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Abstract—Caching can effectively reduce the cost of serving
content and improve the user experience. In this paper, we
explore the benefits of caching for existing scientific workloads,
taking the Worldwide LHC (Large Hadron Collider) Computing
Grid as an example. It is a globally distributed system that stores
and processes multiple hundred petabytes of data and serves the
needs of thousands of scientists around the globe.

Scientific computation differ from other applications like video
streaming as file sizes vary from a few bytes to terabytes and
logical links between the files affect user access patterns. These
factors profoundly influence caches’ performance and, therefore,
should be carefully analyzed to select which caching policy to
deploy or to design new ones.

In this work, we study how the hierarchical organization of
the LHC physics data into files and groups of files called datasets
affects the request patterns. We then propose new caching policies
that exploit dataset-specific knowledge, and compare them with
file-based ones. Moreover, we show that limited connectivity
between the computing and storage sites leads to the delayed
hits phenomenon and estimate the consequent reduction in the
potential benefits of caching.

Index Terms—Size-aware caching, dataset-based caching,
CERN, WLCG, user access patterns, delayed hits.

I. INTRODUCTION

The term caching covers an array of solutions at differ-
ent levels of computing/communication architectures, ranging
from microprocessor caches to local disk caches, to storage
clusters in geographically distributed content delivery net-
works. The core concept is to place separate storage media
closer to the end user (either an actual user or a processing
unit), to reduce the time to serve user requests and/or the
amount of data flowing between the main storage and the user.

In this paper, we study cache management in large, geo-
graphically distributed systems used for scientific computation.
In particular, we consider as a use-case the Large Hadron Col-
lider (LHC) located at CERN (the European Center of Nuclear
Research), which is the world’s largest particle accelerator.
This unique and complex facility allows scientists to study
elementary particles and fundamental laws of physics, while
posing specific storage and computing challenges. To solve
them, scientists and engineers have developed the Worldwide
LHC Computing Grid (WLCG), which is a federation of large
and small computing centers distributed around the globe
(in total, around 170 sites located on 5 different continents).
The WLCG resources are predominantly shared by four large

detector-experiments: LHCb, CMS, ATLAS, and ALICE, each
of which is carried out by an international consortium.

The optimal use of the WLCG is crucial for the success of
the whole LHC program, especially in the light of the ongoing
upgrade of the accelerator toward the new High Luminosity
LHC (HL-LHC). This will make it possible to obtain higher
energies and a much greater number of collisions, which may
lead physicists to new scientific discoveries. The consequent
increase in data volume and data access rates is expected to
outpace the gain from upgrading the infrastructure with next-
generation hardware: improving storage resource efficiency is
necessary.

Contributions. We extracted a three-month trace of user
accesses of the ATLAS experiment at the CERN data center
(the largest of the WLCG sites). We analyze this trace,
highlighting key findings relevant for the analysis and design
of caching systems. Beside a highly heterogeneous distribution
of file sizes (spanning 11 orders of magnitude), we note a
strong request correlation across certain groups of files (called
datasets), which are related to the same physics analyses. We
then compare the performance on this trace of widely used
caching policies, like LRU, 2-LRU [1]–[3] and clairvoyant
optimal policies [4] that minimize either the File Miss Ratio
(FMR) or the Byte Miss Ratio (BMR). We do so by esti-
mating lower bounds for the minimum FMR achievable by
clairvoyant reactive policies with the PFOO-L algorithm [4],
and for the BMR with the new modified algorithm we propose
(PFOO-L.Bytes). We observe abundant space for improvement
between the standard techniques and the optimal performance.

Motivated by these findings, we propose simple modifi-
cations to LRU that evict or prefetch files based on dataset
membership information (Dataset Evict LRU and Dataset
LRU). Dataset LRU achieves a significant improvement and,
thanks to prefetching, can even outperform clairvoyant re-
active, i.e., non-prefetching, policies. Unfortunately, the im-
provement comes at the cost of increased load on the links
connecting the cache to the main data store, in comparison to
the classic LRU-like policies.

We study then the effect of limited connectivity between the
cache and the main data store, which is particularly relevant
in WLCG’s remote computation setting, where CPU resources
are geographically decoupled from the data storage. In this
scenario, the increased latency to fetch the data leads to



the phenomenon called ‘delayed hits’ [5], or also ‘virtual
hits’ [6]. We observe that delayed hits negatively impact all
caching policies (as expected) and Dataset LRU in particular,
to the point that its performance gain may disappear in small
cache size and/or small bandwidth settings. We characterize
experimentally the regime where the adoption of Dataset LRU
is beneficial.

Roadmap. The paper is organized as follows. Section II
describes the WLCG architecture, reviews previous work on
caching, and defines metrics of interest and known bounds for
the performance of caching policies. In Sec. III we present
our algorithm to evaluate the minimum achievable BMR for
reactive policies. We describe the WLCG file access trace in
Sec. IV. In Sec. V we compare the performance of file-based
and dataset-based caching policies and evaluate the influence
of delayed hits. Conclusions and future research directions are
discussed in Sec. VI.

II. BACKGROUND AND RELATED WORK

A. The WLCG as a use case for scientific workloads

Since the start of the Large Hadron Collider (LHC) in 2008,
the Worldwide LHC Computing Grid (WLCG) has been serv-
ing the needs of the largest LHC experiments’ detectors, i.e.,
ATLAS, CMS, LHCb, and ALICE. Yearly, the LHC generates
more than 90 PB of data, with raw data rates up to 100 GB/s.
Managing such data volumes requires the best approaches in
computing and storage system architectures. Today, the WLCG
appears as a system of interconnected smaller and larger
computing facilities, fully or partially dedicated to the storage
and computing tasks of the LHC experiments. Appendix A
provides additional information about the WLCG architecture.

The typical WLCG data processing workflow can be
roughly divided into reconstruction and analysis activities. The
reconstruction activities are aimed at preparing the raw data
coming from the LHC detectors for the physics users, and they
are run through large data processing campaigns according
to a precise schedule. On the contrary, analysis tasks work
with the previously generated analysis files and are relatively
sporadic, as they are independently triggered by different users
according to their needs. In our studies, we concentrate on the
analysis activities, which are less predictable and, therefore,
not amenable to planned resources provisioning.

Currently, most of such analysis is performed in the so-
called “local grid analysis” mode, where data expected to be
processed is moved/replicated to the processing site before the
computation starts. This mode requires manual intervention of
the physics groups to curate the data transfer process and leads
to an abundance of data replicas throughout the WLCG, which
is incompatible with large data volumes generated by the
future HL-LHC. For these reasons, in this paper, we evaluate
a remote computation model, in which the processing unit
automatically fetches data over the WLCG network based on
users’ requests. In this way, there is no need to couple the
CPU resources with large (and expensive) permanent storage
systems. Instead, working data can be placed in small-size
caches, implemented through simple storage systems with low

level of service. With the introduction of such caching layer,
more and more WLCG sites could be operated in this mode,
reducing hardware and operation costs.

Another characteristic of the WLCG use case is that the
analysis data formats have a particular hierarchical structure.
The analyses process independent physics events, which are
described as distinct records. Together, all the records mean-
ingful for the same physics analysis form a logical entity called
a dataset. Each dataset was divided into files based mainly
on the storage and network system requirements and out of
convenience for the users to process the data. As physics
events are independent, records in the same file, as well as
files in the same dataset, could be processed in any order,
leading to an embarrassingly parallel workloads.

B. Caching Policies

Caching policies determine which files should be stored or
evicted from the cache. When the request process is stationary
and file sizes are equal, LFU (Least Frequently Used) algo-
rithm is the optimal non-anticipative reactive policy [1], [7].
At the same time, real workloads often exhibit non-stationary
request processes with short-term correlations (often referred
to as temporal locality [8]), which are present also in our
trace (see Sec. IV). In these cases, LRU (Least Recently Used)
policy often outperforms LFU. Up to this day, LRU is probably
the most popular caching policy in production systems due to
its low time and space complexity and significant improve-
ment of system performance even for relatively small cache
sizes [1], [2]. 2-LRU algorithm is similar to LRU, but only
stores files after at least two requests, which helps to reduce
cache pollution by unpopular files [1], [3]. There are also
algorithms that take into account both recency and frequency
of file requests, for example the Adaptive Replacement Cache
policy (ARC) [9].

Caching with non-zero download delay. The actual time
to retrieve files is usually discarded under the assumption that
the throughput between the remote storage and the local cache
is high enough to fetch each file before the next request arrives.
In reality, the retrieval time might exceed the time difference
between consecutive requests for the same file (the so-called
reuse distance), which would cause a ‘delayed hit’ [5], [6].
Paper [5] demonstrates that the hit rate maximization does
not necessarily lead to latency minimization when some hits
are delayed, which shows the need for new latency-sensitive
caching algorithms. In particular, they propose two LRU
variants and showed how to compute analytically their relevant
metrics of interest.

In our work, we evaluate the effect of delayed hits in
the WLCG by including fetching delays in the performance
evaluation.

Caching for heterogeneous file sizes. Existing literature
on caches mostly consider the case of equal-sized files [1]–
[3], [5]–[7], [9], often under the justification that files may
be split in chunks with a given maximum size and caching
policies may work at the chunk level. In practice, the overhead
of chunk management may be unacceptable and, even when



it is not the case, chunks can still exhibit heterogeneous sizes,
when file sizes vary from a few bytes to terabytes, as it is the
case in the WLCG. In this paper, we consider files as atomic
cacheable units. LFU, LRU, and 2-LRU can also operate
with heterogeneous file sizes with minor changes, but more
sophisticated policies in general require a non-straightforward
adaptation, e.g., in the case of ARC.

We dedicate part of our paper to study how to combine
LRU with prefetching techniques to exploit available dataset
information (Sec. V-C). The existing policies that were specif-
ically conceived to take into account file size, such as Adapt-
Size [10], GDSF [11], GD-Wheel [12]), and DynqLRU [13],
could be extended in a similar manner.

Caching with prefetching. All policies described above are
reactive, as they can only update the cache upon a miss by
inserting the corresponding file. Existing correlations in the
request process could be used to forecast which content will
be requested in the near future and prefetch it.1 This approach
has been investigated specially for video streaming [14], [15],
as chunks of video files are mostly read sequentially with the
few exceptions of pausing, fast-forward, and rewind. As we
show in Sec. IV, requests for files in the same dataset are
highly correlated, but those files are read in arbitrary order,
depending on the user and system software.

Caching for scientific workloads. Previous studies on
caching for scientific computation often focus on design and
deployment of the caching infrastructure [16]–[18], rather than
on selection of well-suited caching algorithms. For example,
in [16], the authors simply rely on XCache [19] and its
internal implementation of the LRU policy. To the best of our
knowledge, only paper [20] explores the usage of a caching
technique significantly different from LRU for scientific work-
loads. The authors propose an adaptive caching solution that
is only suitable for tasks with high re-execution rates, which
are not present in the WLCG.

Alternatively, there are works that explore how effectively
the WLCG storage is used: at individual grid sites [21],
or throughout the whole WLCG in a context of a single
LHC experiment [22]. These papers also describe data access
patterns potentially relevant for caching, but they do not
directly investigate caching strategies.

In our paper, we also study data access patterns in the
WLCG, but focus on those characteristics that directly in-
fluence cache performance. Additionally, we propose new
caching policies, and compare their behavior with the existing
ones under different scenarios (cache size, network connectiv-
ity throughput).

Metrics of interest. The standard metric used to evaluate
the cache performance is the hit/miss ratio, but it fails to
capture the different cost of different misses when file sizes
are heterogeneous. Therefore, we distinguish the hit ratio, also
called File Hit Ratio (FHR), and the Byte Hit Ratio (BHR).
They can be defined as follows:

1Sometimes, the literature uses the expressions “caching policies” and
“prefetching policies” to distinguish what we call “reactive caching policies”
and “caching policies with prefetching,” respectively.

FHR =
Ncache

N
, BHR =

Vcache

V
, (1)

where N is the total number of requests (or the trace length),
V is the total volume of the catalog, i.e., the total size in bytes
of all files which have been requested at least once, Ncache is
the number of files retrieved from the cache (the total number
of hits), and Vcache is the total number of bytes served by the
cache.

Respectively, File Miss Ratio (FMR) and Byte Miss Ratio
(BMR) are calculated as:

FMR = 1− FHR, BMR = 1− BHR. (2)

Under different scenarios, one of these metrics can play
a more important role than the other. For example, FMR is
more relevant if the objective is to minimize the user delay
and the retrieval time under a miss is almost constant (latency
dominates the retrieval time). At the same time, BMR is more
important for assessing the data volume transfer between the
sites. From the definition, when the files have the same size,
FMR and BMR coincide.

Lower bound for FMR of reactive policies. In case
of homogeneous file sizes, Belady’s offline algorithm [23]
achieves optimal FMR amongst reactive policies [2]. At each
step, this algorithm evicts the file that will be requested the
furthest in the future. Since it can only be calculated post-
factum, practical implementation is not possible. However,
in studies like ours, it can serve as a lower bound for the
performance of practical reactive policies.

In the case of heterogeneous file sizes, let us denote the
reactive caching policy that minimizes FMR (resp. BMR) as
OPT (resp. OPT.Bytes). Both minimization problems are NP-
hard [24], which means that in practice, finding the exact
optimal policies is not feasible.

A simple lower bound for both FMR and BMR of reac-
tive policies can be computed by simulating an infinite size
cache [25]. This approach only quantifies cold compulsory
misses, which inevitably occur when a file is requested for
the first time. Instead, paper [4] proposes several algorithms
to calculate lower and upper bounds for FMR of OPT. The
flow-based offline optimal (FOO) lower and upper bounds
presented by the authors are very accurate, but computationally
expensive; the practical FOO lower and upper bounds (PFOO-
L and PFOO-U) work for hundreds of millions of requests,
while still providing tight upper and lower bounds for OPT
performance. Paper [26] presents yet another lower bound
for FMR of non-anticipative policies, but only under some
statistical assumptions on the request process. In our work,
we use the PFOO-L lower bound and extend it to be able to
compute a lower bound for OPT.Bytes’ BMR.

III. LOWER BOUND FOR BMR OF REACTIVE POLICIES

While there are bounds for the optimal FMR of reactive
policies, we are not aware of similar bounds for BMR. In this



section, we propose a modification of PFOO-L, the PFOO-
L.Bytes algorithm, that computes a lower bound for BMR of
OPT.Bytes.

Remember that N denotes the total number of requests in
the trace. The trace contains M unique files f1, f2, . . . , fM
with sizes s1, s2, . . . , sM , respectively. The i-th request can
be represented by the pair {i, fji}, where ji is the identifier
of the requested file. Let Tdif [i] denote the reuse distance, i.e.,
the difference between the order of the future request for the
same file and the current request. C denotes the cache capacity
in bytes.

Similarly to [4], we represent the total cache resource by an
initially empty rectangle with sizes N and C (the resources are
limited in time and space). We can associate to each request
{i, fji} a rectangle with height sji and width Tdif [i] and place
it between i and i + Tdif [i] on the time axis. Its area sji ×
Tdif [i] corresponds to the total amount of cache resources that
should be allocated to file ji to avoid the following request (at
time i+ Tdif [i]) producing a miss.

The PFOO-L algorithm greedily picks the rectangles with
the smallest area until all cache resources are consumed (the
sum of the areas of the placed rectangles exceeds the global
rectangle size, regardless of the overlaps). It therefore finds
a lower bound for FMR of reactive policies, since no other
reactive caching algorithm can get fewer misses using N ×C
total resources. In particular, the rectangles selected by PFOO-
L may overlap in such a way that the required instantaneous
capacity (the sum of the rectangles’ heights) exceeds the
constraint C.

We now describe how to adapt PFOO-L to find a lower
bound for the minimum BMR (PFOO-L.Bytes). While in
PFOO-L every selected rectangle brings a gain equal to 1 as it
prevents a miss, in PFOO-L.Bytes, the rectangle corresponding
to the request {i, fji} has associated gain sji , i.e., equal to
the bytes it prevents from downloading. This leads us to a
knapsack problem, where each file is associated with a cost to
store it and a potential gain. We can then lower-bound BMR by
greedily selecting the rectangles with the best gain/cost ratio,
until we run out of caching resources.

The complete algorithm PFOO-L.Bytes is presented in Al-
gorithm 1. Arrays R, T and S and initialized with the request
sequence, the order or requests (or request time), and the sizes
of the request files, correspondingly. The first step is to find the
order of the next request Tnext[i] for the same file fji for each
request {i, fji} of the trace (line 7). If the file fji is accessed
for the last time, Tnext[i] = ∞. Next, the reuse distance
between consecutive requests Tdif [i] to the same file fji is
calculated (line 8). We then find the rectangles’ sizes (line 9),
sort them by density, i.e., the gain/cost ratio (line 10), and add
them to the cache while there are enough caching resources
(lines 11–17). Since Alg. 1 is not an actual caching algorithm,
but only finds a lower bound of the optimal performance,
we allow to cache fractions of the files. In the function
cache_file, the second argument indicates the fraction of
the file that needs to be cached. The final step is to add a
fraction of the first rectangle that did not fit (lines 18–20). Note

how we are implicitly solving the fractional knapsack problem,
and then we either match or exceed the optimal solution of
the original knapsack problem [27, Sec. 5.1.1].

Algorithm 1 PFOO-L.Bytes

1: R = [], T = [], S = []
2: for i = 1..N do
3: append(R, fji)
4: append(T, i)
5: append(S, sji)
6: end for
7: Tnext ← find_next_access(R)
8: Tdif = Tnext − T
9: I = S × Tdif

10: I ← sort_by_density(I, S)
11: i = 1
12: P = N × C
13: while i ≤ N and I[i] ≤ P do
14: cache_file(i, 1)
15: P = P − I[i]
16: i = i+ 1
17: end while
18: if i ≤ N then
19: cache_file(i, P/I[i])
20: end if

Both PFOO-L and PFOO-L.Bytes can be constructed
through a single pass over the trace for different cache sizes. In
this case, the preprocessing steps (finding the time of the next
access and sorting the intervals accordingly) take O(N logN)
time and O(N) space, and iterating over the trace takes O(N)
both in time and space.

IV. WORKLOAD CHARACTERISTICS

In this paper, we consider the local grid analysis workflow
of ATLAS, the largest LHC experiment, at the CERN data
center, the largest WLCG site. From the storage logs, we
generated a trace of all read file accesses for a period of three
months (01/01/2020–31/03/2020). We intend to make these
data publicly available later this year.

Table I provides an overview of this trace by comparing the
analysis and the total read workloads. Analysis files represent
only 25% of the files/operations in the catalog, but contribute
around 60% to the catalog volume and the total read workload
(the sum of requested bytes).

Total Analysis
Number of files (N ) 36,774,178 9,152,849 (24.9% of total)
Volume of files (V ) 32.19 PB 19.1 PB (59.3% of total)
Number of operations 173,181,554 45,931,029 (26.5% of total)
Total read workload 91.54 PB 55.46 PB (60.6% of total)

TABLE I: Comparison of the total and analysis read workloads

Figure 1 shows the file size distributions for the complete
catalog and for the set of analysis files. Both distributions
peak at around 1 GB and have a very large support spanning



11 and 10 orders of magnitude, respectively. File sizes extend
to 470.73 GB, with the median of 40.78 MB. In comparison,
the maximum size of analysis files is lower (67.16 GB), but
the median is higher (824.38 MB).

Fig. 1: File size distribution.

Additionally, we plot the distribution of the analysis file
popularity (the number of accesses) (Fig. 2), and estimate how
much files with a given size contribute to the system workload
(Fig. 3). By comparing them, we observe that very small files
(<10 kB) tend to be accessed more often than the rest, while
the system workload is almost entirely determined by the files
in the range 100 MB–10 GB.

Fig. 2: File popularity distribution.

Fig. 3: System load distribution.

We conclude that the file size cannot be neglected: while
very small files contribute the most to the number of accesses,
most of the system load originates from the larger files.

Another important characteristic of the trace is the request
load variability over time (Fig. 4). The byte rate averaged
over one second varies from a few bytes to several terabytes
per second (the mode of the distribution is around 20 GB/s),

with an average request rate over the whole period equal to
9.91 GB/s.

Fig. 4: Distribution of byte request rate averaged per second.

The three-month trace exhibits temporal locality (Fig. 5).
The distribution appears multimodal. Even though the average
time between two consecutive read requests for the same file is
around 3 days, 27.44% of consecutive accesses happen within
a minute, and 6.47% within one second.

Fig. 5: Distribution of time intervals between consecutive
requests for the same file.

Remember that all the records meaningful for the same
physics analysis are spread across different files and together
form a logical entity called a dataset. We studied the properties
of datasets and their access patterns. The distribution of
dataset sizes is more heterogeneous than that of individual
files (Fig. 6). The most common dataset size is around 1 MB,
while the average is almost 80 GB. On average, there is a
modest number of files in a dataset (the mean is 38, and the
median is only 3).

To understand if files within the same dataset tend to be
accessed together, we performed the following analysis. First,
we looked at the fraction of each dataset (in terms of the
number of files) accessed over the whole three-month period.
For 75% of the datasets, all files were accessed; on average
this fraction is 83%. Moreover, we quantified the variability
of the number of accesses for files within the same dataset.
For most datasets (92% of them), the standard deviation of the
number of file accesses is at most 1. We conclude that when
a user accesses a dataset file, (s)he is also likely to access all
other files in the same dataset.

The order of the individual file accesses is difficult to
reconstruct since log files only show the aggregate request
process, where multiple users may access the same dataset



simultaneously, and the same user can access different parts
of the same dataset in parallel (for example, when the data
being processed is coordinated by Rucio, the distributed data
management system widely used in the WLCG [28]).

From all of the above, we conclude that when a dataset is
accessed, most of its files are read, while not necessarily in
any specific order.

Fig. 6: Dataset size distribution.

V. CACHING FOR THE WLCG

A. Caching policies

In this section, we evaluate the performance (FMR and
BMR) of an array of different caching policies. We consider
the classic LRU, as well as its 2-LRU variant, which has
been shown to outperform LRU in many cases [1], [29]. Both
policies can profit from the high level of temporal locality
present in the trace (Fig. 5).

In addition, we propose and evaluate new caching policies
that take advantage of some specifics of WLCG workload.
In particular, these policies rely on the dataset membership
information, which was reconstructed for each file using an
additional data source, Rucio metadata. As datasets are mostly
read entirely, if some files in the dataset are currently in use,
one may expect that the other files within the same dataset
will be accessed in the near future. In particular, we propose
the following policies, which preserve LRU’s low complexity
and are then particularly suited to serve high-rate request
processes.

Dataset Evict LRU/MRU. These policies insert a file into
the cache only upon a miss for that file (as LRU does). They
maintain information about the last access to a dataset and,
when space is needed, they start evicting files belonging to
the least recently accessed dataset. Among the files within
this dataset, Dataset Evict LRU first evicts the least recently
accessed files, while Dataset Evict MRU evicts the most
recently accessed ones. We stress that both policies operate
on the file level.

Dataset LRU. This policy relies on prefetching, as, upon
a file miss, all files belonging to the accessed dataset are
retrieved from the remote server and stored in the cache.
Similarly, when cache space is needed, all files of the least
recently accessed dataset are evicted. In short, this policy
operates on individual files (remember that datasets are only
logical entities unknown to the underlying file system), but

practically behaves as LRU would if datasets were the atomic
cacheable units.

We have also tested a variant of Dataset LRU that is less
aggressive upon eviction. This policy does not evict entirely
the least recently accessed dataset, but only as many of its files
as needed. While this variant better uses the available storage
space and achieves smaller FMR and BMR, the improvement
is negligible (in the order of 10−4).

B. Performance comparison

We evaluated the performance of the caching policies by
simulating the cache behavior using the same three-month
trace reflecting the request process. In each case, the initial
state of the system is an empty cache.

Figures 7 and 8 compare how FMR and BMR change de-
pending on the cache size, which is measured as a percentage
of the total volume of unique files seen in the trace. PFOO-
U and PFOO-U.Bytes algorithms provide lower bounds for
the performance of any reactive caching policy. Dataset Evict
LRU and Dataset Evict MRU show a negligible difference in
performance of the order of 10−3, so we show results only
for the first of them.

Fig. 7: File Miss Ratio vs cache size for different caching
policies.

Fig. 8: Byte Miss Ratio vs cache size for different caching
policies.

These plots show that, among the reactive techniques we
considered, LRU remains the best option. Differently from
what was observed in many previous studies [1], [29], 2-LRU
results in significantly worse BMR and almost the same FMR.



Curves for LRU and Dataset Evict LRU almost coincide. As
most of the files in the same dataset are accessed consecutively,
files in the least recently accessed dataset are to a large extent
also the least recently accessed files. Cache states are then
almost identical for LRU and Dataset Evict LRU.

Even though we have not found a reactive technique that
performs better than LRU, the comparison with the optimal
bounds suggests that there is large room for potential improve-
ment. For example, for the 5–10% cache sizes, the miss ratios
could be reduced by a factor of 1.5.

As expected, all the reactive techniques (LRU, 2-LRU,
Dataset Evict LRU, PFOO-U, PFOO-U.Bytes) provide the
same performance when the cache can store the whole catalog.
In these cases, misses occur only the first time a file is
requested (cold misses) and are not due to space constraints.
In contrast, thanks to prefetching, Dataset LRU can avoid most
of the cold misses. It results in the lower miss ratios in general
(starting from the cache size around 1%), and specifically for
the 100% cache size. Dataset LRU performs better than the
lower bounds of reactive policies performance even for 3–5%
cache sizes; this suggests that the total volume of the active
datasets at any particular moment in time is low. At the same
time, the miss ratio reduction comes at the price of increased
accumulated transfer volume (Fig. 9).

Fig. 9: Ratio between accumulated transferred volumes of
Dataset LRU and LRU (prefetching overhead).

C. Limited connectivity throughput

So far, we have been assuming that the throughput between
the processing grid site and the data source is large enough
to make the content retrieval time negligible in comparison
to the inter-request arrival times. In reality, as described in
Sec. II-B, limited connectivity could lead to delayed hits and
significantly influence the cache performance. To estimate this
effect, we conducted an array of experiments that emulate the
retrieval process under throughput constraints and compare
the performance of LRU, as the best reactive policy, and
Dataset LRU, which showed the best performance previously.
We expect delayed hits to penalize Dataset LRU more, as
prefetching leads to retrieving larger volumes of data.

The backhaul link and the main storage are modeled as
a single-server FIFO queue [30] with constant service rate
(corresponding to the throughput) and customers in the queue
are the objects to be retrieved (a file in the case of LRU,
a dataset in the case of Dataset LRU). We refer to such a
queue as the ‘loading queue.’ Upon a miss for an object, the

retrieving job is added to the queue if not already present, i.e.,
if there is not already a pending request for that object. Objects
are inserted into the cache when their service is completed.

Figure 10 shows how the size of the queue changes over
time under LRU and a 100 Gbit/s network throughput. For
such level of connectivity, the network is almost never con-
gested: the queue occupancy is close to zero most of the time,
with some peaks appearing only for small cache sizes like
those reported in Fig. 10. Such peaks correspond to clusters
of misses which require the retrieval of large volumes of data.

Fig. 10: Queue size over time (requests) for 100 Gbit/s
throughput and LRU.

As we decrease the throughput or switch to Dataset LRU,
there are settings for which requests would require to retrieve
content at a rate that constantly exceeds the connectivity
throughput: the queue occupancy keeps increasing over time.
In these pathological cases, the numerical values for FMR and
BMR are not really representative (e.g., they heavily depend
on the trace length) and are then represented through dashed
lines in the BMR plots (Fig. 12 and 13).

Fig. 11: Hit ratio over time (requests) for 30 Gbit/s throughput
and LRU. A square indicates the first time instant when the
cache is full.

Figure 11 shows how the hit rate changes over time for
different cache sizes. The squares on the curve designate the
first time instant when the cache is full. Lower throughput and
larger cache sizes shift these points further to the right. In order
to eliminate the effect of the initial transient, we considered
the first 40% of the trace as a warm-up period and evaluated
the metrics of interests only on the final 60%. In this manner,



we guarantee that the cache is full for all the considered set-
ups (different throughputs, cache sizes, caching policies), but
for the cache sizes closely approaching 100%.

The effect of throughput constraints on LRU performance
is illustrated in Fig. 12. We observe that as far as the system
provides a throughput of at least 50 Gbit/s, delayed hits have
little effect on BMR, which is very close to the ideal case of
infinite throughput. At the same time, a throughput of 30 Gbit/s
shows a significant difference in performance with small cache
sizes (20% and less). For 20 Gbit/s the miss ratio is larger for
all cache sizes.

Fig. 12: BMR vs cache size for LRU and different throughput
values (miss ratios are computed on the final 60% of the trace).
Points connected by dashed lines correspond to the settings
where the loading queue is constantly growing.

In contrast, the effect of the limited throughput on the
performance of Dataset LRU—the best policy in the infinite
throughput regime (Fig. 8)—is more profound (Fig. 13). In
fact, upon a miss, Dataset LRU retrieves much larger amount
of data than LRU (compare dataset sizes to file sizes, Fig. 1
and 6). With a 13% cache size, even a 100 Gbit/s throughput,
which had virtually no influence on LRU performance, leads
Dataset LRU to experience 0.15 BMR from just 0.01 for the
infinite throughput case. Dataset LRU still outperforms LRU
in this scenario, but the relative performance improvement
is significantly reduced. For even smaller throughputs and/or
smaller cache sizes, the effect of delayed hits annihilates the
advantage from prefetching, and Dataset LRU starts perform-
ing worse than LRU.

From these results, we conclude that the throughput must be
taken into account when developing cache eviction policies for
the remote computations model. The limited throughput wors-
ens the performance of cache algorithms, not proportional to
the results under the infinite throughput assumption. Figure 14
shows which caching policy should be preferred, depending on
the throughput and the cache size.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied existing scientific workloads of
the CERN data center in the context of caching. Specifically,
we analyzed the access patterns of a three-month trace of
ATLAS, the largest of the LHC experiments. We focused on
the user read requests for analysis data, as they correspond

Fig. 13: BMR vs cache size for Dataset LRU and different
throughput values (miss ratios are computed on the final 60%
of the trace). Points connected by dashed lines correspond to
the settings where the loading queue is constantly growing.

Fig. 14: Caching policy minimizing BMR for different
throughputs and cache size values.

to the most unpredictable part of the storage accesses. We
explored request rates, time locality, file popularity, and system
load with relation to the file size, as well as intra-dataset access
patterns.

Trace analysis motivated the selection of existing caching
policies (LRU, 2-LRU) that can take advantage of temporal
locality characteristics and operate with heterogeneous file
sizes. We compared them to the new cache policies specifically
tailored for dataset-based workloads (Dataset Evict LRU and
Dataset LRU). We evaluated the cache performance with
respect to FMR and BMR, and proposed the PFOO.Bytes
algorithm to compute a lower bound for the Byte Miss Ratio
for any reactive caching policy.

Dataset LRU heavily relies on prefetching and provides
significant improvements in terms of both FMR and BMR
compared to the other policies, but raised our concerns about
the possible high number of delayed hits. To estimate their
influence, we ran simulations of LRU and Dataset LRU
policies with network throughput values from 20 to 100 Gbit/s.
We showed that Dataset LRU loses its advantage over LRU
when the throughput is not sufficient to sustain the higher
data volumes retrieved by Dataset LRU. In the future we plan
to study a new variant of Dataset LRU where the amount
of prefetching is dynamically adapted as a function of the
observed retrieval time.

Our research investigates a three-month period, which is



enough to capture the lifespan of individual files, but is
not representative of yearly data access from the physics
community (for example, massive preparation for big physics
conferences, end-of-the-year closure of CERN, etc.). Notably,
a tangible change in data access patterns happens when the
LHC starts running, and the WLCG enters a so-called ‘data-
taking’ period, the next of which is foreseen to start in late
spring/summer 2022. We plan to move to these data as soon as
they become available. Moreover, on a longer time horizon,
we want to develop a model to evaluate the global cost of
caching (storage, latency, network) and inform future storage
architectural design and deployment.
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APPENDIX A
THE WLCG ARCHITECTURE

The WLCG is a three-tier hierarchical global federation of
computing centres. Tier 0 (or T0), is the CERN data center—
the largest facility within the network. Tier 1 consists of 13
computer centres located in Europe, Asia, and North America.
Each of them has a direct high-capacity connection to T0
using the LHCOPN (LHC Optical Private Network) [31]. T0
and T1 provide data stewardship and processing. There are
about 155 Tier 2 sites around the globe. They vary in size
from a dozen of servers to data centres. T2 and T1 sites are
connected using public networks and LHCONE (LHC Open
Network Environment) [31], which provides dynamic point-to-
point virtual connections. In this way, each T1 is connected to
T0, each T2 is connected to one or more T1s, but there are also
connections between some sites belonging to the same Tier.
Roughly 1/5th of the resources are at the T0, 1/5th at the T1
level and 3/5th are provided by the T2. Furthermore, there are



additional compute resources, which range from small clusters
to large national analysis facilities, that are not curated by the
WLCG community. These are often referred to as Tier 3, and
are almost exclusively used for physics analysis.

Data serving and computing tasks are distributed within the
whole WLCG network, depending on the specific needs of
each of the large LHC experiments. However, only T0 and
T1 sites are responsible for data archiving: T0 maintains one
copy of the data and all T1 sites together provide a second
copy. T0 and T1s share the load of operating the centralized
coordination services at a high service level.


