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Abstract— There are several approaches of sharing resources
among users. There is a noncooperative approach wherein each
user strives to maximize its own utility. The most common
optimality notion is then the Nash equilibrium. Nash equilibria
are generally Pareto inefficient. On the other hand, we consider
a Nash equilibrium to be fair as it is defined in a context of fair
competition without coalitions (such as cartels and syndicates).
We show a general framework of systems wherein there exists a
Pareto optimal allocation that is Pareto superior to an inefficient
Nash equilibrium. We consider this Pareto optimum to be ‘Nash
equilibrium based fair.’ We further define a ‘Nash proportion-
ately fair’ Pareto optimum. We then provide conditions for the
existence of a Pareto-optimal allocation that is, truly or most
closely, proportional to a Nash equilibrium. As examples that
fit in the above framework, we consider noncooperative flow-
control problems in communication networks, for which we
show the conditions on the existence of Nash-proportionately
fair Pareto optimal allocations.

Keywords— Nash equilibrium, Nash equilibrium based fair-
ness, Nash proportionate fairness, flow control, noncooperative
game, Pareto optimum and inefficiency, power criterion.

I. Introduction

There exist many systems where multiple independent
users, or players, may strive to optimize their own utility
unilaterally, which can be modeled as noncooperative games.
Given users’ decisions, the utilities of all users are deter-
mined. We call a situation where the decisions of all users
are determined an allocation. The allocation where each user
attains its own optimum coincidentally is a Nash equilibrium.
For example, communication networks like the Internet are
joined by a number of independent users or organizations,
like Internet service providers, that make decisions indepen-
dently. It is natural that these independent users seek their
own benefits or utilities noncooperatively. Nash equilibria
may, however, be Pareto inefficient (or, simply, inefficient),
that is, there may exist another allocation of a system where
no users have less benefit and at least one has more benefit
than in the Nash equilibrium of the system.

On the other hand, there may exist innumerably many
Pareto-optimal allocations. Choosing which of them to
achieve can be controversial among users. In contrast, each
Nash equilibrium is fair among all users in the sense that it is
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achieved by the fair competition (with no coalition1) among
users. Our purpose in this paper is to propose a new paradigm
for resource sharing, which is on one hand Pareto efficient,
and on the other hand has fairness properties that are related
to the Nash equilibrium. Among the Pareto optima, only
those that are Pareto-superior to a Nash equilibrium could
satisfy all users. We consider those Pareto optima Nash
equilibrium based fair. In particular, as the allocations that
would make all users feel fairness similar to that of the
Nash equilibrium, we consider a group of allocations where
each user’s utility is proportionately larger than that of a
Nash equilibrium. We say that such allocations are Nash
proportionately fair with respect to the Nash equilibrium.
If we identify a Pareto-optimal Nash-proportionately fair
allocation, it will satisfy all users more strongly. If there
exists no Pareto-optimal Nash-proportionately fair allocation
for a Nash equilibrium, we may consider a Pareto optimal
allocation that is most Nash-proportionate among the Pareto
optimal allocations superior to the Nash equilibrium.

These fairness concepts seem to be of a character different
from already proposed ones [1]–[8]. We describe, in partic-
ular, the generalized fairness in more details. A spectrum of
fairness notions has been defined [7]. Each particular point
in this spectrum is identified by a value of some parameter α;
computing the throughputs that are obtained for a given α is
done through some utility maximization problem where the
utility is a function of the parameter α. Maxmin fairness
is obtained for α → ∞ whereas proportional fairness is
achieved for α → 1. In this paper, we call the generalized
fairness with parameter α ‘α-fairness.’

As an example of the general framework, this article con-
siders flow-control problems for communication networks
with multiple ports of entry and of exit, where each user
decides its throughput, that is, the rate of its packets to
inject into a network so as to optimize its own performance
objective unilaterally. As such an objective, we firstly con-
sider the power that is defined as the throughput divided
by the expected delay (the expected delay is the expected
time for a packet to pass through the network) [9]. This
unilaterally optimized allocation is a Nash equilibrium, the
existence of which has been proved [10]. It has also been
shown that the Nash equilibrium is always strongly Pareto
inefficient, and an allocation that is Pareto superior to it has
been identified [10]. We show here the existence of a Nash-
proportionately fair Pareto-optimal solution corresponding
to an inefficient Nash equilibrium. Moreover, we present

1The fact that competition without coalitions can be considered fair is
reflected in laws that exist in many countries against cartels and against
monopolies.
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another flow-control setting with additive costs (instead of
the power criterion) as another example of the general frame-
work of Nash-equilibrium-based fairness. We also show the
existence of a Nash-equilibrium-based fair Pareto-optimal
solution corresponding to an inefficient Nash equilibrium.

We would like to mention another related research direc-
tion that concerns decentralized flow control and that has re-
ceived much attention in the literature. This is the design of a
decentralized pricing mechanism such that the individual op-
timization faced by each user results in a choice of flow that
is Pareto optimal. This line of research goes back to Kelly
and an extensive list of publications on this line of research
can be found in http://www.statslab.cam.ac.uk/˜frank/pf/ and
in http://www.statslab.cam.ac.uk/˜frank/int/. Our work is
somewhat different in spirit, since we study a given game
problem and do not ask how to render the resulting equi-
librium efficient by pricing (note that pricing changes the
utilities of users).

There may exist multiple Nash equilibria in a system, and
choosing one among the Nash equilibria is beyond the scope
of this paper. Then, we consider, separately for each ineffi-
cient Nash equilibrium, the Nash-equilibrium-based fairness
and the Nash proportionate fairness with respect to the
inefficient Nash equilibrium.

Organization of this paper

The rest of this paper is organized as follows. Section
II discusses a general framework of Nash-equilibrium-based
fairness. Section III discusses flow-control problems as ex-
amples of the properties shown in Section II. Subsections
III-B and III-C, respectively, present fairness results for the
flow control with each user’s utility being the power criterion
and with additive costs. Section IV concludes this article.

II. A General Framework of Nash Equilibrium Based
Fairness

In this section, we first show a general framework where
a Nash-equilibrium-based fair Pareto-optimal allocation as
defined in the Introduction exists.

A. A General Framework

Consider a system that has n users, numbered 1, 2, . . . , n.
Denote by N the set of the users {1, 2, . . . , n}. Let Ui denote
the utility of user i, i ∈ N . Denote by U the vector
(U1,U2, . . . ,Un). U is an element of the space Rn

+ where
R+ denotes the set of nonnegative real numbers. That is, we
consider the cases where Ui ≥ 0 for all i ∈ N . We further
consider that the realizable value of Ui is bounded for all
i ∈ N . Denote by S the set of realizable U. Consider an
allocation, U ∈ S. Define ŠU to be {U′ | U′i ≥ Ui, i ∈ N ,U′ ∈
S}. We have the following assumption:

Assumption Φ1. For a given U ∈ S, ŠU is closed and
bounded.

We naturally see that if S is closed and bounded, then for
every U ∈ S, ŠU is closed and bounded.

Theorem 1: If Assumption Φ1 holds for a Pareto-
inefficient allocation Ũ, there exists a Pareto-optimal allo-
cation that is Pareto-superior to Ũ.
[Proof] See [11]. �

Note that, if Ũ is an inefficient Nash equilibrium, Theorem
1 shows that there exists a Nash-equilibrium-based fair
Pareto optimal allocation for Ũ. Figure 1 illustrates a case
where Assumption Φ1 is violated and Theorem 1 does not
hold.
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U1

S

O

Š eU

Ũ

Fig. 1. An example (for N = {1, 2}) of utility sets that violate Assumption
Φ1: ŠU is not closed, hence there is not always a Pareto-optimal point
superior to Ũ.

After we remove all the allocations that are Pareto inef-
ficient from the set ŠŨ, the set of the remaining allocations
is denoted by SŨ. Then, from Theorem 1, there remains
at least one Pareto-optimal allocation in SŨ. We naturally
see that SŨ contains all Pareto-optimal allocations that are
Pareto superior to the Pareto-inefficient allocation, Ũ. We
also note, from the definitions of ŠŨ and SŨ, that, if an
arbitrary Pareto-optimal allocation U is Pareto superior to
an allocation U ∈ ŠŨ −SŨ, U ∈ SŨ (by noting the definition
of ŠŨ) and that, for any allocation U of ŠŨ−SŨ, there exists
a Pareto optimal allocation Û ∈ SŨ.

Assumption Φ2. SŨ is closed and bounded for Pareto
inefficient allocation Ũ in question.

B. Nash Proportionate Fairness

Among the allocations that are Pareto-superior to an
inefficient Nash equilibrium Ũ, we consider a group of
allocations where each user’s utility is proportionately larger
than that of the Nash equilibrium. Note that user i has the
utility Ũi at the inefficient Nash equilibrium Ũ for all i.
Consider an allocation U. We say that the allocation U is
Nash proportionate if and only if U i = KŨi for some K ≥ 1
and for all i.

If, by increasing the size of K, a Pareto-optimal allocation
is reached, we may consider that the allocation may satisfy
all users in the sense that it reflects the fairness of a
Nash equilibrium that is reached by fair competition among
users (without unfair coalition) and is Pareto optimal, at the
same time. We then call it Nash-proportionately fair Pareto
optimum.
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Consider the following measure of Pareto superiority [12].
Denote by Ua

i (> 0) the utility of user i of an allocation a of
a system. Assume that the utilities of all users in question
have a positive value. Consider that there are two allocations
a and b corresponding to two different values of U. Denote
κi = Ua

i /U
b
i . If mini κi > 1, we can say that a is strongly

Pareto superior to b. If mini κi = 1, a is Pareto indifferent or
Pareto superior to b. If mini κi < 1, a is Pareto indifferent or
Pareto inferior to b. Thus, we use κ = mini κi as a measure
of strong Pareto superiority.

Proposition 1: The Nash-proportionately fair Pareto opti-
mal allocation corresponding to a Nash equilibrium, if the
latter exists, has the highest Pareto superiority measure with
respect to the corresponding Nash equilibrium among all
other allocations.
[Proof] See [11]. �

Consider the case where S has the boundaries: the hy-
perplanes {U|Ui = 0,U j ≥ 0 ( j , i)} denoted by Bi, for all
i ∈ N , and a hypersurface η connecting all Bi, i ∈ N .
If the boundary η consists of only the Pareto optimal
points, clearly, there always exists a Nash-proportionately
fair Pareto-optimal point for any inefficient Nash equilibrium.
An example of such cases is given in Section III. On the other
hand, in the cases where the boundary η contains Pareto-
inefficient points as the system examined by Inoie et al. [13],
there may be cases where a Nash-proportionately fair Pareto-
optimal allocation does not exist for some inefficient Nash
equilibria. Note, in passing, Example 1 given later in Section
III-B shows the existence of the case where the set of Pareto
optimal points that are superior to a Nash equilibrium and
that includes the Nash-proportionately fair Pareto-optimal
point, when it exists, are separated from the set of generalized
α-fairness points defined by Mo and Walrand [7].
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Ũ

S eU

S eU

Š eU

Fig. 2. A typical utility set (for N = {1, 2}) satisfying Assumption Φ1 but
not Assumption Φ2: The line {K ·Ũ|K ∈ R+} does not cross the set of Pareto
optimal points, and there exists no Pareto-optimal allocation that achieves
the Nash proportionate fairness for the Nash equilibrium allocation Ũ most
closely.

C. The Nash Equilibrium Based Fair Allocation That Is Most
Nash Proportionate

When no Nash proportionately fair Pareto-optimal al-
location exists for some inefficient Nash equilibrium, we
consider a Pareto-optimal allocation that is Pareto superior to

the Nash equilibrium and that achieves Nash proportionate
fairness as close as possible. To be more precise, we define
an allocation closest to a Nash-proportionately fair Pareto-
optimal allocation for a Nash equilibrium Ũ as follows:

If the Nash equilibrium allocation Ũ is Pareto inefficient,
from Theorem 1, we have a set SŨ of Pareto-optimal
allocations each element of which is Pareto-superior to it.
To each element U of SŨ, we assign the real value,

FŨ(U) =
∑

i ŨiUi√∑
i

Ũi
2
√∑

i

Ui
2

, (1)

which gives the value of cos θ such that θ is the angle
between the line connecting the origin of the space of U with
the Nash equilibrium allocation Ũ and the line connecting the
origin with Ǔ. Naturally, 0 ≤ θ ≤ π/2 and 0 ≤ cos θ ≤ 1. We
note that, as the value of cos θ becomes closer to 1, the value
of θ approaches 0, and Ǔ approaches Nash proportionate
fairness. If θ = 0, Ǔ achieves Nash proportionate fairness.
The allocation Ǔ with the smallest value of θ achieves Nash
proportionate fairness most closely.

Lemma 1: If SŨ is closed and bounded for some Pareto
inefficient allocation Ũ, there exists the minimum value of θ
that is associated with a Pareto optimal allocation in SŨ.
[Proof] See [11]. �

We therefore see that the Pareto optimal allocation with the
minimum value of θ in SŨ gives a Nash-proportionately fair
allocation to a Pareto inefficient allocation Ũ most closely.
Then, we have the following Proposition.

Proposition 2: If Assumptions Φ1 and Φ2 hold, for any
inefficient Nash equilibrium allocation, then there exists a
Pareto-optimal allocation that achieves the Nash proportion-
ate fairness for the Nash equilibrium allocation most closely.

Figure 2 illustrates a case where Assumption Φ2 is vio-
lated and Proposition 2 does not hold. Figure 3 illustrates a
case where both Assumptions Φ1 and Φ2 holds and where
there exists a Pareto-optimal allocation that achieves the
Nash proportionate fairness for the Nash equilibrium alloca-
tion most closely, while the Nash proportionately fair Pareto
optimum allocation does not exist for the Nash equilibrium
allocation in question. In Figures 2 and 3, we note that SŨ
is divided into two parts, the upper left and the lower right.
In Figure 2, since the boundary connecting the two separate
parts of SŨ is a straight line parallel to the vertical axis,
then the points consisting the straight line cannot be Pareto
optimal points except its top most point. Thus, the leftmost
edge of the lower right part of SŨ is open, and then SŨ is
not closed, which means the Assumption Φ2 is not satisfied.
In contrast, in Figure 3, both the upper left and lower right
parts are closed, and then SŨ is closed, which means that the
Assumption Φ2 is satisfied. We can see the set of achievable
utilities in Figure 3 similar to those of the figures 4 and 5
given in [14].

We can easily see that a property similar to the above
theorem will hold with any Pareto-inefficient allocation Ǔ
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for which Assumptions Φ1 and Φ2 hold. That is, there exists
a Pareto-optimal allocation U′ that is Pareto superior to the
allocation Ǔ and that equals the value of U that minimizes
FǓ(U) (defined as (1)).

Remark 1: In this section, we have newly considered the
concept of Nash-equilibrium-based fairness. The condition
on the existence of a Nash-equilibrium-based fair Pareto
optimum has been given. We have shown a general frame-
work in which there exists a Pareto-optimal allocation that
achieves the Nash proportionate fairness for an inefficient
Nash equilibrium allocation most closely. We note that a
number of cases, where the realizable utility set is closed
and bounded, have been treated in the literature [2]–[4], [6],
[15]–[18]. There have been other cases where the realizable
utility set is closed and bounded if the inverse of the cost
(or of the mean response time) of each player is regarded
as its utility [19]–[21]. Then, Assumption Φ1 holds, and
we may apply Theorem 1 to these cases and show the
existence of a Nash-equilibrium-based fair Pareto-optimal
allocation for an inefficient Nash equilibrium, if the latter
exists. We may apply Proposition 2 to these cases and show
the existence of the Pareto optimal allocation that achieves
the Nash proportionate fairness most closely, if Assumption
Φ2 holds. �
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Fig. 3. An example (for N = {1, 2}) of utility sets that satisfy both
Assumptions Φ1 and Φ2 although the Nash-proportionately fair Pareto op-
timum allocation does not exist. As Proposition 2 states, there exists a Nash
equilibrium based fair (NEBF) Pareto optimum allocation which achieves
most closely the Nash-proportionate fairness to the Nash equilibrium Ũ.

III. Flow Control in Networks
We examine some flow control problems in networks that

fit in both of the above mentioned general frameworks given
in Section II. Consider a noncooperative game that has n
players each of whom decides the value of λi ≥ 0, that is, the
strategy space consists of nonnegative real numbers. Denote
the set of the players {1, 2, . . . , n} by N . Thus, the strategy
profile is presented by a vector, λ = (λ1, λ2, . . . , λn). Let Ui(λ)
denote the utility that player i strives to maximize. (we also
allow for values of −∞). Let L be the product of the strategy
spaces, that is, L = {λ | λi ≥ 0, i ∈ N}. Denote by C (⊂ L)
the set of feasible values of λ. The definition of feasibility
may depend on the system concerned. For example, for a
stochastic system, such λ for which the system is stable

(for example, has a unique stationary regime) is feasible.
Such λ that leads the system to statistical equilibrium is
feasible. C may have boundaries. In the following, we denote
by λ̃ (∈ C) a strategy profile that presents a Nash equilibrium
(with finite utilities).

A. Assumptions on Networks

Consider a communication network modeled by an open
product-form network of m state-independent queues, k =
1, 2, . . . ,m that model communication links, or, simply, links
[22]. Denote the set of the links {1, 2, . . . ,m} by M. The
vertices or nodes connected by links model the routers of
the communication network. There are n independent users,
1, 2, . . . , n as before. User i decides the feasible rate λi of
packets to pass through a communication network so that the
utility, Ui, of the user i may be maximal. Ti is the average
end-to-end delay of the packets in control of user i.
µik is the state-independent service rate of user-i packets

at link k. In this article, it is assumed that each router (or,
node) has a sufficient capacity of storing packets, and, thus,
losses of packets may not occur. qik is the resulting visit rate
of user-i packets to link k. That is, qik, for all i, k, is the
solution of the following system of equations:

qik = pi
0k +
∑

l

qil pi
lk for all i ∈ N , k ∈ M,

where pi
lk and pi

0k, respectively, are the probabilities that a
user-i packet goes to link k after leaving link l and when it
enters the network, and are fixed and not subject to optimal
control. Define pi

k0 = 1 − ∑l pi
kl, i ∈ N , k ∈ M. We

are concerned only with optimal flow control and not with
optimal routing in this paper. Then, if user i injects the rate
λi of packets into the network, user-i packets visit link k at
the rate of qikλi. User i injects the rate, pi

0kλi, of packets
into link k from the outside of the network. User-i packets
departing from link k leave the network at the frequency (or,
probability) qi

k0. That is, the network has multiple ports of
entry and of exit. Consider the case where the mean response
time, T (k)

i , for a user-i packet to pass through link k, is

T (k)
i = µ

−1
ik T (k) and T (k) =

1
1 − sk

∑
p qpkλp/µpk

, (2)

if 1 − sk

∑
p

qpkλp/µpk > 0, otherwise infinite,

where sk is 1 for a link modeled by a single-server, 1/h
for a link consisting of h parallel channels each of which
is chosen with probability 1/h and is modeled by a single
server, and 0 for a link modeled by an infinite server, for
1 − sk

∑
p qpkλp/µpk > 0 [22]. Denote K = {l|sl , 0}. Then,

using the Little’s result,

Ti(λ) =
∑
l∈K

Qil

1 − sl
∑

p Qplλp
+
∑

l∈M−K
Qil, (3)

if 1 − sk

∑
p

Qplλp > 0 for all l, otherwise infinite,

where Qil =
qil

µil
.
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Clearly, Ti(λ) is increasing in λ. We note that
∑

l∈M−K Qil is
constant and independent of the strategy. In order that the
statistical equilibrium of this network be attained, it must
hold that λ ∈ C, where the feasible region C is

C = (λ | λi ≥ 0, i ∈ N , and 1 − sl

∑
p

Qplλp > 0, l ∈ K). (4)

Furthermore, define regions C0 and C such that

C0 = (λ | λi > 0, i ∈ N , and 1−sl

∑
p

Qplλp > 0, l ∈ K), (5)

C = (λ | λi ≥ 0, i ∈ N , and 1 − sl

∑
p

Qplλp ≥ 0, l ∈ K).

(6)
Note that C is a closed and bounded subset of λ. ∂C
(= C − C0) comprises the boundary consisting of n + k
hyperplanes each with (n − 1)-dimensions, n from λi = 0,
i ∈ N , and k from 1 − sl

∑
p Qplλp = 0, l ∈ K . We call

the part of the boundary consisting of λi = 0, the (i − 0)
policy boundary, and the part of boundary which is not any
of (i − 0) policy boundary, i ∈ K , the capacity boundary.
Clearly, C and C0 are convex considering the hyperplanes
that define their boundaries.

Each of network users (user-i) has two important major
concerns in choosing the protocol to use: one is the amount
of packets user-i can send per unit time (throughput), denoted
by λi, and the other is the expected time of each packet
taken from its origin to its destination (mean response time),
denoted by Ti. As the utility of each user-i, we need to
consider one scalar value taking account of the above both
λi and Ti. That is, in general we are interested in criteria
that will allow us to represent preference to high throughput
and to low delay. Both the additive criterion as well as the
power criterion fall into this category. More generally, since
the Nash equilibrium is unchanged if we replace the utility
by the logarithm of the utility, the power criterion can be
transformed (using the logarithm) into an additive criterion:
the logarithm utility is the sum of the difference between the
log of the throughput and the log of the delay.

In this paper, as such utilities as above, we examine, in
particular, the power criterion as in Subsection III-B and the
criterion based on some additive costs as in Subsection III-C.

B. Noncooperative Flow Control with the Power Criterion

The power is defined as Pi = λi/Ti for a user-i packet. In
this subsection, we consider the case where the utility, Ui,
of user i is its power, Pi, i.e., Ui = Pi for all i. Denote the
vector (P1, P2, . . . , Pn) by P. From (3), Pi(λ) is defined for
all λ ∈ L, and Pi(λ) = 0 for λ ∈ L−C0 and i ∈ N . From (3)
and the definition Pi = λi/Ti, we see that P(λ) is continuous
in λ. By noting that, for λ ∈ L − C, Pi(λ) = 0 for all i, the
set P of all possible values of P(λ) is given by λ ∈ C. Since
C is closed and bounded and P(λ) is continuous in λ, P is
also closed and bounded, that is, Assumption Φ1 holds for
every P ∈ P. Then, we can apply Theorem 1, and obtain the
following.

Corollary 1: For any inefficient Nash equilibrium flow
control, there exists a Pareto-optimal flow control that is
Pareto superior to the Nash equilibrium flow control. Thus,
this Pareto optimum is Nash-equilibrium-based fair.
The existence of a Nash equilibrium flow control, which
is inefficient, has been shown [10]. Furthermore, for this
example with respect to power optimization, a stronger
result, the existence of a Nash-proportionately fair Pareto-
optimal flow control, will be shown by Theorem 2.

Assumption Φ3. Denote a graph G by (V,E) such that V =
N ∪M and E = {(i, k) | i ∈ N , k ∈ M and qik > 0}. G is
connected.

Theorem 2: If Assumption Φ3 holds, there exists a Nash-
proportionately fair Pareto-optimal flow control solution for
any inefficient Nash equilibrium of this network.
[Proof] See [11]. �

Remark 2: Consider the case where Assumption Φ3 does
not hold. That is, G is not connected, and consists of multiple
disjoint subnetworks, G1, G2, . . . , Gr, each of which is
connected within itself. Then, Theorem 2 can be applied to
each independent subnetwork Gp, p = 1, 2, . . . , r, and each
own Nash-proportionately fair Pareto optimum allocation
exists for each disjoint set of users in Gp, p = 1, 2, . . . , r.
It is possible, however, that there does not exist any com-
mon Nash-proportionately fair Pareto-optimal flow control
allocation for the entire network that violates Assumption
Φ3. We can show such examples by simple models. �

Example 1 Consider a simple network consisting of three
users N = {1, 2, 3} and two nodes K = {1, 2}, where q1

01 =

q2
02 = 1, q3

01 = q3
02 = 0.5, q1

10 = q2
20 = q3

10 = q3
20 = 1,

µi
1 = 3 (i = 1, 3) for case A and µi

1 = 30 (i = 1, 3) for case
B, and µi

2 = 6 (i = 2, 3). Each case of the network satisfies
Assumption Φ3.

Recall [7] that, if the utility of user-i is denoted by Ui(λ)
for the strategy profile λ, the α-fairness point (0 ≤ α < ∞) is
achieved by U(λα) = (U1(λα),U2(λα), . . .UN(λα)) such that

Fα(λα) = max
λ∈C

Fα(λ)

where Fα(λ) =
1

1 − α
∑

p

{Up(λ)}(1−α).

In Figure 4, the sizes of utilities U1(λ),U2(λ), and U3(λ)
of users 1, 2, and 3 are, respectively, denoted by U1, U2, and
U3. In each of the top and bottom parts of the figure, the
curve presents the set of α-fairness points for 0 ≤ α < ∞.
In each part, the curved surface consisting of the dots, each
of which is the outside edge of the very short dotted line,
presents the set of Pareto optimal points. There are two X’s
in each of the top and bottom parts. The left and right X’s
of each part present, respectively, the Nash equilibrium point
(NE) and the Nash-proportionately-fair Pareto optimal point
(NPF). In each part, the one dashed line presents a straight
line connecting the origin, the NE, and the NPF. We see
that, in the network of case A (top), the Nash proportionate
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Fig. 4. The utility sets (for N = {1, 2, 3}) in the flow control of a network
of cases A (top) and B (bottom). For the cases A and B, respectively, the
Nash proportionate fair Pareto optimal point and the Pareto optimal points
superior to the Nash equilibrium point are not included in the set of the
generalized fairness points with parameter α (that is, α-fairness points)

fair Pareto optimal point is not included in the set of α-
fairness points, and that, in the network of case B (bottom),
the Pareto optimal points superior to the Nash equilibrium
point are not included in the set of the generalized fairness
points with parameter α (that is, α-fairness points) [7].

As anticipated from the fact that the α-fairness depends
only on one parameter α, we can see that the set of α-fairness
points covers only a very small segment of the whole set of
Pareto optimal points. From the examination of this figure,
we see that there are cases where the generalized fairness
with parameter α (that is, the α-fairness) does not cover the
Nash proportionate fairness nor the Nash equilibrium based
fairness.

C. Noncooperative Flow Control with Additive Costs
In this subsection, we briefly touch on another case of each

user’s objective. Consider the network described in Section
III-A, and assume that the cost per packet over link k is given
by the function (1/µik)T (k)(ρk) (given by (2)) where

ρk =
∑

p

ρpk, ρik = Qikλi.

The total cost paid by player i is thus

Ji(λ) = λiTi =
∑

l

ρilT (l)(ρl).

The utility for player i is then given by

Ui(λ) = Ri(λi) − aiJi(λ), (7)

where Ri is concave in its argument and ai is a positive
constant. Utilities with the above structure are common in
telecommunication networks (see, for example, Alpcan and
T. Başar [23], [24] that study special cases of such utilities).
The existence of a Nash equilibrium, λ̃ ∈ C, has been shown
[10]. It is seen that, if more than one user has the positive λ̃i

in a Nash equilibrium, it is strongly Pareto inefficient [10].
Corollary 2: For any inefficient Nash equilibrium flow

control, there exists a Pareto-optimal flow control that is
Pareto superior to the Nash equilibrium flow control.
[Proof] See [11]. �

IV. Concluding Remarks

In this paper we have introduced a new fairness concept.
First, we have presented a general framework in which a
Pareto optimal allocation exists that is Pareto superior to
any Pareto inefficient allocation. Then, we have considered
a Pareto optimum allocation that is Pareto superior to an in-
efficient Nash equilibrium ‘Nash-equilibrium-based fair.’ We
have also discussed the concept of the Nash-proportionately
fair Pareto optimum. We have shown a framework for which
the Nash-equilibrium-based fair allocation that achieves
Nash-proportionate fairness most closely exists.

In particular, we have considered noncooperative flow
control. We have firstly considered the power criterion for
the utility of each user, and have shown a Nash-equilibrium-
based fair Pareto optimal allocation for an inefficient Nash
equilibrium. We have also shown the existence of a Nash-
proportionately fair Pareto optimum for the inefficient Nash
equilibrium in the situation. We have then considered an-
other utility of additive costs and have shown that a Nash-
equilibrium-based fair Pareto optimum exists for an ineffi-
cient Nash equilibrium.
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extended version of the paper that appeared in Proc. 40th IEEE Con-
ference on Decision and Control (IEEE CDC’01), Orlando, U.S.A.,
pp. 604–609, Dec. 2001).

[20] H. Kameda, E. Altman, T. Kozawa, and Y. Hosokawa, “Braess-like
paradoxes in distributed computer systems,” IEEE Trans. Automatic
Control, vol. 45, no. 9, pp. 1687–1691, 2000.

[21] H. Kameda and O. Pourtallier, “Paradoxes in distributed decisions on
optimal load balancing for networks of homogeneous computers,” J.
ACM, vol. 49, no. 3, pp. 407–433, 2002.

[22] F. Baskett, K. Mani Chandy, R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of
customers,” J. ACM, vol. 22, no. 2, pp. 248–260, 1975.
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