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Abstract. This work focuses on BitTyrant, a strategic client that has
been recently proposed as an alternative to BitTorrent. BitTyrant tries
to determine the exact amount of contribution necessary to maximize
its download rate by dynamically adapting and shaping the upload rate
allocated to its neighbors. In this paper we analyze in details the various
mechanisms used by BitTyrant and precisely identify their contribution
to the increased performance of the client. Our findings indicate that the
performance gain is due to the increased number of connections estab-
lished by a BitTyrant client, rather than for its subtle uplink allocation
algorithm; surprisingly, BitTyrant reveals to be altruistic and particu-
larly efficient in disseminating the content, especially during the initial
phase of the distribution process. The apparent gain of a single Bit-
Tyrant client, however, disappears in the case of a widespread adoption:
our results indicate a severe loss of efficiency that we analyzed in details.
In contrast, a widespread adoption of the latest version of the mainline
BitTorrent client would provide increased benefit for all peers.

1 Introduction

The success of BitTorrent [1] has recently motivated a huge amount of work in
peer-to-peer networks and applications. The properties of BitTorrent and of its
key building blocks have been dissected through measurement [2], simulation [3]
and analytical studies [4] with the ultimate goal of assessing the performance
and scalability of the protocol and its algorithms. While the majority of works
in the literature focus on performance, there are few notorious examples [5][6]
that aim at assessing the possibility of exploiting the inherent altruistic nature
of BitTorrent: recent days have seen the emergence of alternative BitTorrent
clients exhibiting an aggressive behavior with the goal of locally improving their
performance, even in the extreme case of lack of cooperation. Indeed, it is well
known that BitTorrent is based on a tit-for-tat (TFT) strategy, i.e., each peers
tries to enforce reciprocation from peers it is connected to. In theory, peers
that do not contribute by uploading data to their neighbors would eventually be
banned. However, in order to reach a steady state regime in which the full system
capacity is utilized, BitTorrent peers need to perform a search process to discover
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their best neighbors in terms of reciprocation: this requires a certain amount of
altruism because the very nature of a TFT strategy calls for some initial risk
taken by peers to initiate a reciprocation process. This built-in mechanism can
be exploited by parasite nodes.

In this paper we focus on the BitTyrant client [5]. Qualitative experimental
results have shown the performance gain achieved by such an aggressive client
and hint at its possible widespread adoption by the user community. Our goal is
to pinpoint the key reasons for the improved performance of a single BitTyrant
peer and we do so both by extending the analytical model presented in [5] and
by a through simulation study of the performance of BitTyrant.

Our key findings challenge previous results obtained in [5]: the subtle up-
link allocation algorithms used by BitTyrant is only slightly responsible for its
increased performance. Contrary to what a strategic client aiming at locally im-
proving its performance would do, BitTyrant is helpful for a system of BitTor-
rent peers, especially during the initial phase of the content distribution process.
Instead, the main factor that accounts for increased performance lies in the tech-
nique used by BitTyrant to increase the size of its neighborhood, that results in
an increased probability of exploiting the altruism of BitTorrent peers. Based on
our results, we further extend the analysis to a new version of the mainline Bit-
Torrent client and we make the case for the extreme scenario in which all users
adopt the BitTyrant client. For this latter case, we show that aggressive clients
can jeopardize the content distribution process when compared to a scenario in
which only the legacy and the recent versions of BitTorrent are used.

2 Background

In this section we briefly outline the key algorithms used by BitTorrent and
BitTyrant; [1] presents a detailed description of the BitTorrent protocol.

BitTorrent. The BitTorrent protocol (hereinafter BT) is designed for bulk
data transfer. The file is divided into pieces, which can be downloaded in parallel
from peers belonging to a specific torrent. A central entity, called tracker, keeps
track of all peers downloading the content and bootstraps new peers joining
the torrent with a random set (of size 50 peers) of remote peers to connect to:
the neighborhood of a peer is called the peer set. A BT peer executes two key
algorithms, one that is used to select pieces of the content to download (termed
the piece selection algorithm) and one that is used to select remote peers to
upload data to (termed the peer selection algorithm, or the choke algorithm).
In this work we focus on the choke algorithm, and gloss over the details of piece
selection. With the choke algorithm, a node builds a subset of its neighborhood
that is termed active set : peers in the active set are entitled to request pieces of
the content. The choke algorithm is executed every 10 seconds: all remote peers
are ranked based on their upload rate and only the first k top peers are unchoked.
Along with regular unchokes, every 30 seconds a peer randomly unchokes ω peers
irrespectively of their rank: this technique is termed optimistic unchoke and
allows a peer to explore its peer set and discover fast neighbors. With the choke
algorithm, peers discover and maintain an active set (of size k + ω) composed
by neighbors that maximize reciprocation, i.e. the amount of data downloaded
given the amount of data uploaded to remote peers.



In the basic version of BT, k and ω are empirically set parameters: generally
k = 4 and ω = 1. The upload bandwidth of a peer is equally split (beside TCP
effects) among all unchoked peers. Recently, a new version the mainline BT
protocol has been released. Despite its rather small diffusion among users (only
2% of the clients appear to be of type mainline [5]), we analyze in this work
the impact of this new client, that we termed BTnew. The key difference of
BTnew lies in the choice of the parameters of the choke algorithm. The number
of regular unchokes is determined as a function of the uplink capacity C of a
peer, that is k =

√
0.6C. Moreover, ω = 2. With these new parameters, peers

with a high uplink capacity open more active connections.
BitTyrant. The key modifications introduced by BitTyrant (hereinafter

BTyr) are related to the peer selection algorithm. As for BTnew, the number
of unchoked peers is a function of a peer’s uplink capacity. However, BTyr uses
a dynamic bandwidth allocation algorithm by which uplink capacity is assigned
on a per-connection basis. During the initial phase of the download process, a
BTyr peer allocates the same bandwidth to all connections using an empirically
set parameter bi. This initial value is set such that the probability of recipro-
cation from remote peers is high. The authors in [5] compute bi considering
a bandwidth distribution derived from real measurements: as in this work we
adopt the same distribution, we also use the same value for bi. Subsequently, the
alternative choke algorithm works as follows: if a remote peer reciprocates for at
least 3 unchoking intervals, the bandwidth allocated for this active connection
is reduced by a factor of 0.9. If an unchoked neighbor stop reciprocating, then
the bandwidth allocated to the active connection is increased by a factor 1.2.
Every choke interval (set to 10 sec.), neighbors are sorted according to the ratio
between the amount of data received and sent (in the last 20 sec.); the available
uplink capacity is then progressively allocated to remote peers in descending
order. Hence, the amount of bandwidth allocated to a remote peer converges to
the exact value required to guarantee reciprocation.

3 Revisiting BitTyrant Basics: Theoretical Analysis

In this section we revisit the model proposed in [5] for the standard BT client and
study its altruistic nature, where altruism is defined as the difference between the
upload and the download rates (if positive) of all peers. As in [5], we neglect the
effects of content availability: we assume that each peer always holds interesting
data, and we consider infinite peer set size. Our contribution is twofold: (i) we
present results not only for BTnew, but also for BT (not considered in [5]), and
(ii) we take into account the discovery process by which BT peers can find peers
with similar capacity. The details of the analysis are in the appendix.

3.1 Tit-for-Tat Matching Time

Let us consider a set of peers that start the download process without any
prior knowledge of other peers equal-split capacity: this knowledge is gradually
inferred using optimistic unchoking.

At the beginning of the download process, the equal-split probability distri-
bution for the active connections of a given peer coincides with the probability



distribution of the equal-split across the whole population. This distribution
changes in time for two key reasons: i) once a peer interacts with a number of
peers greater than the maximum active set size, it can start choking its worst
uploaders; ii) a peer could be choked by some of its best uploaders as they are
also involved in the discovery process and may find better peers to reciprocate
with. Throughout the discovery process, peers prune and establish active con-
nections so as to find peers with a similar equal-split capacity; authors in [5]
term this effect matching and define the “TFT matching time” as the time a
peer needs to fill its active peer set with remote peers exhibiting equal or greater
capacity. As stated in [5], the TFT matching time can be considered as a lower
bound for the matching process to converge, because peer churn and content
availability are neglected. We further note that the definition of matching time
also neglects if any effective reciprocation between peers take place: we address
this issue in the following Section.
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Fig. 1. Time required for a new peer to discover a number of peer of equal or greater
equal-split to fill its active set size.

In Fig. 1 we show the TFT matching time for BT and BTnew clients with
different uploading capacities. The sawtooth behavior of the BTnew curve is
due to some asymmetries that arise among peers with similar capacities which
may open a different number of connections, thus exhibiting smaller equal-split
capacities: this only slightly affects the discovery process for slow peers. We ob-
serve that the matching time increases with the capacity of a peer: it is greater
than 1 and 10 hours for BT and BTnew clients (with high capacity) respec-
tively. Moreover, the higher number of active connections established by BTnew
account for a non negligible increment in the time to reach a “stable” matching:
fast peers systematically exhibit higher discovery times when using BTnew than
when the original BT choke algorithm is used.

Interestingly enough, our results pinpoint an increment in the time scale of
one order of magnitude with respect to what is discussed in [5]: this is due to a
problem in the original analysis, that we have fixed and detailed in the appendix.
Our results reinforce the key intuition behind the design of BTyr. The behavior of
BitTorrent peers, that explore their neighbors by altruistically uploading pieces
of the content to remote peers, can be exploited and the fact that the time
for the discovery process to converge can be very long plays in favor of peers
adopting the BTyr client. However, the level of reciprocation dictated by the
TFT strategy of BT and BTnew clients could have non negligible effects on the
actual gain of a BTyr client. We investigate on this aspect in the following.



3.2 Probability of Reciprocation and Expected Download Rate

In order to evaluate the degree of altruism of a peer, we need to evaluate its ex-
pected download rate. This requires to evaluate the probability of reciprocation
of remote peers. Given a peer i, let Ni be its neighbor set, Ai ⊂ Ni the set of ac-
tive connections, ui the equal split capacity peer i assigns to active connections
and ρi,j the probability that peer j ∈ Ai is willing to reciprocate peer i.

On the basis of the duration of TFT matching time, the authors of [5] de-
rive the reciprocation probability for peer i assuming that every neighbor j is
reciprocated from its own neighbors, i.e. ρj,h = 1 ∀h ∈ Nj, and that peers in
Aj can be considered drawn from the original population distribution, ignoring
they have been selected from peer j’s peer set. Under such assumptions, peer i
has to provide a higher equal-split than the worst uploader of peer j to obtain
reciprocation, i.e. ∃h ∈ Aj such that ui > uh, and the probability of this event is
ρi,j . The expected download rate for peer i is then assumed to be proportional
to the the number of active connections (|Ai|).

Our analysis accounts for the time required by the discovery process to con-
verge through optimistic unchokes. Hence, the download rate peer i can achieve
varies over time. Indeed, peer i can select its |Ai| best uploaders from a progres-
sively larger set and its reciprocation probability fluctuates in time: reciprocation
from peers with a higher capacity than peer i decreases (because they may dis-
cover similar peers) while reciprocation from peers with a lower capacity than
peer i increases (because they are progressively choked by their best upload-
ers). Since each peer optimistically unchokes ω new peers every T = 30 sec.,
we consider a discrete time system where every T/(2ω) sec. each peer discovers
the equal split capacity of one new peer. The system starts from an initial state
where every peer has an empty active set: in this case ρi,j = 1, as any peer can
be potentially selected for reciprocation. Then at each step we evaluate a new
reciprocation matrix ρi,j on the basis of the reciprocation matrix at the previ-
ous time slot and the new discovered peer. From the reciprocation matrix we
can determine the set of reciprocating peers, hence the corresponding aggregate
rate using standard order statistic results (see the appendix for details). This
approach requires computing the factorial of the number of discovered peers,
hence we cannot explore the evolution for a large time interval. However, our
analysis clearly shows that a more realistic model of the system exhibits results
that are significantly different from those in [5].

Fig. 2 shows the reciprocation probability for BT clients after 150 seconds
and after 15 minutes, corresponding respectively to the time required for each
peers to discover the equal splits of 10 and 60 remote peers. Every point (x, y)
of the figure indicates the probability that a peer with capacity x (the offerer)
is going to be reciprocated by a remote peer with capacity y. After 150 seconds,
most of the peers have already discovered enough neighbors to select the best
remote peers. After 15 minutes, almost all the peers are willing to reciprocate
only with peers with similar or higher capacities.

Fig. 3 illustrates results for BTnew. While BTnew clients discover new peers
twice faster than for the standard BT, after 150 seconds high capacity peers are
still willing to reciprocate with every other peer, because the number of peers
they have discovered is still lower than the maximum size of their active set.
After 15 min., instead, high capacity peers reciprocate with peers with lower



(a) After 150 seconds (b) After 15 minutes

Fig. 2. Reciprocation probability for BT.

(a) After 150 seconds (b) After 15 minutes

Fig. 3. Reciprocation probability for BTnew.

capacity due to the high number of connections, i.e. they have not yet found
enough (or there are not enough) high capacity neighbors to match with.
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Fig. 4. Expected download rate for a peer of a given capacity after 15 minutes.

The effect of progressive matching on the download rate after 15 minutes is
shown in Fig. 4. The total download rate is the sum of the download rate from the
active connections the peer has set and of the rate deriving from the optimistic
unchoking. The diagonal line in the figure corresponds to a fair scenario where
every peer gets a download rate equal to its upload capacity. Focusing on results
for BT clients, it appears that low capacity peers are able to gain more than
their fair rate: this is not due to the inefficiency of TFT, but rather to optimistic
unchoking. Indeed, plotting the rate due to active connections only, would reveal



a slope parallel to the diagonal up to about 200kB/s. Peers with a capacity
higher than 3000kB/s appear to offer more than they receive due to the lengthy
discovery process, hence peers with intermediate capacities can exploit them.
However, with time, this phenomenon is less pronounced.

Similar considerations hold also for BTnew clients, with the following dif-
ferences: the advantage for low capacity peers is less conspicuous than for the
BT case because high capacity peers open more connections, hence the down-
load rate allocated to optimistic unchokes is lower; high capacity peers achieve a
smaller download rate due to the large number of active connections. While the
analysis in [5] was suggesting that only 80% of the peers were able to reach their
fair rate, we show that after 15 minutes all the peers with capacity lower than
1000kB/s (according to the used bandwidth distribution, more than 90% of the
population) have already reached their fair rate, and this percentage increases
over time.

Observations : While our analysis recognizes the possibility for a strategic
client to exploit the slow discovery process that affects BT and BTnew clients,
we reveal through a more accurate system model that the TFT strategy adopted
in the original design of BitTorrent is effective in mitigating the potential abuse
of a pronounced altruism. Moreover, our results show that the matching time
required by standard BT clients (which still represent the largest component that
can be found in the Internet [5]) is shorter than for BTnew clients. Although one
would expect BT clients to be more robust to the presence of strategic clients
such as BTyr, in what follows we show that in practice this is not the case:
a single BTyr client performs better in an environment of BT clients, while it
mainly loses any competitive advantage with BTnew clients. The main reason is
that content availability is playing a very important role that cannot be captured
through our analysis.

4 Deconstructing BitTyrant: a Simulative Study

The results presented in [5] are based on a patched version of the Azureus client
with the BTyr choke algorithm and have been collected on real torrents and on
PlanetLab. Our goal here is to study, in a controlled simulation environment,
the the key building blocks of the BTyr choke algorithm and gain insights on
their contribution to the increased performance of the BTyr client.

Our work is based on a customized version of the publicly available BitTorrent
simulator called GPS [7]. GPS is a discrete time flow level simulator, featuring
a simple fluid model of TCP: the available bandwidth between two peers is
equally shared among active flows on the path joining the peers. Peers have
infinite downlink capacity and a finite uplink capacity, which is distributed as
we discuss next. The legacy BT system is implemented, including the piece
selection, the choke algorithm and the Tracker. We complemented the simulator
with an implementation of the new version of the mainline BT client (BTnew)
and of the BTyr choke algorithm.

Our simulation settings reproduce the same scenario of [5]: we analyze tor-
rents of 350 nodes where one seed distributes a file of 50 MB. The uplink band-
width distribution is also the same as [5]. Peers randomly start to download the



content within a small interval (10 sec.) of time and stay in the system once they
finish downloading the content.

First, we carry out a comparative performance analysis of a single client
using whether BTyr or BT/BTnew choke algorithm when the rest of the torrent
population use the BT/BTnew algorithms. In a second set of experiments, we
analyze the performance of an homogeneous system in which all peers execute
the BT, BTnew or BTyr algorithms. The main performance metric we use in this
work is the download time distribution for all peers, although many results we
show in what follows focus on the single BTyr client. By performing multiple runs
(i.e., we generate different random arrival pattern and we select for each pattern
a new target peer) we are able to estimate the mean download time, along with
the confidence interval for a confidence level of 95%. Other performance indexes
used in this work are the number of pieces uploaded by the single BTyr peer
and the set of uplink capacities of neighbors that the single BTyr peer unchokes
in time.

4.1 Fact 1: Size Matters

In this section we compare the performance of a single client, using as parameters
the peer uplink bandwidth and the choke algorithm used by the peer. First, for
validation purposes, we focus on the performance gain when one peer uses the
BTyr algorithm as compared to the same peer using the original BT algorithm:
Fig. 5(a) illustrates similar findings as for the PlanetLab experiments carried
out in [5]. In Fig. 5(b) we show the same set of experiments, but in this case
all clients but one adopt the BTnew algorithm. The performance gain of BTyr
dramatically drops as compared to Fig. 5(a): this is due to the large number of
active connections established by fast peers under the BTnew algorithm; their
uplink capacity is over-curved, hence remote peers perceive smaller download
rates as compared to the original BT algorithm. This particularly affects the
gain of the BTyr client. With respect to the theoretical results obtained in the
previous section, we can see how much the content availability (as well as the
limited peer set) impact the performance.
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Fig. 5. Mean download time for BTyr and BT for different bandwidths.

Beside the subtle uplink allocation algorithm that allows BTyr to exploit
BT peers, a key point in the design of BTyr that is examined only superficially



in [5] is the technique to manage the peer set size, which mimics the one used
by another strategic client, BitThief [6]. A large peer set size is maintained by
increasing the frequency in contacting the Tracker to obtain new remote peers in
the torrent. This simple technique has been proven to increase the probability for
a peer to be optimistically unchoked, leading potentially to high download rates
even without any contribution to the system. We now isolate the contribution
of the peer set size to the performance by forcing a maximum size of 80 peers,
as for legacy BT clients. Fig. 6(a) and Fig. 6(b) illustrate the significant loss
in performance of BTyr in a torrent of BT and BTnew clients respectively.
Interestingly, the latter case indicates that BTyr could completely lose all its
benefits.
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Fig. 6. Mean download time for BTyr and BT/BTnew with a constrained peer set.

The performance loss of BTyr further points at the impact of the number of
active connections: our simulations indicate that the BTyr client unchokes a very
large number of peers, especially at the beginning of the download process. While
we further investigate on this phenomenon in the next Section, here we discuss on
results obtained when a single BTnew client operates in a torrent of BT clients.
Our experiments (we don’t show results here due to space constraints) show that
a single BTnew client achieves similar performance as BTyr (see Fig. 6(a)).
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Fig. 7. CDF of the upload bandwidth of BT, BTnew and BTyr neighbors.



These results hint at the fact that the dynamic uplink bandwidth allocation
algorithm adopted by BTyr appears to have little impact on performance. To
gain further insights, we analyze the interaction between a single client and its
neighbor peers. Fig. 7 shows the CDF of the uplink capacity of the neighbors of
a client that use the BT, BTnew or BTyr unchoke algorithms. Similar results
hold for a single peer with different upload capacity. We notice that, while a
single BT client focuses on a small set of neighbors with well defined uplink
capacities, BTyr and BTnew appear to interact with any neighbor, irrespectively
of its uplink capacity, in a manner that resembles to a round robin approach.
Although the intuition behind the design of BTyr was to seek and exploit for
the longest possible time the fastest peers in a torrent using an intelligent uplink
allocation algorithm, no stable matching appear from the results in Fig. 7.

4.2 Fact 2: Even Tyrants Can Be Altruistic

In the previous section we show that the performance gain of BTyr in compari-
son to BT is essentially due to the larger peer set and active set. While the effect
of a larger peer set is well understood, it is not clear the advantage of a larger
active set. Splitting the uplink capacity among a large number of connections
could be useful, for example, when bottlenecks at the downlink are considered.
In this case a fast peer could underutilize its uplink capacity because of downlink
limits at its neighbors: opening more connections would alleviate this problem.
However, in our simulation setting, the download capacity is infinite. The key as-
pect here is content availability. While the active set size determines the amount
of bandwidth allocated to remote peers, it is not granted that they will be able
to fully use it during the whole unchoke interval: especially during the initial
phase of the download process, the lack of fresh pieces to serve could cause up-
link capacity underutilization. This effect is mitigated with a larger active set
size: while the per-connection uplink capacity decreases, the number of inter-
ested neighbors increases and the total uplink capacity of a peer can be used. As
a by-product, peers that successfully upload fresh data, even at slower rates, to
a large number of neighbors increase the probability of reciprocation. In BTnew
(and indirectly in BTyr) the active set size is set empirically. We leave for future
work the evaluation (and the feasibility) of an optimal value.
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It is interesting to note that a large active set size has the inherent positive
effect of spreading pieces of the content to a large number of peers that would
otherwise remain unserved. With a dynamic uplink allocation algorithm that
opens many active connections, BTyr reveals to be altruistic and to make an
efficient use of its uplink capacity. Fig. 8(a) depicts the ratio between the cumu-
lative number of uploaded pieces over time by single BTyr client with respect to
the correspondent BT client. Especially during the early stages of content distri-
bution, BTyr uploads up to 25 times (for a high bandwidth client) the number
of pieces uploaded by BT. Subsequently, the total number of pieces uploaded for
BTyr and BT converges. This effect is also present, though less apparent, when
we consider a peer set size constrained version of BTyr (Fig. 8(b)).

This unexpected altruism of BTyr has a beneficial effect on all nodes involved
in the distribution process. In Fig. 9 we show the cumulative distribution function
of the download times of all peers. Results show that when even only one fast
BTyr peer (with high bandwidth equal to 5000 KB/s) is present in the system,
its influence is non-negligible. Interestingly, similar observations can be made
when introducing one BTnew client.
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4.3 Fact 3: Many Tyrants Are Dangerous

Our results indicate that both BTyr and BTnew are potentially attractive for
users thanks to their increased performance over the traditional BT. The extreme
case of a widespread adoption of these alternative clients is analyzed in what
follows. While [5] presents results for a torrent of BTyr peers, we study the case
for BTyr peers with a peer set size constraint and for BTnew peers. In light of
access control policies implemented in recent Trackers, it is realistic to assume
the presence of mechanisms to reject frequent queries made by peers that wish
to obtain a larger peer set size.

Fig. 10 illustrates the CDF of the download times for a torrent of BT, BTnew
and BTyr peers: a glance at the median and worst case download times indi-
cates that a large-scale adoption of BTyr can jeopardize the content distribution
process. In BTyr, remote peers are ranked by the ratio of their download and
upload rate, hence absolute contribution levels are lost. The most visible side



effect is a race towards lower levels of contribution: we defer a more detailed
discussion to Appendix B.

5 Conclusions

Recent days have witnessed the development of new, aggressive peer-to-peer
clients aiming at decreasing content download times by leveraging on subtle
techniques to exploit generous clients. In particular, this work focus on a de-
tailed performance analysis of BitTyrant, a strategic client that was designed
to capitalize on the inherent altruism that characterize the mainline version of
BitTorrent. BitTyrant has been previously shown to exhibit a substantial perfor-
mance improvement over BitTorrent, and in this paper we detail the key reasons
for its success. This work covers also a new version of the mainline BitTor-
rent and reveals the benefits of a new choice of parameters for one of its key
algorithms.

Our results indicate that the uplink allocation algorithm used by BitTyrant,
which was originally designed to maximize the performance gain in terms of
download times, turns out to be altruistic, especially during the initial stages
of the content distribution process. While aggressive clients including BitTyrant
and BitThief arrive at improving their download rate by simply increasing the
size of their neighborhood, our study shows that the widespread adoption of
such clients can severely impact the overall system performance.

Although the latest version of BitTorrent reveals to be beneficial for the
entire system, our results indicate that an empirical choice of the key parameters
that drive reciprocation is somehow inefficient. We believe that further study is
required to design dynamic uplink allocation algorithms that would work for the
benefit of all users of a torrent and that would maximize, for any bandwidth
scenario, the overall system capacity utilization. The design of a new, strategy-
proof client based on such algorithms will be addressed in our future work.
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Appendices

A Theoretical Analysis

We adopt the same notation introduced in [5], but we denote with b(v) and B(v)
respectively the probability density function and the cumulative distribution
function of the equal split (and not of the uploading rate).

Tit-for-Tat Matching Time

During a time interval equal to T , a peer discovers the equal split of ω new peers
and its equal split is discovered by other ω new peers. Given peer i with equal
split r, let S(r) be the probability that a peer has equal split smaller than r. The
expected number of interactions peer i needs to find a peer with the same or
higher equal split (“a matching peer”) is distributed as a geometric distribution,
with expected value:

1

1 − S(r)
.

The expected number of interactions needed to discover a number of peers
equal to the number of active connections |Ai| is simply:

|Ai|
1

1 − S(r)
.

If we consider that the peer has one interaction every T/(2ω) seconds, then
the matching time is:

T

2ω

|Ai|
1 − S(r)

.

This result is different from the result derived in [5], because of an error
in equation (9) of the “Modeling notes” appendix there. In fact c(r, n) defined
there is the probability to find at least one peer with equal split higher than r
by time nT , i.e. with our terminology in at most 2ωn interactions. Equation (9)
erroneously evaluate the probability to find exactly one matching peer at time
nT as

c(r, n)

n−1∏
i=1

(1 − c(r, i)).

This is wrong because: 1) in time interval ((n − 1)T, nT ] up to 2ω matching
peers can be found, 2) the probability to find at least one peer in time interval
((n − 1)T, nT ] is simply c(r, n)(1 − c(r, n − 1)).

Probability of reciprocation

In Section 3, we have defined ρi,j the probability that node j is willing to re-
ciprocate with node i. Being that this probability depends only on their equal



splits and it changes after each interaction (we assume that all nodes have an
interaction simultaneously every T/(2ω) seconds, let us define

ρ(ui, uj, k)

the probability that a node with equal split uj is willing to reciprocate with
a node with equal split ui at the k-th interaction. We have ρ(ui, uj, 0) = 1,
being that we consider all nodes starting from a clean slate and hence willing to
reciprocate with anyone else.

At each interaction a peer discovers the equal split of another peer. The equal
split follows the distribution b(v). The probability that a generic peer in Ni is
not willing to reciprocate with peer i at the k-th interaction is:∫ ∞

0

ρ(ui, v, k)b(v)dv,

and the expected number of peers not reciprocating peer i (Ri(k)) is:

Ri(k) = k

∫ ∞

0

ρ(ui, v, k)b(v)dv.

We simplify our analysis assuming that: 1) the number of peers not recipro-

cating peer j is always equal to the integer nearest to Rj (we denote it as R̂j)
and 2) that these peers are the best uploaders of peer j. Then if we rank the
uploaders of peer j on the basis of their equal split in decreasing order, peer j at
the k-interaction will be willing to reciprocate peers with rank from R̂j(k) + 1

to w = R̂j(k) + |Aj |, being that it is willing to open up to |Aj | connections.
Now the probability that peer i is going to be reciprocated from peer j at the
following interaction is equal to the probability that peer i has an higher equal
split than that of the w-th uploader of peer j3. The probability density function
of the equal split of the w-th uploader of peer j is:

b(w)
uj

(v, k) =
k!

(w − 1)!(k − w)!
B(v)(k−w)(1 − B(v))(w−1)b(v),

and the reciprocation probability at the k + 1-th interaction is:

ρ(ui, uj, k + 1) =

∫ ui

0

b(w)
uj

(v, k)dv.

This is the recurrence equation we can use to evaluate the evolution of recipro-
cation probability over time.

Expected Download Rate

The expected download rate of peer j can be derived as:

R̂j(k)+|Aj |∑
h=R̂j(k)+1

∫ ∞

0

vb(h)
uj

(v, k)dv + ω

∫ ∞

0

vb(v)dv,

where the first addend corresponds to the aggregated rate from active connec-
tions, while the second one to the aggregated rate from optimistic unchoking.

3 If w = R̂j(k)+ |Aj| > k, peer j will be always willing to reciprocate with a new peer.



B Analysis of the BitTyrant Algorithm

In this section we investigate the performance of the BTyr algorithm in a homo-
geneous environment, i.e. when all nodes are BTyr. In particular we neglect the
effect of content availability: we assume that each node has always interesting
pieces to give to any other nodes. This allows us to focus on the interactions
among nodes, in particular on the unchoked relationships.

To this aim, we design a simulator that run for each node the choking al-
gorithm, considering, instead of the amount of data received and sent in the
previous choking intervals, the bandwidth assigned to the connection in both
ways. Before describing the simulator and the results, we first argue why the
case of all BTyr client is of interest.

B.1 Game Theoretic Approach

In [5] the authors shortly discuss the case of spread adoption of BitTyrant: they
suggest that performance degradation can actually occur. The intuition is that
BTyr tries to minimize the contribution to each neighbor, thus when two BTyr
nodes interact, they might start decreasing the mutual sending rate.

In order to solve this problem, the authors propose a different strategy: when
two BTyr nodes start exchanging data, they should switch to a block based TFT
strategy and, at the same time, they should try to increase the rate, instead of
decreasing it.

We believe that such a behavior – using different strategies according to the
client the node is interacting with – can never occur. The simple reason is that
a BTyr client that adopts the same strategy independently from the type of
the other clients (static BTyr) will gain with respect to a BTyr that adapts
the strategy (adaptive BTyr). In fact, the adaptive BTyr tries to increase the
bandwidth, while the static BTyr decrease it, obtaining a better performance
with respect to the adaptive BTyr. In other words, there is no incentives to be
adaptive, and each client behaves selfishly remaining static.

On the one hand, BTyr will be adopted instead of BT, since there is an
incentive to adopt BTyr with respect to BT; on the other hand, the BTyr client
will be necessarily static, i.e. they adopts the same behavior independently from
the neighbor types, since there is no incentive to be adaptive. The final situation
is a population with all (static) BTyr clients. For this reason it is correct to study
the case with all BTyr, since it is the evolutionary path followed by clients.

B.2 Simulator Description and Settings

The simulator we developed focus on the unchoking relationships among nodes.
At every choking interval, a BTyr node unchokes a subset of its neighbors, as-
signing to them a rate. Neglecting the influence of the content means assuming
that during the choking interval each node sends data to each unchoked neighbor
with the rate assigned to it during the last run of the choking algorithm (i.e.
the rate is fully utilized). This condition represents an ideal situation that in
practice is unlikely to happen: nevertheless, with such an approach, we are able
to evaluate the dynamics of the relationships, and in particular the evolution of
the rate assigned by the BTyr choking algorithm.



Once the content is neglected, the operations performed by each node are very
simple. At each choking interval each node performs the BTyr choking algorithm,
considering the ratio between the received rate and sent rate for each neighbor
(instead of the ratio between the received data and sent data). Then it unchokes
the neighbors with the best ratio until it has available upload bandwidth, as in
the usual BTyr choking algorithm.

The remaining behavior of the system remains unchanged: all the nodes arrive
uniformly at random in a interval of 10 seconds and the overlay is built with the
help of a tracker. We assume that BTyr nodes has standard peer set size and
nodes remain always online. All the other parameters – initial value of the rate
assigned the first time to neighbors, choking interval, distribution of the upload
capacities – are same as described in Sect. 4.

B.3 Results

The main output of the simulator is the rate assigned to each neighbors over time.
Each node creates a matrix where the element eij represents the rate assigned to
peer i at choking interval j. In order to show the basic behavior of BTyr choking
algorithm, we select three representative nodes with upload capacity 80, 200 and
10000 respectively.

In Fig. 11 we show the matrix of the rates for a node with 10000 KB/s upload
capacity. The value of the assigned rate is represented with colors: the darker
the color, the higher the rate. At the beginning, the node assigns the same rate
to all its neighbors4. Note that, with an initial rate of 15 KB/s assigned to each
unchoked neighbors, the node has to unchoke all its neighbors; moreover, the
total amount of assigned bandwidth is in any case much lower than the upload
capacity (1500 KB/s).

It is possible to distinguish two different neighbor subsets: some of them
have a rate with a downward trend; others have a rate with an initially upward
trend, then periodic trend. The risk of neighbors with downward trend was im-
plicitly foreseen by authors of [5] – for this reason they argue about adaptive
BTyr nodes. The interesting behavior is represented by the upward and periodic
trend. This behavior can be explained considering that the node has spare up-
load capacity and thus it continues to unchokes all its neighbors. On the other
hand, its neighbors may have limited capacity, thus they choked the node we
are considering. Since the node is choked, it applies the BTyr algorithm and it
increases the rate. This behavior is visible in the first part, up to 20-30 rounds.

At this point the rate is so high that there are two effects: first, the node
starts choking some of the neighbors, since it does not have enough capacity for
all of them; second, the neighbors start unchoking the node we are considering.
These two effects concur in creating the periodic behavior. In order to fully
understand the reason of this behavior, we have to consider the nodes with low
upload capacity (that represent the majority of the neighbors of a high upload
capacity node). Figure 12 shows the matrix of the rates for a node with 200 KB/s
upload capacity and a node with 80 KB/s upload capacity.

Here we see that the prevalent trend is the periodic one. The period in all
cases is equal to three rounds. This value is a consequence of the period used

4 Here we fix the maximum number of neighbors equal to 100
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Fig. 11. Uploaded neighbors by a single fast BiTyrant client (with all BTyr clients).

by BTyr (and BT) when evaluating the received/sent rate – two rounds: the
algorithm evaluates the data received and sent in the last two rounds. For in-
stance, assume node n1 that performs the choking algorithm at time t. If node
n1 has not sent any data to a node n2, and node n2 has sent even an infinitesimal
amount of data to node n1, the ratio between the received data and the sent
data for n1 will be infinite, independently on the received data. This means that
node n2 will be unchoked every three rounds for just one round, since the third
round node n1 loses memory of the given data but still receive something from
n2. This can be applied to all nodes, with a final periodic trend for most of the
nodes.

An interesting observation related to Fig. 12 is the explored peer set: the
node continues to deal with the same 20-25 neighbors, without exploring the
other neighbors. This is an undesirable behavior, since nodes are not able to
discover better neighbors. We used the same simulator to analyze the behavior
of BT, and we observed that, as the time goes by, more and more neighbors are
unchoked at least for three rounds (thanks to the optimistic unchoking). Thus the
number of rows of matrices (such as the ones shown for BTyr) tends to becomes
equal to the maximum number of neighbors. The fact that the BTyr algorithm
is not able to properly discover better neighbors represent another contribution
to the bad performances of BTyr when all the other nodes are BTyr.
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Fig. 12. Uploaded neighbors by a single medium and slow BiTyrant client (with all
BTyr clients).


