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Abstract—We study access games within a large popu-
lation of mobiles that interfere with each other through
many local interactions. Each local interaction involves a
random number of mobiles. The games are not necessarily
reciprocal as the set of mobiles causing interference to a
given mobile may differ from the set of those suffering
from its interference. We model and study this using the
theory of evolutionary games which we extend to cover a
random number of players.

Index Terms—multiple access game, evolutionary games,
node distribution.

I. INTRODUCTION

The evolutionary game framework models competi-
tion among large populations through many local in-
teractions, each involving a small number of users. It
introduces the concept of Evolutionary Stable Strategy
(ESS), as well as the population dynamics that result
from the interactions between the populations. The ESS,
first defined in [4], is characterized by a property of
robustness against invaders (mutations). More specifi-
cally, (i) if an ESS is reached, then the proportions of
each population do not change in time (ii) at ESS, the
populations are immune from being invaded by other
small populations. The ESS equilibrium concept is better
adapted to large populations of players as it describes
robustness against deviations of a whole fraction of the
population as opposed to the Nash equilibrium concept
that does not apply to deviations of more than a single
player. We refer the reader to [11], [2] for more details
on ESS and evolutionary game dynamics.

Several previous papers have already studied evolu-
tionary games with pairwise local interactions in the con-
text of wireless networks. Bonneau et al. have introduced
evolutionary games in the context of unslotted ALOHA
in [1]. They have identified conditions for the existence
of non trivial ESS and have computed them explicitly. In
[5], the authors considered the multiple access game and
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studied delay effect under various models of evolutionary
game dynamics with asymmetric delay based on the
theoretic results on stability obtained in [6]. In [7], the
authors extended this model by including a regret cost,
incurred when no user transmits, and studied the impact
of that cost on the proportion of mobiles that transmit at
equilibrium. In the last three papers, the delay is shown
to have negative impact on the stability of the system.

In this paper, we extend the evolutionary game frame-
work to allow an arbitrary, possibly random, number of
players that are involved in a local interaction; we apply
this to the model of [7] which we extend to more than
two interacting nodes. In the context of Medium Access
Game, we study the impact of the node distribution in
the game area on the equilibrium stable strategies of
the evolutionary game. The interaction between more
than two individuals in a population is a new concept in
evolutionary game theory and has a lot of application in
multiple access game in wireless networks. Considering
this kind of games, we use the notion of expected utility
as this game is not symmetric, indeed the number of
players with which a given one interacts may vary from
one to another; and also non-reciprocity property. We
consider the following parameters in the multiple access
game: transmission cost, collision cost and regret cost.
Finally, we analyze the impact of these parameters on
the probability of successful transmission and give some
optimization issues.

The paper is structured as follows. We first provide
in the next section an evolutionary game model with
random number of opponent. We then study in section III
a generalized multiple access game in the context of
random number of players. We compute the expression
of the ESS in this typical context. After that, we analyze
in section IV the probability of success transmission. Nu-
merical solutions of replicator dynamics are investigated
in section V.



II. EVOLUTIONARY GAMES WITH LOCAL

INTERACTION AMONG RANDOM NUMBER OF PLAYERS

The classical evolutionary game formalism is a central
mathematical tool developed by biologists for predicting
population dynamics in the context of interaction be-
tween populations. In order to make use of the wealth
of tools and theory developed in the biology literature,
many works in the area of computer networks [6] ignore
cases where local interactions between populations in-
volve more than two individuals. This restriction limits
the modeling power of evolutionary games which are not
useful in a network operating at heavy load, such as ad-
hoc networks with high density (see section IV). This
motivated us in this paper to consider a random number
of users interacting locally.

Consider a large population of players. Each individ-
ual needs occasionally to take some action. When doing
so, it interacts with the actions of someM (possibly
random number of) other individuals.

A. Symmetry and Reciprocity

We shall consider throughout the paper a symmetric
game in the sense that any individual faces the same type
of game. All players have the same actions available, and
sameexpectedutility. We note however that the actual
realizations need not be symmetric. In particular, (i) the
number of players with which a given player interacts
may vary from one player to another. (ii) We do not
even need the reciprocity property: if player A interacts
with player B, we do not require the converse to hold.
We provide some examples of multiple access games to
illustrate this non-reciprocity.

For example, we consider local interactions between
transmitters; for each transmitter there corresponds a
receiver. We shall say that a transmitter A is subject to
an interaction (interference) from transmitter B if the
transmission from B overlaps that from A, and provided
that the receiver of the transmission from A is within
interference range of transmitter B.

Example 1 Consider the example depicted at Figure
1. It contains 4 sources (circles) and 3 destinations
(squares). A transmission of a sourcei within a distance
r of the receiverR, causes interference to a transmission
from a sourcej 6= i to receiverR. We see that Source
A and Source C cause no interference to any other
transmission but the transmission from A suffers from
interference from source B, and the one from C suffers
from the transmission of the top most source (called
D). Source B and D interfere with each other at their
common destination. Thus each of the four sources

suffers interference from a single other source, but except
for nodes B and D, the interference is not reciprocal.
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Fig. 1. Non-reciprocal pairwise interactions
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D

Fig. 2. Non-reciprocal interactions between groups
three players
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Fig. 3. Interactions between a random number of
players

Example 2.In Figure 2 there are four sources and only
two destinations. Node A does not cause any interference
to the other nodes but suffers interference from nodes B
and D. Nodes B, C, D interfere with each other. This is a
situation in which each mobile is involved in interference
from two other mobiles but again the interference is not
reciprocal.

Example 3. In this example the number of interfering
nodes is not fixed. A suffers interference from 2 nodes,



B and D suffer interference from a single other node and
C does not suffer (and does not cause) interference.

All examples exhibit asymmetric realizations and non-
reciprocity. We next show how such a situation can still
be considered as symmetric (due to the fact that we
consider distributions of nodes rather than realizations).
Assume that the location of the transmitters follow a
Poisson distribution with parameterλ over the two
dimensional plane. Consider an arbitrary user A. Let
r be the interference range. Then the numberN of
transmitters within the interference range of the receiver
of A has a Poisson distribution with parameterλπr2/2.
Since this holds for any node, the game is considered to
be symmetric. The reason that the distribution is taken
into account rather than the realization is that we shall
assume that the actions of players will be taken before
knowing the realization.

B. Model

We describe in this part notations of our model.

• There is one population of users. The number of
users is large.

• We assume that there are pure strategies. Each
member of the population chooses from the same
set of strategiesA = {1, 2, . . . , N}.

• Let M := {(x1, . . . , xN ) | xj ≥ 0,
∑N

j=1 xj =
1} the set of probability distributions over the
N strategies.M can be interpreted as the set of
mixed strategies. It is also interpreted as the set
of distributions of strategies among the population,
wherexj represents of proportion of users choosing
the strategyj. A distribution x is sometime called
the ”state” or ”profile” of the game.

• The number of opponentsK of a user is a random
variable in the finite set{0, 1, . . . , kmax}. kmax

is the maximum number of opponents interacting
simultaneously with a user. We assume that we can
ignore cases of interaction with more thankmax

players. This value depends on the node density and
the transmission range. When making a choice of a
strategy, a player knows the distribution ofK but
not its realization.

• The payoff of all players functions (identical for
each member of the population) of the player’s
own behavior and opponents’ behavior. Each user’s
payoff depends on opponents’ behavior through
the distribution of opponents’ choices and of their
number. The expected payoff of a user playing
strategyj when the state of the population isx,

is given by

fj(x) =

kmax
∑

k=0

P(K = k)uk(j, x, . . . , x),

j = 1, . . . , N whereuk is the payoff function given
that the number of opponents isk. Although the
payoffs are symmetric, the actual interference or
interactions between two players that use the same
strategy need not be the same, allowing for non-
reciprocal behavior. The reason is that the latter is
a property of the random realization whereas the
actual payoff already averages over the randomness
related to the interactions, the number of interfering
players, the topology etc.

C. Evolutionary Stable Strategies: ESS

Suppose that, initially, the population profile isx ∈ M.
The average payoff is

f(x, x) =
N

∑

j=1

xjfj(x). (1)

Now suppose that a small group of mutants enters
the population playing according to a different profile
mut ∈ M . If we call ǫ ∈ (0, 1) the size of the
subpopulation of mutants after normalization, then the
population profile after mutation will beǫ mut+(1−ǫ)x.
After mutation, the average payoff of non-mutants will
be given byǫf(x,mut) + (1 − ǫ)f(x, x) where

f(x,mut) =
N

∑

j=1

xjfj(mut).

Analogously, the average payoff of a mutant is

(1 − ǫ)f(mut, x) + ǫf(mut,mut).

Definition 1: A strategyx ∈ M is an ESS if for any
mut 6= x, there exists someǫmut ∈ (0, 1), which may
depend onmut, such that for allǫ ∈ (0, ǫmut)

A1 > A2 (2)

whereA1 := ǫf(x,mut) + (1 − ǫ)f(x, x), and A2 :=
(1 − ǫ)f(mut, x) + ǫf(mut,mut).

That is,x is ESS if, after mutation, non-mutants are
more successful than mutants. In other words, mutants
cannot invade the population and will eventually get
extinct.

Equation (2) may be rewritten as

ǫ (−f(mut,mut) + f(x,mut)) (3)

+(1 − ǫ) (f(x, x) − f(mut, x)) > 0.



There is a close relation between ESS and nash equilib-
rium of the following matrix-game

Γ := ({1, 2, . . . , kmax}, A, r(.))

where r : Akmax → R, r(a1, a2, . . . , akmax
) =

∑kmax

l=1 ul(a1, a2, . . . , al)P(K = l).
It is easy to see that inequality (3) is equivalent to the

two following conditions:

• Nash equilibrium condition of the matrix-gameΓ.

∀ mut ∈ M, f(mut, x) ≤ f(x, x), (4)

• Stability condition

if mut 6= x, andf(mut, x) = f(x, x) (5)

thenf(mut,mut) < f(x,mut). (6)

D. Replicator dynamics

Replicator dynamics is one of the most studied dynam-
ics in evolutionary game theory. The replicator dynamics
has been used for describing the evolution of road traffic
congestion in which the fitness is determined by the
strategies chosen by all drivers [9]. It has also been
studied in the context of the association problem in
wireless networks in [10]. We introduce the replicator
dynamics which describes the evolution in the population
of the various strategies. In the replicator dynamics, the
share of a strategyj in the population grows at a rate
proportional to the difference between the payoff of that
strategy and the average payoff of the population. The
replicator dynamic equation is given by

ẋj(t) = µ xj(t)

[

fj(x(t)) −

N
∑

k=1

xkfk(x(t))

]

. (7)

whereµ is some positive constant. The parameterµ can
be used to tune the rate of convergence and it may be
interpreted as as the rate that a player of the population
participates in a (local interaction) game. In biology,
it can represent the probability that an animal finds a
resource available.

III. M ULTIPLE ACCESS GAME

The static multiple access game considered here is
a generalization of therandom access gameconsidered
by Inaltekin and Wicker in [3]. Multiple Access Game
introduces the problem of medium access. We assume
that mobiles are randomly placed over a plane. All
mobiles use the same fixed transmission range ofr.
The channel is ideal for transmission and all errors are
due to collision. A mobile decides to transmit a packet
or not to transmit to a receiver when they are within

transmission range of each other. Interference occurs as
in the ALOHA protocol: if more than one neighbors of a
receiver transmit a packet at the same time then there is a
collision. The Multiple Access Game is a nonzero-sum
game, the mobiles have to share a common resource,
the wireless medium. In this game, the parameterµ
represents the probability that a mobile has its receiver
R(i) within its range. When a mobilei transmits toR(i),
all mobiles within a circle of radiusr centered atR(i)
cause interference to the nodei for its transmission to
R(i). This means that more than one transmission within
a distancer of the receiver in the same slot cause a
collision and the loss of mobile’si packet atR(i).

Each of the mobiles has two possible strategies: either
to transmit (T ) or to stay quiet (S). If mobile i transmits
a packet, it incurs a transmission cost ofδ ≥ 0. The
packet transmission is successful if the other users don’t
transmit (stays quiet) in that given time slot, otherwise
there is a collision and the corresponding cost is∆ ≥ 0.
If there is no collision, useri gets a reward ofV from
the successful packet transmission. We suppose that the
rewardV is greater than the cost of transmissionδ. When
all users stay quiet, they have to pay a regret costκ. If
κ = 0 the game is calleddegenerate multiple access
game. Figure 4 represents an example of interaction of
three nodes. The ESS corresponding to any number of
nodes1 of this game is given in theorem 1.

node 1

node 2
T S

T −Bθ,−Bθ,−Bθ −Bθ, 0,−Bθ

S 0,−Bθ,−Bθ 0, 0, V − δ

node 1

node 2
T S

T −Bθ,−Bθ, 0 V − δ, 0, 0
S 0, V − δ, 0 −κ,−κ,−κ

Fig. 4. Multiple access game with three nodes: node chooses arow,
node 2 choose a column and node 3 an array withBθ = ∆ + δ

LetA := {T, S} be the set of strategies. An equivalent
interpretation of strategies is obtained by assuming that
individuals choose pure strategies and then the probabil-
ity distribution represents the fraction of individuals in
the population that choose each strategy. We denote by
x (resp.1− x) the population share of strategyT (resp.
S).

The payoff obtained by a node withk opponents when
it playsT is uk(T, x) = (−∆− δ) (1 − ηk)+ (V − δ)ηk

where ηk := (1 − x)k, and the node-mutant receives

1The one-shot game withn nodes has2n − 1 Nash equilibria and
a unique ESS.



uk(S, x) = −µκ(1 − x)k when it stays quiet. The ex-
pected payoff of an anonymous transmitter node-mutant
is given

f(T, x) := µ
∑

k≥0

P(K = k)uk(T, x)

= µ



−(∆ + δ) + (V + ∆)
∑

k≥0

P(K = k) (1 − x)k





= −µ(∆ + δ) + µ(V + ∆)GK(1 − s).

whereGK is the generating function ofK. Analogously,
we have

f(S, x) := µ
∑

k≥0

P(K = k)uk(S, x) (8)

= −µκ
∑

k≥0

(1 − x)k P(K = k). (9)

From equation 1, the expected payoff of any individual
in the population wherex is the proportion of mobiles
which transmit, is given by:

f(x, x) = xf(T, x) + (1 − x)f(S, x). (10)

We next introduce two alternative information scenario
that have an impact on the decision making. In the
first case, a mobile does not know whether there are
zero or more other mobiles in a given local interaction
game about to be played. In the second case the mobile
has this information, and consequently he transmits with
probability one in case no other potential interferers are
present. In addition to studying these two cases we shall
also consider a third case called the ”massively dense”
ad-hoc network in which, whenever a mobile participates
wishes to transmit, there is at least one other mobile that
is involved in the local interaction game.

We denoteα := ∆+δ
V +∆+κ

, which represents the ratio
between the collision cost−∆ − δ (cost when there
is a collision during a transmission) and the difference
between global cost perceived by a mobile−∆− δ − κ
(collision and regret) and the benefitV −δ (reward minus
transmission cost). When the collision cost∆ becomes
high, the valueα converges to one and when the reward
or regret cost becomes high, the valueα is close to zero.

A. Case 1 : Aloha without sensing

A transmitter does not know if there are other trans-
mitters at the range of its receiver. Then, even when it is
the only transmitter, it has to decide to transmit or not.

Theorem 1:If P(K = 0) < ∆+δ
V +∆+κ

=: α, then the
game has a unique ESSx∗

1 given by

x∗
1 = g−1(

∆ + δ

V + ∆ + κ
)

whereg : x 7→
∑kmax

k=0 P(K = k) (1 − x)k .

a) proof: A mixed equilibriumx is characterized
by f(T, x) = f(S, x) i.e

g(x) =
∆ + δ

V + ∆ + κ
. (11)

The function g is continuous and strictly decreasing
monotone on(0, 1) with g(1) = P(K = 0) and
g(0) = 1. Then the equation (11) has a unique solution
in (P(K = 0), 1). has,f(x,mut) − f(mut,mut) =
µ(V + ∆ + κ)(s − mut) (g(mut) − g(x)) . Thus,
f(x,mut) − f(mut,mut) > 0 (becauseg is strictly
decreasing function) for allmut 6= x. This completes
the proof.

When a mobile is never alone in his interference area,
i.e. P(K = 0) = 0; the conditionα > 0 is satisfied.

B. Case 2: Aloha with sensing

A mobile knows when it is the only transmitter at the
range of its receiver, and when it is it will thus transmit
with probability one. We can say then that the action
set is (T ) whenever a user has opponents in a local
interaction.

Theorem 2:An anonymous user without opponents
receives the fitnessf0 = V − δ. If P(K = 0) < ∆+δ

V +∆ ,
then the game has a unique ESSx∗

2 given by

x∗
2 = g−1

(

∆ + δ + κP(K = 0)

V + ∆ + κ

)

whereg : x 7→
∑kmax

k=0 P(K = k) (1 − x)k .

Proof: The proof is similar as in theorem 1.

C. Case 3: Massively dense

In this case, we take into account only local in-
teractions between users. Then, in this case, mobiles
are never alone to transmit during a slot and we have
∑kmax

k=1 P(K = k) = 1.
Theorem 3:The game has always an unique

ESS which is solution of the following equation
∑

k≥1 P(K = k)(1 − x)k = α.
Proposition 1: The ESSs given in theorems 1,2,3 is

asymptotically stable in the replicator dynamics without
delays.

b) proof: The replicator dynamics is given by

ẋ = (V + ∆ + κ)x(1 − x)(g(x) − α).

The functiong is decreasing on(0, 1) implies that the
derivative of the functionx(1−x)(g(x)−α) at the ESS
is negative. Hence, the ESS is asymptotically stable.



IV. ESSAND NODES DISTRIBUTION

In this section, we consider different nodes distribu-
tions. We study the existence and the uniqueness of ESS
in the different nodes distribution. First, one, we assume
that all mobiles have the same number of neighbors
n − 1, i.e., P(K = j) = δn−1(j) and seconde one, we
assume that nodes are randomly distributed on a plan
following a Poisson point process with densityλ. Due to
the page limit, we describe only the poisson distribution.
The interested reader is referred to [8] for the dirac
distribution.

A. Poisson distribution

We consider that nodes are distributed over a plan
following a Poisson distribution with densityλ. The
probability that a node hasi neighbors is given by the
following distribution.
Cases 1 and 2:

P(K = k) =
(λπr2)k

k!
e−λπr2

, k ≥ 0.

Case 3:

P(K = k) =
(λπr2)k−1

(k − 1)!
e−λπr2

, k ≥ 1.

Considering those node distributions and from previous
theorems, the unique ESSx∗ for all cases, is solution of
the following equation :











e−λπr2x1 = α for case 1

e−λπr2x2 = α + κP(K=0)
V +∆+κ

for case 2
(1 − x3)e

−λπr2x3 = α for case 3

Thus we obtain the following equilibria in the different
scenario:

x∗
1 = log

(

α− 1

λπr2

)

, x∗
2 = log

(

(α +
κP(K = 0)

V + ∆ + κ
)−

1

λπr2

)

andx∗
3 = 1 −

LambertW (λπr2αeλπr2

)

λπr2
,

whereLambertW (x) is the LambertW function which
is the inverse function off(w) = wew.

V. OPTIMIZATION ISSUES AND NUMERICAL

INVESTIGATION

We look for the probability of success that can be
achieved in a local interaction depending on distribution
parameters and also cost parameters. We consider the
Poisson distribution with parametersλ andr.

The probability to have a successful transmission in a
local interaction (total throughput) is given by different

equation depending on the scenario. In the case 1 we
have:

Psucc(α, λ) = µx∗
1

∑kmax

k=0 kP(K = k)(1 − x∗
1)

k

= µx∗
1

∑kmax

k=0 k (λπr2)k

k! (1 − x∗
1)

k

≈ µx∗
1(1 − x∗

1)λπr2α,

In the case 2, we have:Psucc(ᾱ, λ) ≈ µx∗
2(1 −

x∗
2)λπr2ᾱ.
Proposition 2: The maximum total throughput under

poisson distribution is attained whenα = eh(λ,r) in the
case 1 (resp.̄α = eh(λ,r) in the case 2) whereh is one
of the two functions defined by

(λ, r) ∈ R
2
+ 7→

−(1 + 2λπr2) ±
√

1 + 4(λπr2)2

2
.

In the case 3, we have:

Psucc(α, λ) = µx∗
3

∑kmax

k=1 kP (K = k)(1 − x∗
3)

k

= µx∗
3

∑kmax

k=1 k (λπr2)k−1

(k−1)! (1 − x∗
3)

k

≈ µαx∗
3(1 + λπr2(1 − x∗

3)).

Proposition 3: There exists a uniqueα∗
3 in which the

total throughput is maximum whenα = α∗
3. The α∗

3 is
given by

α∗
3 = (1 − x)e−λπr2x

wherex is the unique solution in[0, 1] of the following
equation :

1 + γ − x(2 + 5γ + γ2) + x2(4γ + 2γ2) − γ2x3 = 0

c) proof: The derivative of the functionH :=
∂Psucc

∂s
s given by

H(s) = (1+γ−s(2+5γ+γ2)+s2(4γ+2γ2)−s3γ2)e−γs.

We prove that the above function is strictly decreasing
on [0, 1]. For that, it is sufficient to study the following
function

G(s) = 1 + γ − s(2 + 5γ + γ2) + s2(4γ + 2γ2)− s3γ2.

We have∂G(s)
∂s

is given by

∂G(s)

∂s
= −(2 + 5γ + γ2) + 2s(4γ + 2γ2) − 3s2γ2.

It is easy to show that the above function is always neg-
ative. SinceH(0) = 1 + γ > 0 andH(1) = −e−γ < 0
then the functionH is positive for s ∈ [0, s̄) and is
negative fors ∈ (s̄, 1] where s̄ is the solution of the
equationG(s) = 0. Sinces∗ is decreasing function on
α, we conclude that functionPsucc is positive ifs ∈ [0, s̄)
and is negatives ∈ (s̄, 1]. Since the optimal of function
Psucc is attained atα = (1 − s̄)e−λπr2s̄



The probability of success at the ESS in poisson
distribution is represented in figures 5 and 6. We observe
in particular case that when the number of interferes
increases, i.e. the rateλ in the case of the Poisson
distribution, the total throughput increases.
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Fig. 5. Probability of success in poisson distribu-
tion(cases 1,2).
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Fig. 6. Probability of success in poisson distribu-
tion(case 3).
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Fig. 7. Evolution of the fraction of transmitters
varying the density parameterλ (without delays).

In the figures 7 and 8, we describe numerical ap-
plication of our evolutionary game model with Poisson
distribution of nodes under the replication dynamics. We
took n = 4 = kmax,∆ = 1

4 = δ = κ, λ = 1 andV = 1.
The initial condition in all these figures is0.02. In the

figure 7 we compare the evolution of the fraction of
transmitters varying the parameter of densityλ between
0.1 and5 for the case 1, 2 and 3 respectively. We observe
that we have stability for all cases. In figure 8 represents
the impact of the parameterµ on the velocity of the
system. We tookµ between0.1 and0.5. without delay.
We observe that we have stability but the convergence
speed becomes slow whenµ decreases.
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Fig. 8. Impact of the parameterµ on the velocity of
the replicator dynamics without delay.
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Fig. 10. Impact of the time delay on the stability of
the replicator dynamics (case 1).

Now, we study the effect of the time delays on the
convergence of replicator dynamics to the evolutionary



stable strategies in which each pure strategy is associated
with its own delay. LetτT (resp.τS) be the time delay
of the strategy(T ) (resp.(S)). The replicator dynamics
becomes

ẋ(t) = µx(t)(1−x(t)) [f(T, x(t − τT )) − f(S, x(t − τS))]
(12)

where f(T, x(t)) := µ
(

−(∆ + δ) + (V + ∆)e−λπr2s
)

and f(S, x(t)) := −µκe−λπr2x in the case 1.In order
to study the asymptotically stability of the replicator
dynamics (12) around the unique ESS, we linearize
(12) at x∗ = x∗

1. We obtain the following linear delay
differential equation

ẏ = −c1((V + ∆)y(t − τT ) + κy(t − τS))

wherec1 := µx∗(1 − x∗)α
(

1 + x∗(1 − x∗)λπr2
)

, and
y(t) = x(t)− x∗. The following theorem give sufficient
conditions of stability of (13) at zero.

Theorem 4 (see [6]):Suppose at least one of the fol-
lowing conditions holds
(i) (V + ∆)τT + κτS < θa,

(ii) V + ∆ > κ and (V + ∆)τT < (V +∆−κ)θa

V +∆+κ
,

(iii) V + ∆ < κ andκτS < (−V −∆+κ)θa

V +∆+κ
where

θa :=
1

x∗(1 − x∗)µα (1 + x∗(1 − x∗)λπr2)

Then the ESSx∗ is asymptotically stable.
A necessary and sufficient condition of stability of (13)
at zero when delays are symmetric is given in theorem 5.

Theorem 5 (symmetric delay):Suppose thatτT =
τS = τ. Then, the ESSx∗ is asymptotically stable if
and only if

τ <
π

2x∗(1 − x∗)µα (1 + x∗(1 − x∗)λπr2) (V + ∆ + κ)

The proof uses the following well known lemma (see
[5]) and the references therein.

Lemma 1:The trivial solution of the linear delay
differential equation

ż(t) = −az(t − τ), τ, a > 0

is asymptotically stable if and only if2aτ < π.
The fraction of transmitters in the population is rep-
resented in figure 10 forλ = 0.5 and r = 1. The
delaysτT and τS are between0.02 and 7. The system
is stable forτT = τS = 0.02 or τT = 3, τS = 2.
For τT = 7 and τS = 5 the system is unstable. We
display an oscillatory behavior of the population as
function of time. The trajectory are seen to converge
to periodic ones. All turn out to confirm the stability
condition that we obtained in theorem 4. In the figure
9 we compare evolution of the fraction of transmitters

varying the parameter of densityλ between0.1 and 5
for the case 1, 2 and 3 respectively. In this figure, the
time delays are respectively3 and 2. Note that in this
figure the equilibrium point is decreasing function in
the density parameterλ. Indeed, when the density of
nodes increases, the number of mobiles share a receiver
increases. To avoid collision, the nodes decrease the
probability of transmission. We observe also that for
λ = 5, we have stability but the convergence speed is
slow than forλ = 0.1.

VI. CONCLUSION

In this paper we have adapted the theory of evolu-
tionary games with a random number of players. This
adaptation is needed in order to apply this theory for
the study of access game and particularly in wireless
networks. We have proposed different scenario based on
the level of information for each player. In all cases,
we have obtained the existence and uniqueness of the
ESS, we have proposed optimization issues for the
transmission probability of success and finally, we have
studied the impact of delay in the convergence to the
ESS of the replicator dynamics.
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