
D
o
w

n
lo

a
d
e
d
 B

y
: 
[I
n
g
e
n
ta

 C
o
n
te

n
t 
D

is
tr

ib
u
ti
o
n
] 
A

t:
 0

2
:2

9
 4

 J
a
n
u
a
ry

 2
0
0
8
 

International Journal of Systems Science

volume 34, numbers 10–11, 15 August–15 September 2003, pages 615–626

Admission and routing control with partial
information and limited buffers

E. ALTMANy, R. MARQUEZz and U. YECHIALI§*

Problems of admission and routing control for loss systems comprised of a controller

and C down-stream servers are studied. We focus on problems in which control actions

have to be taken with either delayed or with no information on the state of the down-

stream servers. We first consider a problem of routing into C servers and compare the

performance of two policies: a static round-robin policy, which does not wait for the

delayed information at a risk of losing customers at the busy servers, and a Wait

policy, that avoids losses at the servers but risks losses at the controller buffer. We iden-

tify regions in which each of the policies performs better. We then study the problem

with no information on down-stream servers and propose a timer mechanism to

decide when to dispatch an arriving customer. We optimize the value of the timer’s

parameter. Our study is accompanied with numerical investigations.

1. Introduction

In high speed networks, propagation delay of infor-

mation cannot be neglected with respect to transmission

delays. This is particularly the case in geosatellite satel-

lite networks in which round-trip information delays are

around 250ms. In addition, large random time varying

delays are often incurred due to queueing. Many net-

work control problems (such as routing and admission

control) therefore have to take into account the infor-

mation delay. In such cases, we either have to take deci-

sions without waiting for the delay or have to evaluate

the impact of having to wait for the delays on the

system performance.

This paper focuses on admission and routing prob-

lems occurring in loss systems, in which state informa-

tion is either delayed or non-available. The common

objectives in the problems that we pose is to minimize

losses (or equivalently, maximize the throughput).

We first consider a problem of routing into C servers

and compare the performance of two policies:

(1) Static round-robin policy, which does not wait till

the delayed information on service completion

arrives; it dispatches each arriving customer

according to the round-robin policy at the risk of

loss of that customer at the server, if it has not

completed its service of the previous customer

there.

(2) Wait policy, which only dispatches a job to a server

once it receives the information that the server has

completed service. Customers that arrive when the

Wait policy is used have to queue in a finite queue-

ing facility till they are dispatched. This policy

avoids losses at the servers but results in losses

when a customer arrives and finds the queueing

facility full.

We evaluate the performance of both policies and show

that for large delays, the round robin outperforms the

Wait policy, and for low delays, the situation is reversed.

This suggests the existence of a threshold such that for

delays larger than the threshold it is better to use the

round robin policies, and for delays lower than the

threshold it is better do use the Wait policy. Through

an extensive numerical investigation, we validate the

existence of such a threshold and study its properties.

We then study the problem with no information on

down-stream servers and propose a timer mechanism
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to decide when to dispatch an arriving customer. We

optimize the value of the timer’s parameter. Our study

is accompanied with numerical investigations.

The structure of the paper is as follows. We introduce

in Section 2 a brief (non-exhaustive) survey of control

problems in telecommunications with delayed informa-

tion. We then introduce in Section 3 the general

model. Then we study in Section 4 the performance of

the Wait policy and that of the round-robin policies.

The comparison between the policies and the existence

of a threshold, obtained numerically, are the subject of

Section 5. Finally the timer model is presented, analysed

and optimized in Section 6.

2. Related work

We briefly review work on control problems with

delayed information in telecommunications. Flow con-

trol with delayed information has been studied in

Altman and Nain (1992), Altman and Stidham (1995),

Kuri and Kumar (1997) by transforming the problem

into an equivalent MDP with full information. The

first paper has been extended to noisy delayed informa-

tion in Altman and Koole (1995). Two types of flow

control have been studied. The first type is a rate-base

flow control, in which the rate of transmission of pack-

ets is directly controlled. The second type is a window-

based flow control, in which the controller adjusts its

window dynamically; a window stands for the number

of packets that can be sent before acknowledgements

to the source arrive from the destination. Work on

rate-based flow control with delay in the framework of

linear-quadratic control (linear dynamics and quadratic

cost) has appeared in Altman et al. (1999) and references

therein. The impact of delay on window-based flow con-

trol in the framework of Jackson network is analysed in

Bovopoulos and Lazar (1991). A problem of optimal

priority assignment for access to a single channel with

delay has been investigated in Altman et al. (1995).

Routing with delayed information has been investigated

in Artiges (1995), Kuri and Kumar (1992) and Litvak

and Yechiali (2001).

The model in our paper is closely related to that in

Litvak and Yechiali (2001) who also compares the

performance of policies that wait for information and

policies that ignore the information. The framework is

however of an infinite queue and the performance mea-

sure studied is expected delays. This is in contrast to our

framework in which we study finite buffers and are inter-

ested in maximizing throughputs and minimizing loss

probabilities.

We finally mention some works on control of com-

munication with delayed information in the case of

several decentralized controllers. The reference uses a

framework known as ‘delay sharing information’, in

which the state space can be decomposed to several

parts, each corresponding to another controller. Now

each control has an immediate information on his own

part of the state space, but a delayed information

on the parts corresponding to other controllers. In

Schoute (1978), a decentralized control in packet

switched satellite communication is studied, whereas a

decentralized control problem for multiaccess broadcast

networks have been studied in Grizzle et al. (1982).

In both examples, each controller has to decide whether

to transmit or not, without knowing if packets have

arrived in the current time unit to other nodes. If they

did, then packets from other nodes could be scheduled

for transmission at the same time and collisions could

occur.

3. Model

A single controller accepts arriving messages (jobs)

and dispatches them to C down-stream servers.

Assumptions:

(1) Arrivals: the external arrival is Poisson ð�Þ with

interarrival times IA � Exp ð�Þ having Laplace–

Stieltjes Transform (LST) E ½exp fÿs � IAg� ¼ fIAIA ðsÞ.

(2) Controller: the controller has a buffer of size

Nc þ 1 (where 0 � Nc � 1), i.e. if Nc ¼ 0, then

only one job can reside in the controller’s buffer.

If there are Nc þ 1 jobs in the controller’s buffer

and arrival occurs, it is lost.

(3) Servers: the buffer of each server is of size Ns þ 1.

The service time B of each individual job is distrib-

uted Exp ð�Þ.

(4) Information: information about service completion

reaches the controller only after a random delay

V � Exp ðÞ.

We assume that all interarrival times, service times and

information delays are independent.

We propose below several policies for the controller

and compare the performances, under different assump-

tions on the information delay.

4. Model 1

4.1. Wait option

We assume here that the controller waits until

he receives information on service completion before

dispatching a job (if available) to a server. (In such

a case there could be at most one job in each

server’s buffer.) This leads to the following Markovian

model.

616 E. Altman et al.
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Due to the delayed information on service comple-

tions, the controller does not know the real number of

jobs present in the system. We shall adopt here the

view that the controller considers a job to be ‘in the

system’ until the information on the departure of that

job becomes known to the controller. Let X denote

the number of jobs ‘in the system’ and let J denote the

number of actually operating (servicing) servers. To

illustrate the transitions between states consider the

case Nc ¼ 0. Assume that there are J ¼ j < C actual

operating servers and that the controller considers

there to be X ¼ n jobs in the system (clearly n � j).

We denote this situation as state ð j, nÞ. When n ¼ C

and a new job arrives the job is kept at the controller’s

buffer and the state becomes ð j,C þ 1Þ. At that time

there are C ÿ j servers that are free, although this infor-

mation is not yet available to the controller. The remain-

ing time till the first information on a new server

becoming free arrives at the controller is exponentially

distributed with parameter ðC ÿ jÞ. As soon as this

information becomes available, the controller immedi-

ately dispatches the job he holds in his buffer, bringing

the state of the system to ð j þ 1,CÞ. When n < C and

a job arrives it is immediately dispatched to one of the

C ÿ n available servers, bringing the state of the

system to ð j þ 1, nþ 1Þ. Finally, when the controller

counts n ¼ C þ 1, any new arrival is lost.

It should be noted that according to this policy, there

are no losses at the servers’ side.

Let Pjn be the probability that there are j operating

servers and total n jobs ‘in the system’ as counted by

the controller ð j � min ðn,C Þ; n � C þNc þ 1).

The rate-of-transition diagram for Nc ¼ 0 is depicted

in figure 1, where the vertical axis denotes the number of

operating servers, J, and the horizontal axis depicts the

total number of jobs ‘in the system’, X .

Balance equations, N c � 0:

When Nc � 0, the balance equations for the state

probabilities Pjn are the following:

j ¼ 0 : ð1Þ

�P00 ¼ P01, n¼ 0

ð�þ nÞP0n ¼ ðnþ 1ÞP0,nþ1 þ�P1n,

1� n�Cÿ 1

ð�þCÞP0C ¼ �P1C, n¼C

ð�þCÞP0n ¼ �P1,nþ1 þ �P0,nÿ1,

n¼Cþ 1, . . . ,CþNc

CP0,CþNcþ1 ¼ �P1,CþNcþ1 þ �P0,CþNc
,

n¼CþNc þ 1:

Figure 1. Transition rate diagram for Nc¼ 0.

Admission and routing control with partial information and limited buffers 617
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1 � j � C ÿ 1 : ð2Þ

ð�þ j�ÞPjj ¼ Pj, jþ1þ�Pjÿ1, jÿ1 n¼ j

ð�þðnÿ jÞþ j�ÞPjn ¼ ðnþ1ÿ jÞPj,nþ1

þð jþ1Þ�Pjþ1,nþ�Pjÿ1,nÿ1

jþ1� n�Cÿ1

ð�þðCÿ jÞþ j�ÞPjC ¼ ð jþ1Þ�Pjþ1,Cþ�Pjÿ1,Cÿ1

þðCÿ jþ1ÞPjÿ1,Cþ1

n¼C

ð�þðCÿ jÞþ j�ÞPjn ¼ ð jþ1Þ�Pjþ1,nþ�Pj,nÿ1

þðCÿ jþ1ÞPCÿ1,nþ1

n¼Cþ1, . . . ,CþNc

ððCÿ jÞþ j�ÞPj,CþNcþ1 ¼ ð jþ1Þ�Pjþ1,CþNcþ1þ�Pj,CþNc

n¼CþNcþ1:

j ¼ C : ð3Þ

ð�þC�ÞPCC ¼ �PCÿ1,Cÿ1þPCÿ1,Cþ1 n¼C

ð�þC�ÞPCn ¼ �PC,nÿ1þPCÿ1,nþ1

n¼Cþ1, . . . ,CþNc

C�PC,CþNcþ1 ¼ �PC,CþNc
n¼CþNcþ1:

Now, for this ‘wait’ policy of the controller, whenever

there are n ¼ C þNc þ 1 jobs in the system (i.e. the con-

troller holds Nc þ 1 jobs in his buffer) each new arrival

will be lost. Thus, the probability of loss is given by

PlossðwaitÞ ¼
XC

j¼0

Pj,CþNcþ1 ¼: P�,CþNcþ1:

The mean number of losses per unit time (i.e. loss rate) is

�PlossðwaitÞ ¼ �P�,CþNcþ1:

Limiting case: Suppose 1= ! 0. That is, the server

obtains information on service completions with no

delay. The state space collapses to a one dimensional

space (that denotes the number of jobs in the system)

and the transition diagram, for Nc > 0, is depicted in

figure 2.

Denoting a ¼ �=�, the balance equations are:

Pn ¼
1

n!
anP0, n ¼ 0, 1, 2, . . . ,C ð4Þ

PCþk ¼
a

C

� �k
PC, k ¼ 1, 2, . . . ,Nc þ 1: ð5Þ

As the probabilities sum to one, we get

Pÿ1
0 ¼

XC

n¼0

an

n!
þ
aC

C!

XNcþ1

k¼1

a

C

� �k
:

Thus,

PlossðwaitÞ ¼ PCþNcþ1

¼
ðaC=C!Þ a=Cð ÞNcþ1

XC

n¼0
ðan=n!Þ þ ðaC=C!Þ

XNcþ1

k¼1
a=Cð Þk

:

The expected number of losses per unit time is

�PlossðwaitÞ ¼ �PCþNcþ1.

Figure 2. Transition rate diagram for 1/c¼ 0 and Nc>0.

618 E. Altman et al.
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4.2. No wait: the round robin policy

According to this policy the controller dispatches

jobs following the round robin (RR) mechanism, that

is, arrival number kC þ i is sent to server no. i

(k ¼ 0, 1, 2, � � �; 1 � i � C). Thus, the inter-arrival time

to each server is Erlang ðC, �Þ with mean C=�. We

assume that Ns ¼ 0 for each server.

The probability of a loss PlossðRRÞ at a given server is

the probability that the interarrival time is shorter than

the service time B, i.e.

PlossðRRÞ ¼ P ½Erlang ðC, �Þ < B� ¼
�

�þ �

� �C

¼ ½ ~IAIAð�Þ�C

Thus, the expected number of losses per unit time is

�PlossðRRÞ ¼ �
�

�þ �

� �C

:

5. Comparison between Wait and RR policies

5.1. Extreme cases:  small and large

For the limiting case 1= ! 0, i.e. when full informa-

tion is available,

PlossðRRÞ>PlossðwaitÞ iff
�

�þ�

� �C

¼
a

aþ1

� �C

>
ðaC=C!Þ a=Cð ÞNcþ1

PC
n¼0 ða

n=n!ÞþðaC=C!Þ
PNcþ1

k¼1 a=Cð Þk
:

When Nc ¼ 0 this is equivalent to

XC

n¼0

an

n!
þ

a

C
�
aC

C!
>

a

C � C!
ðaþ 1ÞC,

or to,

XC

n¼0

an

n!
>

a

C � C!
aþ 1ð ÞCÿaC

� �
: ð6Þ

Proposition 5.1: For the limiting case 1= ! 0 we have:

PlossðRRÞ > PlossðwaitÞ for all C � 1.

The proof follows directly from the next two Lemmas.

Lemma 5.1: When Nc ¼ 0, PlossðRRÞ > PlossðwaitÞ for

all C � 1.

Proof: Writing ðaþ 1ÞC ¼
PC

n¼0
C
n

ÿ �
an, the right hand

side of (6) becomes ð1=CÞ
PC

n¼1 a
n=ððC þ 1ÿ nÞ!ðnÿ 1Þ!Þ.

It is now easy to check that the coefficient of each power

of a on the left hand side of (6) is greater than the cor-

responding coefficient on the right hand side. g

Lemma 5.2: PlossðwaitÞ is monotone decreasing in Nc.

Proof: Fix a value Nc � 0 and denote by X the random

variable corresponding to the number of customers in

the system. Denote by X 0 the random variable corre-

sponding to the number of customers in another

system which differs from the original only by the fact

that N 0
c ¼ Nc þ 1. Define Y ¼ max ðX 0 ÿ 1, 0Þ and note

that Y and X have the same range of ð0, 1, 2, . . . ,

C þNc þ 1Þ. Let

rX ð0Þ ¼ 0, rX ðnÞ ¼PðX ¼ nÿ 1Þ=PðX ¼ nÞ,

n ¼ 1, 2, 3, . . . ,C þNc þ 1:

We define in the same way rY . Then:

rX ðnÞ ¼
n=a n ¼ 1 . . . ,C,

C=a n ¼ C þ 1, . . . ,C þNc þ 1,

(

rY ðnÞ ¼

2ð1þ aÞ=a2 n ¼ 1,

ðnþ 1Þ=a n ¼ 2 . . . ,C ÿ 1,

C=a n ¼ C, . . . ,C þNc þ 1:

8
>><
>>:

It is easy to check that for all n ¼ 1, 2, . . . ,Nc þ C þ 1

we have

rX ðnÞ � rY ðnÞ:

It then follows (e.g. Ross and Yao 1990, equation 4) that

X � Y in the likelihood ratio and in the stochastic order

ratio, which implies that

PðX ¼ C þNc þ 1Þ � PðY ¼ C þNc þ 1Þ

or equivalently,

PðX ¼ C þNc þ 1Þ � PðX 0 ¼ C þNc þ 2Þ:

This establishes the proof. g

Remark 5.1: If 1= ! 1 then the controller, if

waits, never dispatches jobs to the C channels and all

losses are incurred by the controller, so Ploss ðRRÞ

< Ploss ðWaitÞ.

5.2. Threshold policy: numerical results

Having seen that in the extreme cases RR is better

when delays are large and Wait is better for short

delays, we could expect there to be a threshold

̂�ð�, �Þ on the delay parameter such that RR is better

than Wait for  < ̂�ð�, �Þ and Wait is better than RR

Admission and routing control with partial information and limited buffers 619
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for  > ̂�ð�, �Þ. The existence of such a threshold will

be supported by our numerical investigation. Since we

can rescale time (by redefining what is a basic time

unit), the threshold will be of the form:

̂�ð�, �Þ ¼ ��ð�=�Þ:

Without loss of generality we can thus choose � ¼ 1 and

check the dependence of � on �.

Figures 3–5 analyse the case of Nc ¼ 0 and � ¼ 1.

Using Matlab, we did an exhaustive numerical study

of the performance of both RR and Wait policies as a

function of the parameters by solving equation (1–3).

We consider the case of two, three and four servers

(figures 3–5, respectively).

We let  (horizontal axis) vary from 0.01 to 10. We

take six values of �: 0.1000, 0.3162, 1.0000, 3.1623,

10.0000 and 31.6228. The vertical axis in the figures

corresponds to the loss probability, and the horizontal

axis to the value of the parameter . For each fixed �

there is one pointed horizontal line that gives the loss

probability under the RR policy, and there is also a

curve of the loss probability as a function of  under

the Wait policy. We see that for each value of �, the

curve describing the Wait policy intersects once with

the horizontal line describing the RR policy. This

shows that there is indeed a threshold �ð�Þ which is

obtained as the intersection point.

We further see from the figures that the threshold is

increasing in �. The threshold is almost linear on the

log-log scale of the figure. For example, for C ¼ 3 it is

approximated by the empirical relation:

logðPlossðRRÞÞ ¼ ÿ3:8253� logðÞ ÿ 0:9972:

If we did not take a log-log scale we would see clearly

that the threshold as a function of � is almost constant

for � in the range of 0.2–4 and its value is close to one.

10
1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

γ

P
lo

ss
(w

a
it

)

µ
RR

 = 1.0 

µ
RR

 = 3.162 

µ
RR

 = 10.0 

µ
RR

 = 31.62 

µ
RR

 = 0.3162 

µ = 1.0 

µ = 3.162 

µ = 10.0 

µ = 31.62 

µ = 0.3162 

Figure 3. Numerical analysis of loss probabilities as a function of c and l for both RR and Wait policies, c ¼ 2 servers, Nc ¼ 0 and

k ¼ 1. The dotted horizontal lines correspond to loss probabilities under the RR policies with PlossðRRÞ ¼ ðk=ðkþ lÞÞc ¼ ð1=ð1þ lÞÞ2.

The curved lines correspond to the Wait policies.
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6. Model 2: a timer

We introduce the following Timer policy. As soon as

the controller dispatches a job to a server, he activates

a Timer, having a random duration T .

We consider the case where the controller obtains no

information on service completions. The first arrival

during T (if occurs) is held in the controller’s buffer

and released for service at time T . Subsequent jobs

within T (if any) are lost. If the first arrival after a

dispatching occurs beyond T , it is sent immediately to

one of the servers and a new Timer is activated.

Moreover, if a job is dispatched to a server and the

latter is busy, the job is lost.

The problem is to find the value (or the distribution)

of T so as to minimize the total rate of losses, both at

the controller’s and the servers’ side.

C¼ 1 servers: We consider first the case C ¼ 1 and

assume that the down-stream server may hold only

one job, i.e. Ns ¼ 0. We further assume that the control-

ler can hold only one job: Nc ¼ 0.

Let � be the time between two consecutive dispatches

of jobs to the server. Let R be the time interval from the

moment of dispatching till the first arrival thereafter

occurs. R is either the full interarrival time (if the

moment of dispatching occurs immediately upon

arrival), or it is the residual interarrival time (if the

moment of dispatching occurs when the timer had

expired previously and there was a job in the controller’s

buffer). In both cases, due to the Poisson arrival, R has

an exponential distribution with parameter �. Thus,

� ¼ maxðR,TÞ.

The probability of loss at the server is given by

PlossðserverÞ ¼ P ð� < BÞ ¼ ~��ð�Þ,

where ~�� is the Laplace–Stieltjes transform of �. Since the

rate of arrival to the server is 1=E½��, the rate of losses at

the server’s barrier is ~��ð�Þ=E½��. On the other hand, the

rate of losses at the controller’s entrance is �ÿ 1=E½��.

10
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10
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10
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10
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10
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P
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µ
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µ
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µ
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µ
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µ = 10.0 

µ = 0.3162 

Figure 4. Numerical analysis of loss probabilities as a function of c and l for both RR and Wait policies, c ¼ 3 servers, Nc ¼ 0

and k ¼ 1.
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The total rate of losses is thus

~�� ð�Þ

E ½��
þ �ÿ

1

E ½��
:

The throughput is then

THP ¼ �ÿ ftotal rate of lossesg ¼
1ÿ ~�� ð�Þ

E ½��
:

We now wish to find T that maximizes THP.

Deterministic timer, C¼ 1: When T is a fixed constant

T ¼ T0, then

P ð� � tÞ ¼
0 for t < T0,

1ÿ exp ðÿ�tÞ for t � T0:

(

Hence

~��ð�Þ ¼

Z 1

0

eÿ�tdPð� � tÞ ¼

Z 1

t¼T0

eÿ�t�eÿ�tdt

¼
�

�þ �
eÿð�þ�ÞT0 ,

and

E ½�� ¼

Z 1

0

½1ÿ P ð� � tÞ�dt ¼ T0 þ
1

�
eÿ�T0 :

So

THP ¼
1ÿ ~��ð�Þ

E½��
¼

1ÿ ½�=ð�þ �Þ�eÿð�þ�ÞT0

T0 þ ð1=�Þeÿ�T0
: ð7Þ

To obtain the maximum throughput, we compute the

derivative of THP at zero and obtain the condition

�T0 þ
�

�þ �

� �
eÿð�þ�ÞT0 þ

�

�þ �
eÿð2�þ�ÞT0 ¼ 1ÿ eÿ�T0 :

One can easily see that this equation has a unique finite

solution T0 > 0.

Exponential timer, C¼ 1: In case T is exponentially

distributed with parameter �. We have

Pð� � tÞ ¼ PðmaxðT , IAÞ � tÞ ¼ PðT � tÞPðIA � tÞ

¼ 1ÿ eÿ�t ÿ eÿ�t þ eÿð�þ�Þt:

Figure 5. Numerical analysis of loss probabilities as a function of c and l for both RR and Wait policies, c ¼ 4 servers, Nc ¼ 0

and k ¼ 1.
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Thus

~��ð�Þ ¼

Z 1

0

eÿ�tdP ð� � tÞ ¼
�

�þ �
þ

�

� þ �
ÿ

�þ �

�þ � þ �
,

and

E½�� ¼
1

�
þ
1

�
ÿ

1

�þ �
¼

1

�
þ

�

� ð�þ �Þ
:

Hence the throughput is given by

THP ¼
1ÿ ~��ð�Þ

E½��

¼
½�=ð�þ�Þ� ÿ ½�=ð�þ �Þ� þ ½ð�þ �Þ=ð�þ �þ�Þ�

1=�þ �=ð�ð�þ �ÞÞ
:

ð8Þ

Note that when there is no timer (� ! 1) then

lim
�!1

THP ð�Þ ¼
1

ð1=�Þ þ ð1=�Þ
:

Indeed, the expected interval between two successive

job-departures equals ð1=�Þ þ ð1=�Þ since any job sent

to the server during service is lost, so that after a service

completion (having mean 1/�) it takes, on average, 1/�

units of time for the next arrival.

On the other hand, if � ! 0 then E½�� tends to infinity

and, obviously, the throughput tends to zero.

Numerical results: In figure 6, we plot the optimal

value of the timer T0 and of the exponentially average

timer value T0 ¼ �ÿ1 as a function of �. We see that it

decreases in �, and becomes almost constant for � �

�=10. We also depict the throughputs obtained under

the optimal timer. We clearly see that the deterministic

timer always outperforms the exponential one.

C> 1 servers: When C > 1, the controller dispatches

arriving jobs to the various servers in a cyclic (i.e.

Round Robin) fashion. After each dispatch he activates

a Timer T . If an arrival occurs before T , the controller

keeps it in its buffer. All subsequent arrivals within T are

lost. If there is a job in the controller’s buffer at time T ,

it is dispatched according to the RR policy. If not, the

first arrival thereafter is immediately dispatched and

the controller activates a new Timer.

Let � be the time between two consecutive dispatches.

As before, � ¼ max ðR,TÞ where R is the time interval

from a moment of dispatching until first arrival there-

after. Recall that R is exponentially distributed with

parameter �.

The rate of loss at the controller’s entrance is, as

before, �ÿ 1=E ½��.

The rate of loss at the servers is calculated as follows.

Since service times B are Exponential ð�Þ,

Plossðany single serverÞ ¼ P
XC

j¼1

�j < B

 !
¼ ½ ~��ð�Þ�C:

As the rate of arrival to any single sever is 1=ðCE½��Þ, the

total rate of loss for all C servers and the controller is

C½ ~��ð�Þ�C

CE½��
þ �ÿ

1

E½��

� �
:

The throughput is the external arrival rate, �, minus the

total loss rate:

THP ¼
1

E½��
ÿ
½ ~��ð�Þ�C

E½��
¼

1ÿ ½ ~��ð�Þ�C

E½��
:

As examples, for T exponential with parameter � we

obtain

½ ~��ð�Þ�C ¼
�

�þ �
þ

�

� þ �
ÿ

�þ �

�þ � þ �

� �C

and as before,

E½�� ¼
1

�
þ

�

� ð�þ �Þ

so that

THP ðexpÞ

¼
1ÿ ð�=ð�þ�ÞÞþ ð�=ð�þ�ÞÞÿ ðð�þ �Þ=ð�þ �þ�ÞÞ½ �C

1=�þð�=�ð�þ �ÞÞ
:

ð9Þ

When C ¼ 1, equation (9) reduces to (8).

For T ¼ T0 deterministic, we have

½ ~��ð�Þ�C ¼
�

�þ �

� �C

eÿCð�þ�ÞT0 ,

and

E½�� ¼ T0 þ
1

�
eÿ�T0 ,

so

THP ðdeterministicÞ ¼
1ÿ ð�=�þ �

�C
eÿCð�þ�ÞT0

T0 þ ð1=�Þeÿ�T0
: ð10Þ

Again, when C ¼ 1 equation (10) reduces to (7). Also, as

for the case C ¼ 1, the optimal value T0 can be calcu-

lated by differentiation.

Numerical results: In figures 7–9, we plot the optimal

value of the timer T0 and of the exponentially average

timer value T0 ¼ �ÿ1 as a function of �, for the cases

Admission and routing control with partial information and limited buffers 623
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Figure 7. Optimal threshold value and throughput of the deterministic and exponential timers as a function of l, C ¼ 2.
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Figure 6. Optimal threshold value and throughput of the deterministic and exponential timers as a function of l, C ¼ 1.
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Figure 9. Optimal threshold value and throughput of the deterministic and exponential timers as a function of l, C ¼ 4.
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Figure 8. Optimal threshold value and throughput of the deterministic and exponential timers as a function of l, C ¼ 3.
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of C ¼ 2–4, respectively. We see that it decreases in �,

and becomes almost constant for � � �=10. We also

depict the throughputs obtained under the optimal

timer. We see again that the deterministic timer always

outperforms the exponential one. Without loss of gener-

ality, we have considered only the case of � ¼ 1.

For C ¼ 3 and C ¼ 4 it is better not to use a timer in

the case of exponentially distributed time: the value of

T0 ¼ 1=� is 0 for all tested values of �!

7. Conclusion

We have studied two main aspects of delay that appear

in admission and routing control. The first type is that of

the information available to the controller. To study the

relevance of the information after a delay, we have stud-

ied the performance of the admission policy that waits till

the information becomes available in order to take an

action (Wait policy) and compared it to the one that

does not wait to get that information (RR policy). We

obtained a clear threshold on the expected delay above

which the RR policy has better performance (lower loss

probability) and below which the Wait policy is superior.

We then studied another role of delay, when the delay

is itself a control action. In the absence of any informa-

tion on the system state, we showed that delaying pack-

ets at the input buffer before routing them to the

network results in better performance of the system

(lower losses). We computed the optimal deterministic

and exponentially distributed delays which minimize

the loss rate and maximize the system’s throughput.
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