
Reducing Communication Overhead
for Average Consensus

Mahmoud El Chamie Giovanni Neglia
INRIA Sophia Antipolis - Ḿediterrańee

2004 Route des Lucioles, B.P. 93
06902 Sophia Antipolis, France

{mahmoud.elchamie, giovanni.neglia, konstantin.avratchenkov}@inria.fr

Konstantin Avrachenkov

Abstract—An average consensus protocol is an iterative dis-
tributed algorithm to calculate the average of local values stored
at the nodes of a network. Each node maintains a local estimate
of the average and, at every iteration, it sends its estimate to
all its neighbors and then updates the estimate by performing
a weighted average of the estimates received. The average
consensus protocol is guaranteed to converge only asymptotically
and implementing a termination algorithm is challenging when
nodes are not aware of some global information (e.g. the diameter
of the network or the total number of nodes). In this paper, we
are interested in decreasing the rate of the messages sent in the
network as nodes estimates become closer to the average. We
propose a totally distributed algorithm for average consensus
where nodes send more messages when they have large differ-
ences in their estimates, and reduce their message sending rate
when the consensus is almost reached. The convergence of the
system is guaranteed to be within a predefined marginη. Tuning
the parameter η provides a trade-off between the precision of
consensus and communication overhead of the protocol. The
proposed algorithm is robust against nodes changing their initial
values and can also be applied in dynamic networks with faulty
links.

I. I NTRODUCTION

Average consensus protocols are used to calculate in a
distributed manner the average of a set of initial values
(e.g. sensor measurements) stored at nodes in a network.
This problem is gaining interest nowadays due to its wide
domain of applications as in cooperative robot control [1],
resource allocation [2], and environmental monitoring [3],
sometimes in the context of very large networks such as
wireless sensor networks for which a centralized approach
can be unfeasible, see [4]. Under this decentralized approach,
each node maintains a local estimate of the network average
and selects weights for the estimates of its neighbors. Thenat
each iteration of the consensus protocol, each node transmits
its current estimate to its neighbors and update its estimate
to a weighted average of the estimates in its neighborhood.
Under some easy-to-satisfy conditions on the selected weights,
the protocol is guaranteed to converge asymptotically to the
average consensus. For an extensive literature on average
consensus protocol and its applications, check the surveys[5],
[6] and the references therein.

The asymptotic convergence rate of consensus protocols
depends on the selected weights. Xiao and Boyd in [7] have

formulated the problem as a Semi Definite Program that can
be efficiently andglobally solved. However, speeding up the
convergence rate does not automatically reduce the number
of messages that are sent in the network. The reason is that
the convergence is reached only asymptotically, and even if
nodes’ estimates are very close to the average, nodes keep
on performing the averaging and sending messages to their
neighbors.

In this paper we propose an algorithm that relies only on
limited local information to reduce communication overhead
for average consensus. As the nodes’ estimates approach the
true average, nodes exchange messages with their neighbors
less frequently. The algorithm has a nice self-adaptive feature:
even if it has already converged to a stable state and the
message exchange rate is very small, when an exogenous
event leads the value at a node to change significantly, the
algorithm detects the change and ramps up its communication
rate. The proposed algorithm provides also a trade-off between
the precision of the estimated average and the number of
messages sent in the network by setting the parameterη. Being
totally decentralized, the message reduction algorithm can also
be applied in a dynamic network with faulty links.

The paper is organized as follows: Section II presents the
notation used and a formulation of the problem. Section III
describes the previous work on the termination of the average
consensus protocol. Section IV motivates the work by an im-
possibility result for finite time termination. Section V presents
the proposed algorithm, its analysis, and the simulations of the
algorithm. Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a network ofn nodes that can exchange mes-
sages among each other through communication links. Every
node in this network stores a local value, e.g. a sensor
measurement of pressure or temperature, and we need each
node to calculate the average of the initial measurements by
following a distributed linear iteration approach. The network
of nodes can be modeled as a graphG = (V,E) where V
is the set of vertices (|V | = n) and E is the set of edges
such the{i, j} ∈ E if nodes i and j are connected and
can communicate (they are neighbors). Let alsoNi be the
neighborhood set of nodei. Let xi(0) ∈ R be the initial

2

value at nodei. We are interested in computing the average
xave = (1/n)

∑n

i=1 xi(0), in a decentralized manner with
nodes only communicating with their neighbors. We consider
that nodes operate in a synchronous way: when the clock ticks,
all nodes in the system perform the iteration of the averaging
protocol. In particular at iterationk + 1, node i updates its
state valuexi:

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijxj(k) (1)

wherewij is the weight selected by nodei for the value sent
by its neighborj and wii is the weight selected by nodei
for it own value. The topology of the network may change
dynamically. This can be easily taken into account in (1) by
letting the neighborhood and the weights be time-dependent
(then we haveNi(k)andwij(k)). For the sake of simplicity in
what follows we omit to explicit this dependance. The matrix
form equation is:

x(k + 1) = Wx(k) (2)

where x(k) is the state vector of the system andW is the
weight matrix.

In this paper, we considerW to be n × n real doubly
stochastic matrix havingλ2(W) < 1 whereλ2 is the second
largest eigenvalue in magnitude1 of W (these are sufficient
conditions for the convergence of the average consensus pro-
tocol, see [8]). We also consider thatW is constructed locally,
some methods for constructing the weightW using only local
information can be found in [9]. Let1 be the vector of all
1s, the convergence to the average consensus is in general
asymptotic:

lim
k→∞

x(k) = xave1. (3)

Since average consensus is usually reached only asymptoti-
cally (3), the nodes will always be busy sending messages.
Let N(k) be the number of nodes transmitting at iterationk,
so without a termination procedure all nodes are transmitting
at iteration k, N(k) = n independently from the current
estimates. In this paper we present an algorithm that reduces
communication overhead and provides a trade-off between
precision of the consensus and number of messages sent.

III. R ELATED WORK

Some previous works considered protocols for average
consensus protocol to terminate (in finite time) to convergeto
the exact average or to guaranteed error bounds. For example,
the approach proposed in [10] is based on theminimal
polynomialof the matrixW . The authors show that a node, by
using coefficients of this polynomial, can calculate the exact
average from its own estimate onK consecutive iterations. The
drawback is that nodes must have high memory capabilities to
storen×n matrix, and high processing capabilities to calculate
the coefficients of the minimal polynomial by solving a set
of n linearly independent equations. Another approach for

1The second largest largest eigenvalue in magnitude of a symmetric matrix
is the second largest singular value of that matrix soλ2 ≥ 0.

finite time termination is given in [11], where the proposed
algorithm does not calculate the exact average, but estimates
are guaranteed to be within a predefined distance from the
average. This approach runs three consensus protocols at the
same time: the average consensus which runs continuously
and the maximum and the minimum consensus restarted every
U iterations whereU is an upper bound on the diameter of
the network. The difference between the maximum and the
minimum consensus provides a stopping criteria for nodes.

Under the assumption of asynchronous iterations, the au-
thors in [12] proposed an algorithm that leads to the termina-
tion of average consensus in finite time with high probability.
In their approach, each node has a counterci that stores how
many times the difference between the new estimate and the
old one was less than a certain thresholdτ . When the counter
reaches a certain value, sayC, the node will stop initiating
the algorithm. They proved that by a correct choice ofC and
τ (depending on some networks’ parameters as the maximum
degree in the network, the number of nodes, and the number
of edges) the protocol terminates with high probability.

A major drawback of these algorithms —beside the memory
requirements and the robustness of the system to changes—
is the assumption that each node should know some global
network parameters. This intrinsically contradicts the spirit
of distributed consensus protocols. Designing a decentralized
algorithm for average consensus that terminates in finite time
without using any global network information (as the diameter
of the network or the number of nodes) is still an open problem
for which we prove a strong negative result in the next section.

IV. M OTIVATION

We address the problem of termination of average consensus
in this paper. We will start by an impossibility result for
termination of the average consensus protocol in finite time
without using some network information.

Theorem 1. Given a static network where nodes run the
synchronous consensus protocol described by(1) and each
node only knows its history of estimates, there is no deter-
ministic distributed algorithm that can correctly terminate the
consensus with guaranteed error bounds after a finite number
of steps for any set of initial values.

Proof: Consider a path graphG of three nodesa,b, and
c as in Fig. 1 where the weight matrix is real and doubly
stochastic with0 ≤ λ2(W) < 1 (so we havewaa, wcc > 0).
Let xa(0), xb(0), and xc(0) be the initial estimates for the
nodes and considerα = xa(0)+xb(0)+xc(0)

3 , so with the average
consensus protocol using the synchronous iterations in (1), all
nodes’ estimates will converge toα asymptotically:

lim
k→∞

xa(k) = lim
k→∞

xb(k) = lim
k→∞

xc(k) = α.

We will prove the theorem by contradiction. Suppose there
exists a termination algorithm for nodes to use only the history
of their estimates and terminate the average protocol in finite
time within guaranteed error bounds. Then if we run this
algorithm on this graph, there exists an iterationK > 0 and

3

Fig. 1. Path graphG with 3 nodes.

Fig. 2. Extended mirror graph ofG with 6 nodes andF = 2 fragments.

η > 0 such that nodea (also true forb and c) decides to
terminate at iterationK on the basis of the history of its
estimate:xa(0), xa(1), xa(2), ..., xa(K), and it is guaranteed
that |xa(K) − xave| < η, wherexave = α.

We will define the F extended mirror graph
of G to be a path with n = 3F nodes
a1, a2, ..., aF , b1, b2, ..., bF , c1, c2, ..., cF , formed by
G1, G2, ..., GF (F graphs identical toG) connected by
additional links to form a path, the added links are{cl, cl+1}
if l is odd and{al, al+1} if l is even (e.g. the graph for
F = 2 is shown in Fig. 2). Let us assume first that the initial
estimates for nodes in the subgraphsG1,...,GF are identical
to the estimates of the nodes in graphG (e.g. for node
a we havexa1

(0) = xa2
(0) = ... = xaF

(0) = xa(0)),
the weight matrix for G1,...,GF is also identical to
the weight matrix of G except for nodes incident to
the added links, if {cl, cl+1} is an added link, then
wclcl

= wcl+1cl+1
= wclcl+1

= wcc

2 and similarly if{al, al+1}
is an added link, thenwalal

= wal+1al+1
= walal+1

= waa

2 .
Notice that on the new generated graph we still havexave = α
and also:

xa1
(k) = xa2

(k) = ... = xaF
(k) = xa(k) ∀k ≤ K,

so nodea1 applying the termination algorithm on the new
graph will decide to terminate after the same number of
iterations K. Consider now a valueF > K and that the
initial estimate of nodecK+1 is changed toxcK+1

(0) =
xc(0) + n(2η + xa1

(K) − α) and the new average is now

xave = α +
xcK+1

(0)−xc(0)

n
. The estimates at nodea1 would

not change during the firstK steps, then nodea1 would again
terminate at stepK, but the error bound is no more guaranteed,

because|xa1
(K)−xave| = |xa1

(K)−α−
xcK+1

(0)−xc(0)

n
| =

2η > η. This contradicts the fact thata1 terminates with
guaranteed error bounds. The proof can be extended to
include any graphG, not just path graphs, by using the same
technique of generating extended mirror graphs ofG.

Theorem1 shows that in general, nodes cannot stop execut-
ing the algorithm. Motivated by this result, we investigatein
what follows algorithms where nodes can refrain from sending
messages at every iteration (e.g. when estimates have not

changed significantly during the recent iterations). We will
then say that an algorithm terminates when the number of mes-
sages sent in the network disappears at least asymptotically,
even if the nodes are still running the algorithm internally, i.e.:

lim
t→∞

∑t

k=1 N(k)

t
= 0, (4)

whereN(k) is the number of nodes transmitting their estimate
to their neighbors at iterationk. In other words, the rate of
messages in the network should decrease as the estimates con-
verge to the average consensus or to a bounded approximation.

V. OUR APPROACH

Even if the nodes cannot terminate the algorithm in finite
time, we are interested in reducing the rate of the messages
sent in the network correspondingly to estimates’ improve-
ment. For example, if nodes’ estimates are widely different,
the messages sent at a given iteration can significantly reduce
the error by making the estimates approach to the real average.
However, when the estimates have “almost converged”, the
improvement from each message in terms of error reduction
can be negligible. So from an engineering perspective, it is
desirable that nodes send more messages when they have
large differences in their estimates, and less messages when
the estimates have almost converged. In what follows we first
present a centralized algorithm to provide the intuition ofour
approach and then we describe a more practical decentralized
solution.

A. A Centralized Algorithm

In this section, we discuss a simple centralized algorithm
for termination of average consensus protocols. We call it a
centralized protocol because in this protocol there are some
global variables known to all the nodes in the network,
and each node can send a broadcast signal that triggers an
averaging operation (1) at all nodes. Then, if any of the nodes
in the network sends this signal, all the nodes will respond by
sending the new estimates to their neighbors according to the
averaging equation:

x(t + 1) = Wx(t). (5)

On the contrary, if no signal is sent, the nodes will preserve
the same estimate:

x(t + 1) = x(t). (6)

If the rate of broadcast signals converges to0, also the rate
of the messages containing the estimates will converge to0
and asymptotically no node in the network will transmit. As
above we consider a time-slotted model. In all this paper,t
represents a discrete time iteration.

We now introduce formally the algorithm. Lete(t) andη(t)
be the values of two global variables known to all the nodes
at time t, such thate(0) = 0, η(0) = η0 and0 ≤ e(t) < η(t).
As we are going to see, both the values of the two variables
cannot decrease. LetW be the weight matrix of the network
satisfying convergence conditions of average consensus and

4

x(t) be the state vector of the system at iterationt. We letLt

be a Boolean variable (either true or false) defined at every
iteration t as:

Lt : e(t − 1) + y(t − 1) < η(t − 1), (7)

wherey(t− 1) = ||Wx(t− 1)− x(t− 1)||∞ and withL0 :=
False. Theny(t− 1) stores the estimates change if the linear
iterations (1) would be executed at stept andLt evaluates if
the change is negligible (Lt = False) and then no message
is transmitted or not (Lt = True). Different actions are taken
on the basis of theLt value at timeslott. We also define the
simple point processψ = {tk : k ≥ 1} to be the sequence of
strictly increasing points

0 < t1 < t2 < ... ,

such thattk ∈ ψ if and only if Ltk
= False. Let K(t) denote

the number of points of the setψ that falls in the interval
]0, t], i.e. K(t) = max{k : tk ≤ t}, with K(0) := 0. If
Lt is false, a broadcast signal is sent in the network and all
nodes will perform an averaging iteration; while ifLt is true,
then there is no signal in the network, and the nodes keep the
same estimate as the previous iteration. Network variablesare
changed at timet > 0 according to the equations given in
following table:

If Lt is True If Lt is False

K(t) = K(t − 1) K(t) = K(t − 1) + 1
x(t) = x(t − 1) x(t) = Wx(t − 1)
e(t) = e(t − 1) + y(t − 1) e(t) = e(t − 1)
η(t) = η(t − 1) η(t) = η(t − 1) + η0

K(t)2

When t /∈ ψ, we call t a silent iteration because the nodes
have the same estimate as the previous iteration (i.e.xi(t) =
xi(t−1)) and there is no need to exchange messages of these
estimates in the network. On the other hand, whent ∈ ψ,
we call t as a busy iteration because nodes will perform an
averaging (i.e.x(t) = Wx(t − 1)) and the estimates must
be exchanged in the network. Letαk be the number of silent
iterations betweentk and tk+1, so we have thatαk = tk+1 −
tk − 12.

After introducing this deterministic procedure, we show
by the following lemma that the messages according to this
algorithm disappear asymptotically:

Proposition 1. For any initial condition x(0), the message
rate of the centralized deterministic algorithm describedabove
disappears asymptotically, i.e.:

lim
t→∞

∑t

k=1 N(k)

t
= 0,

whereN(k) is the number of nodes transmitting messages at
iteration k.

Proof: The number of nodes transmitting at an iteration
t depends on the conditionLt. If t ∈ ψ, thenN(t) = n (all

2tk − tk−1 is sometimes called thekth interarrival time in the context of
point processes.

nodes are transmitting messages), otherwiseN(t) = 0 (no
nodes transmitting messages). Therefore,

t
∑

k=1

N(k) =

K(t)
∑

k=1

N(tk) = nK(t),

where K(t) as described earlier is the number of busy it-
erations until timet. We will consider two cases depending
on the evolution ofK(t) as function oft. The simpler case
is when limt→∞ K(t) ≤ K < ∞ (the number of busy
periods is bounded, e.g. nodes reach consensus in a finite
number of iterations), then sinceK(t) is an increasing positive
integer sequence, the proposition follows from the following
inequality andt → ∞,

0 ≤

∑t

k=1 N(k)

t
≤

nK

t
.

We consider now the other case, i.e.limt→∞ K(t) = ∞.
Notice that for any time iterationt, we have

K(t)
∑

k=1

(tk − tk−1) ≤ t ≤

K(t)+1
∑

k=1

(tk − tk−1),

or in other words
K(t)−1
∑

k=0

(αk + 1) ≤ t ≤

K(t)
∑

k=0

(αk + 1).

So we have
∑t

k=1 N(k)

t
=

nK(t)

t
≤

nK(t)

αK(t)−1 + 1

We will prove now that the right hand side of the inequal-
ity goes to 0 as t diverges. Sincelimt→∞ K(t) = ∞, it
is sufficient to prove thatlimk→∞(αk + 1)/k = ∞. Let
z(k) = Wx(tk) − x(tk), we can see that according to this
algorithm,

αk = ⌊
η(tk) − e(tk)

||z(k)||∞
⌋

≥
η(tk − 1) + η0/k2 − e(tk − 1)

||z(k)||∞
− 1

≥
η0

k2||z(k)||2
− 1. (8)

The last inequality derives from the fact that for any iteration
t we haveη(t) > e(t), and that for any vectorv, the norm
inequality ||v||2 ≥ ||v||∞ holds. Moreover,z(k) evolves
according to the following equation:

z(k) = (W − J)z(k − 1)

= (W − J)k
z(0),

whereJ = 1/n11
T , so

||z(k)||2 ≤ C (ρ(W − J))
k
, (9)

where C = ||z(0)||2 and ρ(W − J) = λ2(W) ≥ 0 is the
spectral radius of the matrixW−J . We know that0 < λ2 < 1
(0 < λ2 becauselimt→∞ K(t) = ∞ andλ2 < 1 becauseW

5

satisfies the condition of a converging matrix (see [8])). Putting
everything together, we get finally that:

αk ≥
η0

Ck2λk
2

− 1, (10)

and
αk + 1

k
≥

η0

Ck3λk
2

,

hence(αk + 1)/k → ∞ ask → ∞. Consequently, the rate of
messages sent in the network vanishes, namely

lim
t→∞

∑t

k=1 N(k)

t
= 0.

Three main factors in the above algorithm cause the al-
gorithm to be centralized: the global scalare(t), the global
scalarη(t), and the broadcast signal. In the following sections,
we will present a decentralized algorithm inspired from the
centralized one, but all global scalars are changed to local
ones, and the nodes are not able to send a broadcast signal to
trigger an iteration.

B. Decentralized Environment

1) Modified Settings:The analysis of the system becomes
more complicated when we deal with the decentralized sce-
nario. Each node works independently. We keep the assump-
tion of synchronous operation, but the decision to transmitor
not is local, so a node can be silent, while its neighbor is not.
In this scenario, even the convergence of the system might not
be guaranteed and we see that within an iteration, some nodes
will be transmitting and others will be silent. This can cause
instability in the network because the average of the estimates
at every iteration is now not conserved(this is an important
property of the standard consensus protocols tha can be easily
checked), and the scalarsη(k) ande(k) defined in the previous
subsection are now vectorsη(k) and e(k) where ηi(k) and
ei(k) are the values corresponding to a nodei and are local
to every node. To conserve the average in the decentralized
setting,e(k) must take part in the state equation as we will
show in what follows.

2) System Equation:In our approach, we consider a more
general framework for average consensus where we study the
convergence of the following equation:

x(k + 1) + e(k + 1) = Wx(k) + e(k). (11)

Some work has studied the following equation as a perturbed
average consensus and considerede(k) to be zero mean noise
with vanishing variance (see [13], [14]). However, in our
model, we considere as a deterministic part of the state of
the system and not a random variable. We consider sufficient
conditions for the system to converge, and we use these
conditions to design an algorithm that can reduce the number
of messages sent in the network.

In the standard consensus algorithms, the state of the system
is defined by the state vectorx, but in the modified system,
the state equation is defined by the couple{x, e}. In the

following we present a key theorem for the convergence in
a decentralized setting.

Theorem 2. Consider a system governed by the equation(11),
let F (k) = F (k,x(k),x(k − 1)) be a matrix that depends on
the iterationk and two history state vectorsx(k) and x(k −
1). Suppose thate(k + 1) = e(k) − F (k)x(k) and assume the
following conditions on the matricesA(k) = W + F (k) and
F (k):

(a) aij(k) ≥ 0 for all i, j, and k, and
∑n

j=1 aij(k) = 1 for
all i and k,

(b) Lower bound on positive coefficients: there exists some
α > 0 such that ifaij(k) > 0, thenaij(k) ≥ α, for all
i, j, and k,

(c) Positive diagonal coefficients:aii(k) ≥ α, for all i, k,
(d) Cut-balance: for anyi with aij(k) > 0, we havej with

aji(k) > 0,
(e) limk→∞ x(k) = x

⋆ ⇒ limk→∞ F (k,x(k),x(k −
1))x(k) = 0.

Then limk→∞ x(k) = x′
ave1 where x′

ave ∈
[minj xj(0),maxj xj(0)]; if furthermore e(0) = 0 and
ei(k) < η for all i and k, then |xave − x′

ave| < η.

Proof: Let us first prove thatx(k) converges. By substi-
tuting the equation ofe(k + 1) in (11), we obtain:

x(k + 1) = A(k)x(k), (12)

where A(k) = W + F (k). From the conditions (a),(b),(c),
and (d) onA(k), we have from [15] thatx converges, i.e.
limk→∞ x(k) = x

⋆. Since the system is converging, then from
equation (11), we can see that:

x
⋆ = Wx

⋆ + lim
k→∞

(e(k) − e(k + 1))

= Wx
⋆ + lim

k→∞
F (k)x(k)

= Wx
⋆.

Therefore,x⋆ is an eigenvector corresponding to the highest
eigenvalue (λ1 = 1) of W . So we can conclude thatx⋆ =
x′

ave1 wherex′
ave is a scalar (Perron-Frobenius theorem).

The condition1
T W = 1

T on the matrixW in equation
(2) leads to the preservation of the average in the network,
1

T
x(k) = nxave ∀k. This condition is not necessary satisfied

by A(k), so let us prove now that the system preserves the
averagexave:

1
⊤(x(k + 1) + e(k + 1)) = 1

⊤(Wx(k) + e(k)) (13)

= 1
⊤(x(k) + e(k)). (14)

The last equality comes from the fact thatW is sum preserving
since1

⊤W = 1
⊤.

Finally by a simple recursion we have that1
⊤(x(k) +

e(k)) = 1
⊤
x(0) = nxave, and the average is conserved.

Moreover, since|ei(k)| ≤ η for all i andk we have:

|(1/n)1⊤
x(k) − xave| ≤ η ∀k. (15)

6

But we just proved thatlimk→∞ x(k) = x′
ave1, so this

consensus is withinη from the desiredxave:

|x′
ave − xave| ≤ η. (16)

This ends the proof.
In the decentralized environment, we gave the conditions

for the system to converge. In the following section we will
design an algorithm that satisfies these conditions and needs
only local communications.

C. Message Reducing Algorithm

We try to solve the termination problem through afully de-
centralizedapproach. We consider large-scale networks where
nodes have limited resources (in terms of power, processing,
and memory), do not use any global estimate (e.g. diameter
of the network or number of nodes), keep only one iteration
history, and can only communicate with their neighbors.
Our goal is to reduce the number of messages sent while
guaranteeing that the protocol converges within a given margin
from the actual average.

The main idea is that a node, sayi for example, will
compare its new calculated value with the old one. According
to the change in the estimate,i will decide either to broadcast
its new value or not to do so. We divide an iteration into
two parts, in the first part of the iteration, only nodes with
significant change in their estimates are allowed to send
messages. However, in the second part of the iteration, only
nodes polled by their neighbors from phase 1 are allowed to
send an update.

Before starting the linear iterative equation, nodes will select
weights as in the standard consensus algorithm. The weight
matrix considered here must be doubly stochastic with0 <
α < wii < 1 − α < 1 for some constantα. Each nodei in
the network keeps two state values at iterationk:

• xi(k): the estimate of nodei used in the iterative equa-
tions by the other nodes.

• ei(k): a real value that monitors the shift from the average
due to the iterations where nodei did not send a message
to its neighbors. It is initially set to zero,ei(0) = 0.

Each node also keeps its own boundary thresholdηi(k)
where ηi(1) = η

2 = constant ∀i. Note that this eta is
increased after every transmission as in the centralized case,
but the difference here is that it is local to every node.

Each iteration is divided into two phases:
In the first phase, a nodei can be in one of the two following
states:

• Transmit: The set of nodes corresponding to this state
is Tk, where the subindexk corresponds to the fact that
the set can change with every iterationk. The nodes in
Tk send their new calculated estimate to their neighbors.
They also poll the nodes having maximum and minimum
estimates in their neighborhood to transmit in phase 2.

• Wait: The set of nodes corresponding to this state is
Wk. The node’s decision will be taken in the second
phase of the iteration based on the action of nodes in

Algorithm 1 Termination Algorithm -nodei- Phase 1

1: {xi(k), ei(k)} are the state values of nodei at iteration
k, 0 < α < wii < 1−α < 1, counteri = 1 is the counter
for the number of transmissions so far.ηi(1) = η/2 ∈ R,
Tk is set of Transmit state.Wk set corresponding to
Wait state. Initially we haveTk = Wk = ∅. Every node
i follows the following algorithm at iterationk.

2: yi(k + 1) ← wiixi(k) +
∑

j∈Ni
wijxj(k)

3: di ← yi(k + 1) − xi(k) + ei(k)
4: if |di| < ηi(counteri) then
5: i changes to aWait state.\ \ i ∈ Wk

6: else
7: counteri = counteri + 1
8: ηi(counteri) = ηi(counteri − 1) + ηi(1)/counter2

i

9: ci ←
α

(1−wii)

(

yi(k + 1) − xi(k)
)

10: if |ci| ≤ |ei(k)| then
11: xi(k + 1) ← yi(k + 1) + sign(ci.ei(k))ci

12: ei(k + 1) ← ei(k) − sign(ci.ei(k))ci

13: else
14: xi(k + 1) ← yi(k + 1) + ei(k)
15: ei(k + 1) ← 0
16: end if
17: i changes to aTransmitstate.\ \ i ∈ Tk

18: Notify the neighbors having maximum and minimum
values.

19: end if
20: Go to Phase 2

the Transmitstate (depending if they were polled by any
of their neighbors).

In the second part of the iteration, nodes that are inWk will
be classified as follows:

• Silent: The set of nodes corresponding to this state is
Sk. These are the nodes that will remain silent with no
message sent from their part in the network. The nodes
in Sk have that non of their neighbors sending them any
poll message.

• Cut-Balance: The set of nodes corresponding to this state
is Bk. They are calledCut−Balance because they insure
the cut-balance condition (d) of Theorem 2. They are
the nodes inWk that have been polled by at least one
neighbor inTk .

The two phases of the termination protocol implemented at
each node are described by pseudocode in Algorithm 1 and 2.
Nodes in theTk set (the set of nodes that are in aTransmit
state) will broadcast their estimate to their neighbors at the
end of the first phase, while nodes inWk set (orWait state)
will postpone their decision to send or not till the next phase.
Nodes that do not receive a message from their neighbors at a
certain iteration, uses the last seen estimate from the specified
neighbors (note: absence of messages from a neighbor during
an iteration doesnot mean the failure of link, it means that
the neighbor is broadcasting the same old estimate as before,
so we may differentiate the link failure by a “keep alive”

7

Algorithm 2 Termination Algorithm - Phase 2

1: {xi(k), ei(k)} are the state values of nodei at iteration
k.

2: for all nodesi havingWait statedo
3: yi(k + 1) ← wiixi(k) +

∑

j∈Ni
wijxj(k)

4: if i received a poll message from any neighborthen
5: zi(k + 1) ← (wii +

∑

j∈Ni∩Wk
wij)xi(k) +

∑

j∈Ni∩Tk
wijxj(k)

6: xi(k + 1) ← zi(k + 1)
7: ei(k + 1) ← yi(k + 1) − zi(k + 1) + ei(k)
8: i changes to aCut − Balance state.\ \ i ∈ Bk

9: else
10: xi(k + 1) ← xi(k)
11: ei(k + 1) ← yi(k + 1) − xi(k) + ei(k)
12: i changes to aSilent state.\ \ i ∈ Sk

13: end if
14: end for
15: k + 1 ← k

message sent frequently to maintain connectivity and set of
neighbors). Theinput for the algorithm are the estimates of
the neighbor ofi, the weights selected for these neighbors, and
the state values{xi(k), ei(k)}. The output of the first phase
is the new state values{xi(k + 1), ei(k + 1)} for nodes in
Tk and the output of the second phase is the new state values
{xi(k +1), ei(k +1)} for nodes inWk. Let us go through the
lines of the algorithm. In phase 1,yi(k + 1) of line 2 is the
weighted average of the estimates received by nodei; without
the termination protocol this value would be sent to all its
neighbors. The protocol evaluates how muchyi(k +1) differs
from the state valuexi(k). This difference accumulates indi

in line 3. If this shift is less than a given thresholdηi, the node
will wait for next phase to take decision. If the condition in
line 4 is not satisfied, that means the node will send a new
value to its neighbors. Lines7 − 8 concerns the extending of
the boundary thresholdηi(k) after every transmission. Note
that by this extension method, we haveηi(k) < η ∀i, k since

lim
k→∞

ηi(k) = ηi(1)(

∞
∑

i=1

1/k2) < ηi(1) × 2 = η.

We introduce in line9 a new scalarci used for deciding which
portion of ei(k) the node will send in the network. In lines
11−12 and14−15, the algorithm satisfies the equation (11).
Then the new state valuexi(k+1) is sent to the neighbors and
ei(k + 1) is updated accordingly. In Phase2 of the algorithm
(Algorithm 2), nodes initially in the wait state will decide
either to send a cut-balance massage or to remain silent, the
cut balance messages are sent when a node receives a poll
message from any of its neighbors.

D. Convergence study

The convergence of the previous algorithm is mainly due to
the fact that the proposed algorithm satisfies the conditions of
convergence given in V-B2. In fact, the algorithm is designed

to satisfy all these conditions that guarantee convergence.
Starting with the state equation, we can notice from the
Algorithm 1 given that whatever the condition the nodes face,
it is always true that the sum of the new generated state values
{xi(k + 1), ei(k + 1)} is as follows:

xi(k + 1) + ei(k + 1) = yi(k + 1) + ei(k),

whereyi(k+1) = wiixi(k)+
∑

j∈Ni
wijxj(k). As a result the

system equation is the one studied in section V-B2 (equation
(11)). It can also be checked that according to the algorithm
given in pseudo code, we havee(k + 1) = e(k) − F (k)x(k)
for some matrixF (k) such thatF (k)1 = 0 (see [16] for
more details).

Now we can study the conditions mentioned in the Theorem
2 on the matrixA(k) = W + F (k).

Lemma 1. A(k) is a stochastic matrix that satisfies conditions
(a),(b),and (c) of Theorem 2.

Proof: First, we can see thatA(k)1 = 1 sinceW1 = 1

and F (k)1 = 0. It remains to prove that all entries in the
matrix A(k) are non negative, due to space limits the proof is
in our technical report [16].

Definition 1. Two matrices, A and B, are said to be equivalent
with respect to a vectorv if and only if Av = Bv.

Notice that A(k) satisfies conditions (a),(b), and (c) of
Theorem 2, but possibly not the cut balance condition (d)
because for a nodei ∈ Tk that transmits,aij(k) > 0 ∀ j ∈ Ni,
but it can be that∃j ∈ Ni such thataji = 0 if j was silent at
that iteration (j ∈ Sk). However, the next lemma shows that
there is a matrixB(k) equivalent toA(k) with respect tox(k)
that satisfies all the conditions.

Lemma 2. For all k, there exists a matrixB(k) equivalent
to A(k) with respect tox(k) such thatB(k) satisfies the
conditions (a),(b),(c), and (d) of Theorem 2.

Proof: Due to space limits, the proof is presented in the
technical report [16].

Lemma 3. The message reduction algorithm (Phases 1, 2)
satisfies condition (e) of Theorem 2.

Proof: We will prove it by contradiction. Suppose
limk→∞ x(k) = x

⋆, but limk→∞ F (k)x(k) 6= 0, then
there exists a nodei such that limk→∞ xi(k) = x⋆

i and
limk→∞ yi(k + 1) = wiix

⋆
i +

∑

j∈Ni
wijx

⋆
j = y⋆

i , but
y⋆

i −x⋆
i = δ⋆ > 0. From Algorithm 1, we can see that the node

will enter a transmit state infinitely often (becausedi increases
linearly with δ∗ and it will reach the thresholdηi). Then, the
nodei will update its estimate according to the equation

xi(k + 1) = yi(k + 1) +
α

1 − wii

(yi(k + 1) − xi(k)).

Letting k → ∞ yields

(1 +
α

1 − wii

)δ⋆ = 0.

8

Thus, δ⋆ = 0 which is a contradiction, and the algorithm
satisfies condition (e) of Theorem 2.

The algorithm also provides that|ei(k)| ≤ ηi(k) ∀k, i and
ηi(k) < η ∀i, k, as in the first phase this condition is satisfied
by construction, and for the second phase of the iteration,
nodes from Phase1 can check for worst case analysis and they
only enter intoWait state if they are sure that the condition
can be satisfied in the next phase iteration.

Now we are ready to state the main Theorem in this section:

Theorem 3. The nodes applying the message reducing al-
gorithm given in pseudocode by Algorithm 1 and 2, have
estimates converging to a consensus within a marginη from
xave, i.e. limk→∞ x(k) = x′

ave1 and |x′
ave − xave| ≤ η.

Proof: The theorem is due to the fact that the Lemmas
given in this subsection show that the algorithm satisfies all
the convergence conditions of Theorem 2.

As a result, the convergence of nodes’ estimates of the
distributed algorithm for message reduction is guaranteed. We
study in the next section the performance of this algorithm
on random networks, we also address the case of faulty
unreliable links, and we show the stability of the algorithm
in the presence of nodes changing their estimate possibly due
to faulty estimates or due to a changing environment.

E. Simulations

The termination algorithm (the message reduction algo-
rithm) is simulated on two types of random graphs, the
Random Geometric Graphs (RGG) and the Erdos Renyi (ER)
graphs. To measure the distance from the average, we consid-
ered the normalized error metric defined as,

normalized error(k) =
||x(k) − x̄||2
||x(0) − x̄||2

,

wherex̄ = xave1. Note that whenlog(normalizederror) =
−3 for example, that means the error became0.1% of the
initial one. Initially, each node has a uniformly random value
between0 and10. On the RGG with500 nodes and connectiv-
ity radius0.093, Fig. 3 gives a comparison between standard
average consensus algorithms and the termination algorithm
proposed in this paper. The figure shows the effect of varying
the precisionη in the termination algorithm on the number
of messages (active nodes per iteration). In the study of the
convergence of the algorithm, we showed that the algorithm
converges to at mostη from the true average. As the figure
shows, with termination algorithm the error converges to a
value x′

ave different from the real averagexave, smaller η
gives closer estimate toxave but more messages are sent. In
fact, the termination algorithm passes through three phases:
the first phase is the initial start where nodes usually have
large differences in their estimates and they tend to send many
messages while decreasing the error (same start as standard
algorithm), thesecondphase is the most efficient phase where
nodes saves messages while continuing to decrease the error.
The final phase is the stabilizing phase where nodes converge
to a value close to the true average. The start and duration of

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

500

550

iteration number

N
um

be
r

of
 a

ct
iv

e
no

de
s

pe
r

ite
ra

tio
n

se
nd

in
g

m
es

sa
ge

s

RGG (n=500, connectivity radius 0.093)

Standard Algorithm
Termination Algorithm

η = 10−2

η = 10−3

η = 10−5

η = 0

0 2000 4000 6000 8000 10000
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration number

lo
g(

no
rm

al
iz

ed
 e

rr
or

)

RGG (n=500, connectivity radius 0.093)

Standard Algorithm
Termination Algorithm

η = 10−2

η = 10−3

η = 10−5

η = 0

Fig. 3. The effect ofη in the message reduction algorithm on RGG networks.
In standard algorithms nodes’ estimates converge to the real average, so the
error decreases linearly, but nodes are not aware of how close they are to
consensus, so they are all always active sending messages. With termination
algorithm, nodes converge to a value at mostη away from the real average,
different values ofη give different precision error. The algorithm gives a
trade-off between precision and number of messages (The standard algorithm
is just a special case of termination algorithm forη = 0).

each phase depends on the value ofη. Similar results were
given on ER graphs but are omitted due to lack of space.

Links in networks (specially wireless networks) can be
unreliable. The algorithm being totally decentralized, and uses
only one history estimate can be applied for the dynamic
scenario. The weight matrix is then dynamic and at every
iteration k a different W (k) is considered and constructed
locally as following. Before starting the algorithm we let
W (0) be generated locally satisfying convergence conditions
as throughout the paper. At iterationk, a weight on a link can
take two values, the original weight (wij(k) = wij(0)) if link
l ∼ {i, j} is active orwij(k) = 0 if the link failed. When
there are failures of links, some weight is added to the self-
weight of nodes to preserve the double stochastic property
of the matrix W (k). In Fig. 4, we consider the RGG of
100 nodes and connectivity radius 0.19 with unreliable links.
η = 0.01 is fixed for both graphs (the graph with the high link
failure probability graph and the low link failure probability
one). With high link failure probability, the network sends
less messages because there are less links in the network, but
the speed to consensus is slower than that of the low failure
probability. Note that non of the synchronous termination
algorithms given in the related work consider a dynamic

9

0 500 1000 1500 2000 2500 3000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration number

lo
g(

no
rm

al
iz

ed
 e

rr
or

)

Dynamic RGG n=100, connectivity radius r=0.19, link failure probability f

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

nu
m

be
r

of
 m

es
sa

ge
s

se
nt

 b
y

no
de

s
pe

r
ite

ra
tio

n

Low Link Failure Probability f=10%
High Link Failure Probability f=70%
Number of messages per iteration
Error Precision

Fig. 4. Termination algorithm on a dynamic RGG with different link failure
probabilities. On low link failure probability graphs, themessages are less
than that of the high failure probability, but the convergence speed is slower.

0 1000 2000 3000 4000 5000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
ER (n=1000, average degree 10)

iteration number

lo
g(

no
rm

al
iz

ed
 e

rr
or

)

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600
nu

m
be

r
of

 a
ct

iv
e

no
de

s
(s

en
di

ng
 m

es
sa

ga
es

)

Error Precision

Active Nodes

Fig. 5. Normalized error and number of nodes transmitting on theER
graphs with 1000 nodes, where every1000 iterations random10% of the
nodes change their estimates. The figure shows the self-adaptive feature of
the algorithm: when the algorithm has already converged to a stable state and
is communicating little, and an exogenous event pushes the value in a node
away from the current average, the algorithm detects the change and ramps
up its communication intensity.

topology.
In some scenarios, we are interested in a rapid detection of

a sudden change in the true average due to the environment
change. In the real life, if sensor nodes are measuring the
temperature of a building, and the temperature changed largely
(probably due to a fire in a certain room in the building),
fast detection of this change can be very useful. In Fig. 5,
we assumed that at certain iterations some nodes for a certain
reason change their estimates to a completely different one. We
considered an Erdos Renyi graph with 1000 nodes and average
degree 10, as an initial state, nodes estimate takes a value in
the interval[0, 10] uniformly at random. Every1000 iterations,
on average,10% of the nodes restart there estimate by a new
one in the interval[10, 20] chosen uniformly at random. The
figure shows the self-adaptive feature of the algorithm: when
the algorithm has already converged to a stable state and
is communicating little, and an exogenous event pushes the
value in a node away from the current average, the algorithm
detects the change and ramps up its communication intensity
and stabilizes again. So the algorithm is able to cope with
the sudden change and the system automatically adapts its

behavior. With every change in the estimates, the network give
a burst of messages to stabilize the network to the new average.

VI. CONCLUSION

In this paper, we give an algorithm to reduce the messages
sent in average consensus. The algorithm is totally decentral-
ized and does not depend on any global variable, it only uses
the weights selected to neighbors and one iteration historyof
the estimates to decide to send a message or not. We proved
that this algorithm is converging to a consensus at mostη from
the true average. The algorithm can be applied on dynamic
graphs and is also robust and adaptive to errors caused by a
node suddenly changing its estimate.

REFERENCES

[1] W. Ren and R. W. Beard,Distributed Consensus in Multi-vehicle
Cooperative Control: Theory and Applications, 1st ed. Springer
Publishing Company, Incorporated, 2007.

[2] N. Hayashi and T. Ushio, “Application of a consensus problem to fair
multi-resource allocation in real-time systems.” inCDC. IEEE, 2008,
pp. 2450–2455.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,”IEEE Trans. Inf. Theory, vol. 52, pp. 2508–2530, June 2006.

[4] F. Béńezit, A. G. Dimakis, P. Thiran, and M. Vetterli, “Order-optimal
consensus through randomized path averaging,”IEEE Trans. Inf. Theory,
vol. 56, no. 10, pp. 5150 –5167, October 2010.

[5] R. Olfati-saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” inProc. of the IEEE, Jan.
2007.

[6] W. Ren, R. Beard, and E. Atkins, “A survey of consensus problems
in multi-agent coordination,” inAmerican Control Conference, 2005.
Proceedings of the 2005, June 2005, pp. 1859 – 1864 vol. 3.

[7] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2004.

[8] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM REVIEW, vol. 46, pp. 667–689, April 2004.

[9] K. Avrachenkov, M. El Chamie, and G. Neglia, “A local average consen-
sus algorithm for wireless sensor networks,”LOCALGOS international
workshop held in conjunction with IEEE DCOSS’11, June 2011.

[10] S. Sundaram and C. Hadjicostis, “Finite-time distributed consensus in
graphs with time-invariant topologies,” inAmerican Control Conference
(ACC ’07), July 2007, pp. 711 –716.

[11] V. Yadav and M. V. Salapaka, “Distributed protocol for determining
when averaging consensus is reached,”Forty-Fifth Annual Allerton
Conference Allerton House, UIUC, Illinois, USA, September 2007.

[12] A. Daher, M. Rabbat, and V. K. Lau, “Local silencing rules for random-
ized gossip,”IEEE International Conference on Distributed Computing
in Sensor Systems (DCOSS), June 2011.

[13] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,”J. Parallel Distrib. Comput., vol. 67, pp.
33–46, January 2007.

[14] Y. Hatano, A. Das, and M. Mesbahi, “Agreement in presenceof noise:
pseudogradients on random geometric networks,” inin Proc. of the 44th
IEEE CDC-ECC, December 2005.

[15] J. Hendrickx and J. Tsitsiklis, “A new condition for convergence in
continuous-time consensus seeking systems,” inIEE 50th CDC-ECC
conference, Dec. 2011, pp. 5070 –5075.

[16] M. El Chamie, G. Neglia, and K. Avrachenkov, “Reducing
communication overhead for average consensus,” INRIA, Technical
Report, Jul. 2012. [Online]. Available: http://hal.inria.fr/hal-00720687

