected Components implements a label propagation mecha-
nism, where as time goes on, less updates are required.

As datasets, we used two undirected graphs: the com-Youtube graph (1,134,890
vertices/2,987,624 edges) and com-Orkut graph (3,072,441 vertices/117,185,083
edges) from SNAP project [4].

For each experiment we, first, randomly selected a partitioner, a graph pro-
cessing algorithm, and a permutation of an input graph. Second, we applied
the selected partitioner to the input graph. Finally, we executed the selected
graph processing algorithm. To overcome execution time variability (due to a
shared network, shared distributed file system, operational system layer, etc.),
every combination has been tested at least 30 times, obtaining 95% confidence
intervals for the execution time whose relative amplitude is always less than
10%.

As we mentioned above, for each graph we obtained 60 different quintuples
for the partition metrics. Table 1 shows their correlation matrix for com-Youtube
graph. The matrix clearly identifies the two groups of metrics: those relative
to partition balance (BAL, LP NSTDEV) and those related to communication
(VC, CC). The high level of collinearity also explains why in the LRM some
coefficients are negative [11, Chapter 3].

We computed and selected linear regression models for com-Youtube, com-
Youtube doubled, and com-Orkut graph, as it was discussed in Section 4. Table 2
and Table 3 summarize our experimental results respectively for PageRank and
Connected Components. For each input graph and number of machines, they
show the best LRM with the factors listed in decreasing order of importance.
We note that, although a single node has enough resources to perform all the
computation, the results in Table 2 and Table 3 show that the average execu-
tion time decreases as the number of machines increases. A similar result was
observed in [10] where it was due to the higher memory contention in case of a

7

Table 1: Correlation matrix for partition metrics com-Youtube
BAL LP NSD VC CC

BAL 1 0.9332 0.9445 0.2070 -0.2448
LP 1 0.9799 0.0993 -0.3177

NSD 1 0.1275 -0.2667
VC 1 0.8737
CC 1

single machine. It is possible that the effect has the same cause here.
Below we illustrate our main findings about the partition metrics.

5.0.1 The execution time depends on the partition metrics

For PageRank the R2 value is very high (always above 0.99) while the Root
Mean Square Error (RMSE) is less than 5% of mean execution time. This
leads to conclude that indeed the execution time depends on these metrics. The
dependency is less stronger for Connected Components. This can be explained
with the fact that PageRank roughly does the same operations at each stage,
while Connected Components is a label propagation algorithm where very soon
the values of most of the vertices will not be updated. The execution time likely
depends on graph properties (e.g. the graph diameter) that are not well captured
by these metrics.

Figures 1 and 2 confirm these results by comparing the experimental execu-
tion time with the one predicted using the best LRM model we found. Results
are grouped by partitioners, for each of them results for the 10 graph permuta-
tions are shown. The plot for the com-Orkut is similar (we do not show it here
due to lack of space).

En passant we observe that HC appears to be the best partitioner confirming
the results in [7], it also outperforms its variant HCP.

5.0.2 Communication metrics are the most important

In all the LRMs, the most important metric is always a communication metric
(CC or VC), even when a single machine is used and then the network is scarcely
used.

This result is also confirmed by comparing the 5 single-predictor LRMs:
the LRMs using VC or CC have larger R2 value. Figure 3 shows how LRM
models using only VC or CC are able to produce quite good predictions at least
of the relative performance of the different partitioners. On the contrary, the
corresponding plot for balance metrics (BAL, LP, NSTDEV) shows an almost
horizontal line.

As a side note, we tried to find a setting where balance metrics would have
become the most important ones. In particular we considered i) a single ma-
chine, ii) very limited memory for each partitioner (70MB), iii) a modified ver-
sion of PageRank where each computation is effectuated 1000 more times. The

8

purpose was to make communication among executors as fast as possible, while
increasing the computational burden on each executor. Even in this settings,
communication metrics appeared to be the most important ones.

5.0.3 Results are robust to the partitioners considered

One of the purposes of our analysis is to be able to rank a priori different
partitioners before carrying on the experiments. We evaluated how much our
results are sensitive to the specific set of partitioners used to tune the LRM. To
this purpose, we carried on the same analysis using only 5 partitioners (we did
not use HC). We then used the new LRM model to predict the execution time
for the HC partitioner. Figure 4 shows that predicted execution time for HC
is underestimated. However, the order of the partitioners in terms of execution
time is the correct one. Then the LRM model correctly estimates that using
HC the application would finish faster. One could argue that the LRM has been
trained using HCP that is a variant of HC. We then performed the same set of
experiments removing both HC and HCP. In this case the predicted executed
time is really off, but the LRM still correctly predicts the ranking of the different
partitioners.

5.0.4 There is space for better partition metrics

While the results above are encouraging, the following experiment suggests that
these partition metrics do not capture all the relevant features.

We considered a version of com-Youtube graph where we doubled each edge
so that both directions are present in the input graph (and then PageRank

correctly computes the PageRank of the original undirected graph). We denote
the doubled graph as com-Youtube doubled.

The execution time of both algorithms on com-Youtube doubled is larger,
roughly 30% (see Table 4). Nevertheless, the communication partition metrics
that we identified as the most important ones may fail to detect the change.
Indeed, this is evident if we compare the CRVC partitioner with the other ones.
Indeed, as shown in Table 4 for a specific input graph, the CRVC partitioner
provides the same values for all the partition metrics, and in particular for
VC and CC metrics, both for com-Youtube doubled and com-Youtube, since it
partitions edges based on the vertex (either source or destination) with the
smallest id. For the other partitioners instead, the metrics VC and CC are
different. The difference is evident if we compute the LRM including or not
CRVC. In the first case the R2 value of the LRM for PageRank significantly
decreases from 0.99 for com-Youtube (see Table 2) to 0.82. In the second case
the LRMs are equally good.

We think a more meaningful communication metric could be defined that
would permit to identify the difference between CRVC and the other partition-
ers. We plan to investigate this aspect in the future.

9

Table 2: Results for PageRank algorithm
Graph name Cluster configuration

Mean
time (ms)

Metrics (ordered by importance) RMSE R2

com-Youtube
single machine 12,343

metrics VC CC BAL LP NSD
111.83 0.996

coefficients 1.5507 0.3156 0.42743 -0.49504 0.33548
1 master +
10 executors

9,068
metrics VC CC BAL LP NSD

125.47 0.993
coefficients 1.2816 0.27261 0.50989 -0.64857 0.49891

com-Orkut
single machine 122,929

metrics CC LP VC
1199.4 0.998

coefficients 2.312 5.039 12.942
1 master +
10 executors

94,738
metrics CC LP NSD VC

2222.8 0.989
coefficients 1.3285 8.3243 -11.486 12.881

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

HC HCP
EP1D

EP2D
RVC

CRVC

E
xe

cu
ti

o
n
 t

im
e
 (

s)

observed
predicted by best LRM

Figure 1: Execution time for PageRank algorithm on com-Youtube graph: ex-
perimental results vs best LRM predictions

 6

 7

 8

 9

 10

 11

 12

 13

HC HCP
EP1D

EP2D
RVC

CRVC

E
xe

cu
ti

o
n
 t

im
e
 (

s)

observed
predicted by best LRM

Figure 2: Execution time for Connected Components algorithm on com-
Youtube graph : experimental results vs best LRM predictions

6 Conclusion

We used linear regression models with partitioning metrics as predictors and the
average execution time for different graph processing algorithms as the observed

10

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

HC HCP
EP1D

EP2D
RVC

CRVC

E
xe

cu
ti

o
n
 t

im
e
 (

s)

observed
predicted by VC
predicted by CC

Figure 3: Execution time for PageRank algorithm on com-Youtube graph: ex-
perimental results vs LRM predictions using communication metrics

 4

 5

 6

 7

 8

 9

 10

 11

HC HCP
EP1D

EP2D
RVC

CRVC

E
xe

cu
ti

o
n
 t

im
e
 (

s)

observed
predicted by best LRM

Figure 4: Prediction for HC partitioner (using com-Youtube graph, and
PageRank algorithm)

values. The obtained models confirmed that there is actual dependency between
these quantities. More importantly, the most important metrics are CC and
VC, the both are an indicator of the amount of communication among the
executors. On the contrary, the metrics that quantify load unbalance across the
executors are less important. This conclusion holds whether communication is
inter-machine or intra-machine, i.e. both if the network is used or not. Our
results are robust to the original set of partitioners used to train the model,
and the model can correctly rank other partitioners. At the same time, there is
probably still space to define more useful metrics to evaluate partions.

11

Table 3: Results for Connected Components algorithm

Graph name Cluster configuration
Mean

time (ms)
Metrics (ordered by importance) RMSE R2

com-Youtube
single machine 12,429

metrics VC LP NSD
1119.2 0.499

coefficients 1.7884 -1.3177 1.3861
1 master +
10 executors

9,635
metrics VC LP NSD

922.27 0.681
coefficients 2.1131 -1.7528 2.1043

com-Orkut
single machine 86,253

metrics CC LP NSD
2628.2 0.959

coefficients 1.2039 9.771 -8.2634
1 master +
10 executors

71,952
metrics CC LP NSD

2235,6 0.973
coefficients 1.0854 15.484 -17.96

Table 4: Metrics and execution time of PageRank for HC and CRVC

Graph name
HC CRVC

Average
time (ms)

VC CC
Average

time (ms)
VC CC

com-Youtube 6468 0.304 1.091 10327 0.452 1.831
com-Youtube

doubled
8121 0.702 2.204 13404 0.452 1.831

7 Acknowledgements

This work was partly funded by the French Government (National Research
Agency, ANR) through the Investments for the Future Program reference #ANR-
11-LABX-0031- 01.

References

[1] Apache Spark. http://spark.apache.org

[2] HybridCut and HybridCutPlus partitioners.
https://github.com/larryxiao/spark/

[3] Source code. https://github.com/ Mykhailenko/scala-graphx-tw-g5k

[4] Stanford Large Network Dataset Collection.
https://snap.stanford.edu/data/

[5] Akaike, H.: Akaikes information criterion. In: International Encyclopedia
of Statistical Science, pp. 25–25. Springer (2011)

[6] Bourse, F., Lelarge, M., Vojnovic, M.: Balanced graph edge partition.
In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 1456–1465. ACM (2014)

[7] Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: Differentiated Graph
Computation and Partitioning on Skewed Graphs. In: Proceedings of the
Tenth European Conference on Computer Systems. EuroSys ’15, ACM,
New York, NY, USA (2015)

12

[8] Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph:
Distributed graph-parallel computation on natural graphs. In: Presented
as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). pp. 17–30 (2012)

[9] Guerrieri, A., Montresor, A.: Dfep: Distributed funding-based edge par-
titioning. In: European Conference on Parallel Processing. pp. 346–358.
Springer (2015)

[10] Hood, R., Jin, H., Mehrotra, P., Chang, J., Djomehri, J., Gavali, S.,
Jespersen, D., Taylor, K., Biswas, R.: Performance impact of resource
contention in multicore systems. In: Parallel & Distributed Processing
(IPDPS), IEEE International Symposium on (2010)

[11] James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to
statistical learning, vol. 6. Springer (2013)

[12] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein,
J.M.: Distributed GraphLab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment 5(8), 716–727
(2012)

[13] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser,
N., Czajkowski, G.: Pregel: a system for large-scale graph processing.
In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. pp. 135–146. ACM (2010)

[14] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation
ranking: bringing order to the web. Technical report, Stanford InfoLab,
Stanford, CA (1999)

[15] Rahimian, F., Payberah, A.H., Girdzijauskas, S., Haridi, S.: Distributed
Vertex-Cut Partitioning. In: 4th International Conference on Distributed
Applications and Interoperable Systems (DAIS). vol. LNCS-8460, pp. 186–
200. Berlin, Germany (2014)

[16] Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A resilient
distributed graph system on spark. In: First International Workshop on
Graph Data Management Experiences and Systems. p. 2. ACM (2013)

[17] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,
Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In: Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation (2012)

13

