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Abstract— In this paper, we discuss the influence of multiple
bottlenecks on the stability of Active Queue Management
(AQM) controllers, usually configured on a single bottleneck
basis. To see this, we consider a network scenario where RED
is configured at each router according to previously developed
control theoretic techniques. These configuration rules assure
stability in a single bottleneck scenario. Yet, we show that
instability may arise when two links become congested. We
justify this result through a multiple bottleneck model.

I. I NTRODUCTION

AQM has been proposed to support end-to-end TCP con-
gestion control in the Internet [1]. AQM controllers operate
at the network nodes to detect incipient congestion and
indicate it to TCP sources, which reduce their transmission
rate in order to prevent worse congestion. Usually packet
drops are used for congestion indication.

Many AQM schemes have been proposed [2], [3], [4],
[5], whose algorithms usually rely on some heuristics and
their performances appear to be highly dependant on the
considered network scenario (see, e.g., [6], [7], [8], as
regards the well-known Random Early Detection -RED-
algorithm).

This paper is motivated by the consideration that the
distributed fashion of TCP flows control across the network
has not been explicitly considered up to now. As a matter
of fact TCP flows may turn to be controlled at the same
time by two or more nodes acting independently according
to their AQM settings. According to our opinion, this can
hardly affect AQM algorithms performance. In particular,
we propose a counterexample to show that RED controllers,
configured according to [9], do not prevent from instability
if two nodes face congestion at the same time (this is
referred to asmultiple bottleneck scenario).

This paper is organized as follows. Section II recollects
some results from [9], which will be referred to in the
following sections. In Section III we present a multiple
bottleneck network scenario, that exhibits instability. The
presence of instability is derived from performance metrics
obtained through simulations. In Section IV, we provide
an analytical insight to better understand the experimental
results. Finally, conclusive remarks and further research
issues are given in Section V. In particular we discuss
the development of new cooperative congestion local con-
trollers under the assumption that a congested node may
communicate its state to the neighbors.
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II. SINGLE BOTTLENECK MODEL

The starting point in [9] is the model described by the
following coupled, nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t)) (1)

q̇(t) =
W (t)

R(t)
N(t)− 1q(t)C (2)

where1q = 1 if q > 0, 1q = 0 otherwise. Symbols used in
the equations above are summarized in the following table.

W expected TCP window size (packets);
q expected queue length (packets);
R round-trip time;
C link capacity (packets/sec);
Tp propagation delay (secs);
N load factor (number of TCP sessions);
p probability of packet drop;

The first equation represents the TCP window, that in-
creases by one every round trip time, and halves when
a packet loss occurs. Packet loss rate is computed as the
dropping probability times the number of packets sent per
time unit. The round trip time is related to the propagation
delay and the queue occupancy by the following relation:
R = Tp+ q

C . The second equation represents the variation of
queue occupancy as the difference between the input traffic
and the link capacity.

AQM schemes determine the relation between the drop-
ping probability and the nodes congestion status.

Here we considered RED as AQM scheme. RED config-
uration is specified through four parameters: the minimum
and the maximum threshold (THRmin, THRmax), the
maximum dropping probability in the region of random
discardPmax, and the weight coefficientwq. RED can be
modelled by the following equations (refer to [2] for RED
operation):

ẋ(t) = −Kx(t) + Kq(t) (3)

p(x) =

{
0, 0 ≤ x < THRmin
(x−THRmin)Pmax
THRmax−THRmin

, THRmin ≤ x < THRmax

1, THRmax ≤ x,

(4)

whereK = − ln(1 − α)/δ and δ is the time between two
queue samples. The time intervalδ can be assumed to be
equal to1/C for a congested node.

The linearized system (TCP sources, congested node
queue and AQM controller) can be represented by the block
diagram of Figure 1. In the block diagram
L = Pmax/(THRmax − THRmin).
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Fig. 1. Block diagram of linearized RED control system
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Fig. 2. Network topology

TABLE I

NETWORK PARAMETERS

Link Capacity (Mbps) Propagation Delay (ms)
1-4 20 15
2-3 10 5
3-4 20 10
4-7 10 10
5-1 20 15
6-2 20 5
8-2 20 15
3-9 20 10

The open-loop transfer function of the system in Figure 1
is:

F (s) =
L (RC)3

(2N)2 e−sR

(
1 + s

K

) (
1 + s

2N
R2C

) (
1 + s

1
R

) (5)

In [9] the authors present RED configuration rules, that
guarantee the stability of the linear feedback control system
in Figure 1 forN ≥ N− andR0 ≤ R+.

III. A N INSTABILITY EXAMPLE

We consider a parking lot network whose topology is
depicted in Figure 2. The capacity and the propagation delay
of each link are reported in Table I. Packet size is1500
bytes. Links between nodes4 and 7 and between nodes2
and3 will play the role of bottlenecks.
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Fig. 3. Nyquist plots for the considered RED configuration andN =
4, 8, 12 flows

The RED algorithm is deployed at nodes4 and 2,
respectively to manage the output queues for the link4− 7
and2− 3. In what follows we refer to these buffers simply
as node4 buffer and node2 buffer, without specifying the
link, or as queue4 (q4) and queue2 (q2).

Our RED configuration relies on the control theoretic
analysis of RED presented in [9]. Nevertheless, we do not
adopt exactly the configuration rules proposed there, since
their high stability margins do not allow simple counter-
example, but we use common thumb rules and then we
verify RED-configuration stability through the Nyquist plot
of the open loop transfer function.

We recall that the Nyquist criterion allows one to study
the stability of the closed loop system through the polar plot
of the open loop transfer functionF (jω). For the functions
we are interested in, the closed loop system is stable if and
only if the plot does not encircle the point(−1, 0).

We chooseTHRmin = 2, THRmax = 20, Pmax = 5%,
and wq = 0.002. This configuration guarantees stability if
the number of flows is greater than or equal toN− = 7
and the Round Trip Time is lower than or equal to110ms.
Figure 3 shows the Nyquist plot of the open loop transfer
function (5) forR = 110ms and different number of flows
N .

Simulations were conducted through ns v2.1b9a [12]. We



0

5

10

15

20

10 12 14 16 18 20

qu
eu

e 
oc

cu
pa

nc
y

time (s)

THRmin
THRmax

Fig. 4. Instantaneous buffer occupancy with number of flowsN = 8

used TCP Reno implementation.

A. Single Bottleneck

A primary question is which metric is particularly suit-
able to catch instability phenomena. In this sense, though
instability is by many authors addressed looking at the
amplitude of queue size oscillations, we will better refer
to the normalized standard deviation as a more suitable
metric to analyze instability phenomena. For example, when
the number of flows decreases, stability margins decrease
according to the linear model developed in [9], and one
could expect larger queue oscillations. Yet, at the same
time the queue average value decreases and the physical
constraint of positive queue values can determine smaller
oscillations. Ultimately, the cause is the RED coupling of
queue length and loss probability, which lets the operating
point depend from the network conditions, like the load
level. From a control theoretic point of view one says that
the RED controller has steady state regulation errors.

Now, in order to analytically show how instability of the
linear model concretely affects the network performance,
we first present some results regarding the single bottleneck
scenario.

Two aggregates, each one of four TCP flows (N =
8), enter the network through node5 and node6 with
destination node7 (solid lines in figure 2). The link between
nodes4 and7 is congested.

Figure 4 shows the instantaneous queue occupancy time-
plot for the buffer at node4. RED should be able to keep the
queue occupancy within the two thresholds (dotted lines).

Let us progressively reduce the number of flows through
the network and see if instability occurs as claimed in [9].
In Figure 5 the buffer occupancy is shown to revisit with a
higher frequency the regions associated to buffer overload
and underload (out of RED thresholds).

Numerical results for the throughput and the normalized
standard deviation are shown in Table II. As the total flow
number decrease from8 to 6 we note that i) the throughput
over the link4− 3 reduces from9.80 Mbps to9.70 Mbps,
ii) both the average queue occupancy and the oscillation
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Fig. 5. Instantaneous buffer occupancy withN = 6
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Fig. 6. Instantaneous buffer occupancy withN = 4

amplitude decrease, respectively from10.0 to 8.19 and from
5.26 to 4.64, and iii) the normalized standard deviation, i.e.
the ratio between standard deviation and mean, increases
from 0.52 to 0.56.

If we reduce drastically the number of flows to4, the
above RED configuration, turns to be too aggressive, which
is evidenced by higher frequencies of buffer occupancy
oscillations and further reduction of the throughput. Even
longer periods, where buffer is underloaded results from
Figure 6.

Experimental results show that instability predicted by
the model in [9] leads to reduced link utilization and higher
normalized oscillations (higher jitter in percentage).

Conversely, if we increase the number of flows, higher
throughput and lower jitter can be achieved.

Node2 buffer has the same RED configuration. Table II
shows similar results when only the link2−3 is congested,
due to flows coming from nodes6 and8.

B. Two Bottlenecks

We now draw the attention to the fact that buffer occu-
pancy instability, may arise when flows through node4 are
in part already controlled by some other congested upstream



TABLE II

NUMERICAL RESULTS

N6 N5 N8 Thr6 Thr5 Thr8 queue4 queue4 queue2 queue2

occupancy oscillation occupancy oscillation
6 6 0 5.36 4.57 - 13.6 0.41 0.94 0.26
4 4 0 5.39 4.41 - 10.0 0.52 0.95 0.25
3 3 0 5.29 4.41 - 8.19 0.56 0.96 0.28
2 2 0 5.32 4.17 - 6.31 0.64 0.97 0.43
0 4 0 - 9.49 - 5.51 0.72 0 0
4 0 4 4.92 - 4.92 0 0 10.48 0.48
4 4 4 3.60 6.06 6.12 8.05 0.73 9.36 0.62
4 4 6 3.03 6.59 6.82 7.51 0.75 11.60 0.53
4 4 8 2.59 7.03 7.33 7.16 0.74 11.60 0.45
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Fig. 7. Instantaneous node4 buffer occupancy in a two bottleneck scenario
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Fig. 8. Instantaneous node2 buffer occupancy in a two bottleneck scenario

node, for instance, node2 when link2−3 is congested (see
Figure 2).

To recreate artificially such a scenario, let us introduce
an additional aggregate entering the network from node8,
with destination node9 (dotted line in figure 2). Node4
buffer occupancy for a 4-flows aggregate exhibits a high
oscillatory behavior in figure 7.

From Figure 8 instability arises also at node2.
The numerical values stored in the last three rows of Ta-

ble II support quantitatively our claims rising from Figures 7

and 8. In particular the normalized oscillation values of node
4 buffer are comparable to the value stored in the fifth row,
corresponding to a single bottleneck instability scenario due
to a low number of flows (N5 + N6 = 4 < N−).

The normalized oscillation values in Table II confirm
quantitatively the feelings obtained from Figures 7 and 8.

Note that, though the number of flows at each node and
the flow round trip time should assure stable operation,
instability arises due to the traffic aggregate from6 to 7,
which traverses both the congested links.

This example shows the limits of local AQM configura-
tion ignoring the distributed nature of TCP flows control in
a multiple bottleneck scenario. If we consider the configura-
tion rules given in [9], instability probably does not arise in
such a simple example, but there is a reduction of stability
margins. This modifies the system dynamic response and
reduces the system robustness to the flows number and the
round trip time variation.

IV. T HE ANALYTICAL INSIGHT

In this section, we provide an insight into the physical
causes of instability in our counter-example. We start from
a nonlinear two bottleneck model of the network with
some simplifying assumptions, and prove that the system is
instable. Then, we come back to single bottleneck systems,
by considering only one TCP aggregate at a time, the other
ones acting as non reactive flows. Despite such system
decoupling is not correct from an analytical point of view,
it allows us to get again the linear system described in
Section II, but with some different parameters. Hence, the
effect of multiple bottlenecks can be helpfully seen as a
parameter variation in the same single bottleneck model we
considered to configure the RED. It allows us to understand
why instability arises and to simply predict the effect of
some network scenario changes, such as the number of
flows and the propagation delays. The limits of such an
approximation are detailed in the following subsection.

A. Two Bottleneck Model

We extend the single bottleneck congestion model de-
scribed in Section II to the case of two congested nodes.
With reference to the network topology depicted in Figure 2
we obtain
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Ẇ5 = 1
R5
− W5W5(t−R5)

2R5(t−R5)
p4(t−R5)

Ẇ6 = 1
R6
− W6W6(t−R6)

2R6(t−R6)
(p2(t−R6) +

+ p4(t−R6)− p2(t−R6)p4(t−R6))
Ẇ8 = 1

R8
− W8W8(t−R8)

2R8(t−R8)
p2(t−R8)

q̇4 = W5
R5

N5 + W6
R6

N6 − 1q4C4

q̇2 = W6
R6

N6 + W8
R8

N8 − 1q2C2

(6)

whereR5 = Tp2 + q4
C4

, R8 = Tp1 + q2
C2

, R6 = Tp1 + q2
C2

+
q4
C4

. For sake of simplicity in (6), the time dependance is
indicated only for delayed functions.

The above model relies essentially on the assumptions of
the original single bottleneck model. One further limit is the
way node 6 traffic has been considered in queue 4 equation:
this equation ignores i) the delay from queue 2 to queue 4,
and ii) that this traffic comes from another congested node,
and therefore has been shaped by queue 2 (the outgoing
traffic cannot overcomeC2).

By linearizing the equation system 6 and using Padé
functions to approximate time-delays, we obtain a ratio-
nal Linear Time Invariant model. Thus, we study system
stability considering the poles. Figure 9 shows the system
poles for two different Pad́e approximations. The zero-order
approximation (N = 0) simply corresponds to neglecting
time-delays (e−sR ' 1). There are four poles with positive
real part, hence the system is unstable. As the approximation
order increases, the number of poles increases, and, at least
up to the 20th order approximation, there are always four
poles with positive real part. For example poles for the fifth
order approximation are shown in Figure 9.

B. Decoupling into three single bottleneck models

Now, we consider individually each of the three aggre-
gates and assume the other flows are non reactive ones,
i.e., we focus onWi, and assumeWj/Rj = Wj0/Rj0 =
cost, for j 6= i . Due to congestion at nodes2 and 4,

N5W50/R50 + N6W60/R60 ' C4 = C2 ' N8W80/R80 +
N6W60/R60. We can derive the following models for the
aggregates5 and 8 ((i, j) = (5, 4) and (i, j) = (8, 2)
respectively):

{
Ẇi = 1

Ri
− WiWi(t−Ri)

2Ri(t−Ri)
pj(t−Ri)

q̇j = Wi

Ri
Ni + W60

R60
N6 − 1qj

Cj ,
(7)

and the following model for aggregate6:





Ẇ6 = 1
R6
− W6W6(t−R6)

2R6(t−R6)
(p2(t−R6) +

+ p4(t−R6)− p2(t−R6)p4(t−R6))
q̇4 = W50

R50
N5 + W6

R6
N6 − 1q4C4

q̇2 = W6
R6

N6 + W80
R80

N8 − 1q2C2.

(8)

The equation system (7) is the same as in the previous single
bottleneck system: bottleneck capacities are respectively
equal to Ceq

5 = C4 − N6W60/R60 = N5W50/R50 for
aggregate5 andCeq

8 = C2 − N6W60/R60 = N8W80/R80

for aggregate8.
Neglecting the productp2p4 in comparison to the terms

p2 andp4, the equation system (8) reduces to the single bot-
tleneck model too, where the bottleneck capacity isCeq

6 =
C4−N5W50/R50 = C2−N8W80/R80 = N6W60/R60 and
we can consider a single RED queue whereP eq

max = 2Pmax.
The previous results are quite intuitive. Nevertheless, we

can obtain them via linearization of the equation systems 7
and 8 (similarly to Appendix I of [9]). Thus, we obtain the
following open-loop transfer function:

Fi(s) =
Leq

i
(Ri0Ceq

i
)3

(2Ni)2
e−sRi0

(
1 + s

K

)
(

1 + s
2Ni

R2
i0

C
eq
i

) (
1 + s

1
Ri0

) (9)

wherei = 5, 6, 8. Leq
i = 2L for i = 6, Leq

i = L for i =
5, 8. These transfer function differs from transfer function
in (5), only for the parameter values.

C. Stability considerations

In this section, we justify instability results shown in
Section III, by applying the Nyquist criterion to the open-
loop transfer function in (9).

We remember that our RED configuration assure stability
for the system whose transfer loop function is (5) withN =
8, R = 110ms andC = C4 = C2.

From the new open-loop transfer functions, we see that
the decrease of the number of effective flows for all the
three aggregates and the increase of the RED slope for
the aggregate6 contribute to system instability. Yet, the
decrease of the equivalent capacity makes the system more
stable. In order to evaluate the dominating effect we have
to consider numerical values for the parameters, but we
can state that as the number of flowsN8 increases,W5

exhibits instability. As the number of flowsN8 increase,
the aggregate6 is going to be harder choked, henceC5eq



approachesC4 and the Nyquist plot corresponding to the
transfer function (9) approaches the dashed curve in Fig-
ure 3, which corresponds toN = 4; the plot encircles the
point (−1, 0) and the corresponding closed loop system is
unstable.

With the numerical values from Table II, the single
bottleneck models predict thatW5 is unstable, whereas
W6 and W8 are stable:W8 is stable due to smaller RTT
in comparison to aggregate5 (Tp1 ≤ Tp2); as regards
the window sizeW6 a smallerC6eq compensates theN
reduction andL increase.

As regards the instability of the multiple bottleneck
system, all the variables show instability. As a matter of
fact, W5 instability implies theq4 oscillations and hence
the p4 oscillations. The last affect the throughput of the
aggregate6. Aggregate6 couples the two queues and hence
it yields instability toq2, and so on.

Single bottleneck models allows us to simply predict for
example the effect of increasingN8. We have already stated
thatW5 instability increases, at the same timeW8 becomes
more stable and the coupling between the two queues by
the aggregate6 reduces. Hence, we expect an overall more
stable behavior at queue2. Performance metrics in Table II
for N8 = 6 andN8 = 8 confirm results of single bottleneck
models: instability increases at the downstream node and it
decreases at the upstream one.

As regards the validity of our simple analysis, let us
consider for exampleW5. Results from System 7 are more
accurate as long as i) aggregate6 is small (W6(t) <<
W5(t)), or ii) it is not small, but it is not markedly affected
by the dynamics of the aggregate5 and of the queue4, i.e.
as long as the behavior of the aggregate6 is determined
elsewhere, in our example at the congested node2. For
example the model provides better a approximation if the
number of flowsN8 increases or the round trip timeR8

decreases.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we showed that RED configuration based on
a single-bottleneck assumption may not prevent from traffic
instability when congestion occurs, at the same time, in two
different locations of the network.

This suggests that the effect of multiple bottlenecks could
be counteracted by robust configuration of AQM controllers.
In particular the minimum number of flowsN− should not
take into account flows being controlled by other nodes.
Hence the network administrator should evaluate not only
the minimum number of flows at each node and their
round trip time, but he should also get more sophisticated
information about traffic matrix across the network and
contemporaneously congested nodes.

Another approach would be to implement new coop-
erative AQM controllers, that base their control action
on information about the congestion status of the other
nodes. Simplicity is an obvious requirement, particularly
for signalling among nodes.

We think that the Explicit Congestion Notification (ECN)
field [13] in IP packets could be usefully employed for inter-
nodes signalling. ECN has been proposed as a light in-band
signalling form between nodes and client, but it appears
to be a simple way for nodes to transmit downstream
information about their congestion status. The advantages
of ECN employment are: no further network transmission
resources are required, information travels along the data
path, and it can be used by all the nodes controlling the
flow.

AQM controller should monitor the ingoing traffic, evalu-
ate the share of traffic controlled elsewhere, by the percent-
age of packets with the Congestion Experienced codepoint
set (CE packets) and set some tunable parameters according
to the controlled traffic share. For example a RED controller
could decrease the dropping curve slopeL as the percentage
of CE packets increases in order to maintain a stable
operation.
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