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Abstract— We found a formula for aggregate throughput
of arbitrarily given number of competing additive-increase,
multiplicative-decrease connections (TCP congestion avoidance
mode) for a bottleneck, under assumption that loss events
over connections are non synchronized. The formula cap-
tures throughput-deficiency due to the additive-increase and
multiplicative-decrease adaptation. The formula suggests that
already a few connections are sufficient to almost entirely elimi-
nate this throughput deficiency. The result reveals the aggregate
throughput insensitivity on the way losses are assigned over
competing connections over time, for any given number of
competing connections. The result is validated by simulations
and Internet measurements. The latter validates the model in
cases when analysis assumptions are met, but also encounters
cases of the throughput deficiency due to synchronization of loss
events and the receiver window constraint. The results would
inform on the throughput efficiency of parallel TCP transfers,
an approach used widely for bulk data transfer.

I. INTRODUCTION

Parallel TCP sockets is a generic “hack” to improve
throughput attained by TCP for bulk data transfers by opening
several TCP connections and striping the data file over them.
There are two factors that cause TCP throughput deficiency
(F1) TCP window synchronization and (F2) window adapta-
tion in TCP congestion avoidance. The former is well known
and fixes have been proposed a while ago (e.g. RED [12]). The
throughput deficiency due to (F2) is intrinsic to congestion
window control in TCP congestion avoidance and is also well
known. It is perhaps best illustrated by admitting a simple
model of a single TCP connection over a bottleneck whose
steady-state window dynamics is deterministic and periodic
described as follows. In a period, the window W increases
linearly in time with rate 1 packet per round-trip time and
is reduced to one half of its current level when it encounters
congestion. It is readily computed that such idealized TCP
connection attains 75% link utilization. The simple model is
the underlying model of a particular TCP square-root loss-
throughput formula, as found in [11], [18]. The concept of
parallel TCP sockets is widely used by applications such
as for example GridFTP∗. In practice, it is often unclear
how many sockets one needs to open in order to achieve
satisfactory throughput since opening too many connections
may be undesirable for various reasons. Relation of TCP
throughput of a single connection to loss event rate and mean

∗www.globus.org/datagrid/gridftp.html

round-trip time is to date fairly understood (e.g. [4], [18],
[19]), but the results do not readily extend to parallel TCP
connections. These formulae only leave us with two other
unknowns. The problem is that it is not well understood
how these two unknown parameters depend on the number
of TCP connections competing in a bottleneck. The approach
leveraging on known TCP loss-throughput formulae was pur-
sued by Hacker et al [13], which provides very informative
measurement results, but no throughput formula for parallel
TCP connections.

It is important to distinguish the factors (F1) and (F2) as
they are different throughput-deficiency causes. Our analysis
is concerned with factor (F2). It is a good news as it suggests
that already a few connections fixes the problem, in operational
regimes when there is no synchronization (i.e (F1) not true)
or there is some but is weak.

In this paper, the send rate of each connection is assumed to
increase linearly in time in absence of congestion indication
to this connection, and otherwise decrease to a fraction β
of the send rate just before a congestion indication (multi-
plicative decrease). We adopt a model of bottleneck originally
introduced by Baccelli and Hong [9] where link congestion
events occur whenever the aggregate rate of connections hits
the link capacity. Strictly speaking, the model assumes zero-
buffer; see [9] for discussion how this can be relaxed to
accommodate a finite buffer. The zero-buffer assumption is
made for tractability and would be justified in scenarios when
propagation delay dominates the queueing delay. We provide
validation of this in Section V. We assume

(ONE)At each congestion event, a single connection is
signaled to reduce its send rate by one multiplicative
decrease.

Our main result is a formula for aggregate throughput x̄(N) of
N connections over a link of fixed capacity c,

x̄(N) = c


1− 1

1+ 1+β
1−β N


 (1)

where 0 < β < 1; for TCP connections β = 1/2. The result
is exact under a mild “stability” condition (see Section II,
Theorem 1). Note that for the special case of one connec-
tion, N = 1, the result reads x̄(N) = c(1 + β)/2. Hence, for
TCP-like setting x̄(N) = (3/4)c, which recovers the 75%
utilization pointed out earlier. Note that nothing is said on
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Fig. 1. Sample paths of three AIMD connections competing for a link.

which connection is chosen at link congestion events. Figure 1
illustrates several system assumptions that we made so far:
linear increase and multiplicative decrease, link congestion
times, and assumption (ONE). The assumption (ONE) was
made in some other works, e.g. [10]. It would be more general
to assume that at each link congestion event a subset of
connection is chosen to undergo a multiplicative decrease. On
the other extreme, we may assume that at each link congestion
event, ALL connections undergo multiplicative decrease. This
corresponds to TCP window synchronization. Baccelli and
Hong [9], in turn, assume each connection is chosen with
some fixed probability, so that at each congestion event a
fraction of connections is signaled a congestion indication. The
reader should bear in mind that (ONE) and similar assumptions
are mathematical abstractions. In practice, though the system
dynamics is blurred by various factors such as packetization
and feedback delays and there will always be some positive
time between any two connections undergoing multiplicative
decrease, so it may not be justified to aim at validating
(ONE) in some strict sense. The definition of link congestion
times would in practice accommodate TCP connections over
a network interface with finite buffer and FIFO queueing
discipline (DropTail), with buffer length sufficiently smaller
than bandwidth-delay product. In practice, most network in-
terfaces are DropTail. The linear increase of send rate would
approximate well TCP [14] in regime where round-trip time
is dominated by propagation delay and queueing delay can be
neglected [9]. It is well known that with substantial queueing
delay, TCP window growth over time is sub-linear for large
windows [7]. The assumption that send rate increase is linear
over time, may be satisfied by transport control protocols other
than standard TCP, e.g. [16] shows this to be true for Scalable
TCP [15].

In our analysis we also assume:

(R) TCP connections are not constrained by their receiver
windows.

With TCP receiver window in effect, the throughput would
increase roughly linearly with the number of parallel TCP
sockets for a range from 1 to some number of TCP connec-
tions. TCP receiver window constraint is not further considered
in this paper. In analysis we assume (R) holds and in exper-
imental validations we set TCP receiver window larger than

the bandwidth-delay-product whenever possible.

We argue that it is of interest to understand throughput
efficiency of parallel TCP sockets for a small number of
parallel sockets. Opening too many sockets may not be of
practical interest as this imposes processing overhead on end-
host operating systems and also leaves smaller bandwidth to
other flows that may sporadically share the bottleneck during
a parallel-socket data transfer. The result (1) suggests that the
throughput gain of N parallel TCP sockets monotonically in-
creases with N and this increase is such that already 3 sockets
is sufficient to attain 90% link utilization. Setting N = 6 would
yield almost 95%. This suggests that a few connections is
already enough to compensate for the throughput deficiency
of TCP. This is a good news as it would provide incentive
to rational throughput-greedy users not to use an overly large
number of parallel sockets per transfer, as this would yield
only a marginal throughput gain and as argued earlier opening
too many sockets may not be desirable.

There has been a recent surge of interest on TCP and small
buffer sizes [8]. While results in this paper do have some
connection to this line of the work, as our analysis would
be accurate for appropriately chosen small buffer size, there
are notable differences. The results in [8] suggest that buffers
in routers can be set to smaller values than bandwidth-delay
product (BDP) for a large number of TCP connections and still
have full link utilization. More specifically, it is suggested that
for a link shared by N connections and link capacity scaled
linearly with N, it is sufficient to have buffer length of the
order BDP/

√
N, asymptotically for large N. The throughput

formula (1) is for any finite N and as argued earlier it is
our particular interest to address the case when the number
of connections N is not too large. In our context, it may
well happen that bottleneck link is in access network, not a
backbone router, and it may simply turn out to be small relative
to propagation round-trip time of a network path between end-
points of a parallel transfer. This would hold in practice for
many end-to-end paths. Consider a bottleneck link with buffer
size L packets, packets of length MTU B, and link capacity c
MB/s. Then, we may regard the buffer to be small for network
paths of propagation round-trip time RTT such that RTT �
L MTU/c. For example, consider in practice typical values
c = 100 Mb/s, MTU=1500 B, and L=100 packets. Then, the
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condition is RTT � 12 ms, which would be true for many
wide-area data transfers.

The result (1) tells us more. It reveals that throughput
is insensitive to a choice of loss policy that decides which
connection is signaled per congestion event as long as the loss
policy verifies (ONE) and stability conditions in Theorem 1.
Note that the set of loss policies that verify (ONE) is large
and includes many natural candidates for loss policies. This
insensitivity result may appear counter-intuitive to some as
one’s intuition may be that loss policies that favor picking
connections with larger rate at congestion times would yield
smaller aggregate throughput. The result says that this is not
true. The throughput insensitivity in the present form was
suggested by a result in [5], which is under more restrictive
assumptions of only 2 connections and special loss policies
that render send rates a Markov process. One may wonder
whether steady-state probability distribution, and in particular,
higher-order moments, of aggregate send rate are insensitive
to a choice of loss policy. We show that this is not true in Sec-
tion III. The result in Section III is not new as it was already
found in [5], however, Section III provides corrected versions
with complete proofs. The results in Section III and Section IV
are particular choices of loss policy: (i) rate-proportional (= a
connection is chosen with probability proportional to its send
rate just before the congestion event), (ii) largest-rate (= a
connection with largest rate just before the congestion event
is chosen), (iii) rate-independent (= a connection is chosen
with fixed probability), and (iv) beatdown (= a connection
is chosen as long as permitted by link capacity). The rate-
proportional loss policy may be deemed a natural candidate
and may be seen as randomized version of the largest-rate
policy. We consider the rate-independent policy in view of
past work [9]. The fancy beatdown loss policy is considered
only to demonstrate that throughput insensitivity found in this
paper holds for a versatile set of loss policies. Note that in
the Internet either of these loss policies or some other policies
may emerge as a result of the dynamics of TCP congestion
window control and particular queue discipline such as for
example DropTail. More radical approach would be to enforce
assumption (ONE) and particular loss policy by an intelligent
queue discipline. Analysis of benefits and performance of such
intelligent queue disciplines is beyond the scope of this paper.

A. Organization of the paper

Section II contains our main result. In that section, we
provide a sufficient set of assumptions and notations and
then state the main result, along with discussion of its im-
plications (see [6] for proofs). Section III shows that steady-
state distribution of the aggregate send rate of connections is
not insensitive to loss policy of the bottleneck link. Several
auxiliary results are provided in Section IV. Section V con-
tains experimental validation, both simulations and internet
measurements. The last section concludes the paper.

II. MAIN RESULT

A. Model and result

We consider N connections that compete for a link of
capacity c by adapting their send rates as follows. Let Xi(t)
be the send rate of a connection i at time t. A time t ′ is said
to be a link congestion time whenever it holds ∑N

i=1 Xi(t ′) = c,
i.e. the aggregate send rate hits the link capacity. Let Tn be the
n-th link congestion time enumerated such that T0 ≤ 0 < T1,
for some time instant labeled with 0. A connection i increases
its send rate linearly in time with rate ηi > 0 and it is reduced
at some link congestion times to a fraction 0 < βi < 1 of
the current send rate. We call such an adaptive connection,
additive-increase and multiplicative-decrease (AIMD) connec-
tion with additive-increase parameter ηi and multiplicative-
decrease parameter βi.

The foregoing verbal definitions can be formally rephrased
as, for i = 1,2, . . . ,N,

Xi(t) = Xi(Tn)+ηi(t −Tn), Tn ≤ t < Tn+1 (2)

and
Xi(Tn+1) = (1− (1−βi)zi(n))Xi(Tn)+ηiSn (3)

with

Sn =
1
η̄

(
c−

N

∑
j=1

(1−β j)z j(n))Xj(Tn)

)
, (4)

where Sn := Tn+1 − Tn is obtained from ∑N
i=1 Xi(Tn+1) = c,

η̄ := ∑N
j=1 η j, and z j(n) = 1 if the connection j is signaled

a congestion indication at the n-th link congestion event, else,
z j(n) = 0. Under (ONE) ∑N

j=1 z j(n) = 1. We are now ready to
state our main result.

Theorem 1: Consider the prevailing system of N AIMD
connections with identical AIMD parameters, competing for
a link of capacity c. Assume that ONE holds, i.e. at each
link congestion event, exactly one connection is signaled a
congestion indication. Assume in addition that the following
stability conditions hold: the system has a unique time-
stationary distribution and times between successive link
congestion events, sampled at congestion events, have a
strictly positive mean. Then, the throughput XONE has the
time-stationary expected value

IE(XONE(0))
c

= 1− 1

1+ 1+β1
1−β1

N
. (5)

Proof is given in [6].

B. Discussion of the result and its implications

We discuss several implications of Theorem 1.
1) Throughput of parallel TCP sockets: The throughput

formula (5) suggests explicit dependence of the throughput on
the number of parallel TCP sockets N. Indeed, the throughput
monotonically increases from (1 + β1)/2c for N = 1 to 1 as
N tends to infinity. The former case of one connection is
precisely the known result (3/4)c thats hold for TCP-like
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Fig. 2. Throughput of N identical AIMD connections competing for a link
of unit capacity with TCP-like setting (β1 = 1/2).

setting β1 = 1/2. The dependence on the number of sockets
given by (5) is showed in Figure 2 for β1 = 1/2. The result
suggests that opening as few as 3 connections would already
yield 90% link utilization and 6 sockets, almost 95% link
utilization. Hence, opening a number of sockets beyond some
relatively small value would yield only a marginal throughput
gain. Equation (5) gives explicit dependence of the throughput
on the number of sockets N, and thus provides a guideline
to choose the magic configuration parameter of the number
of sockets for a data transfer. Choosing this configuration
parameter in practice was a puzzle as throughput dependence
on the number of sockets was largely not understood. The
result also suggests incentive to throughput-greedy users not
to open too many sockets, as opening a few is enough.

2) Throughput is insensitive: No matter which connection
is signaled a congestion indication per link congestion event,
the mean throughput remains the same, as long as the mild
stability conditions of the theorem hold. This throughput
insensitivity finding may appear counter-intuitive as one may
expect that loss policies that favor signaling congestion indi-
cation to large-rate connections would have detrimental effect
on the mean aggregate throughput. The result reveals this is
not true. We show in Section III that the aggregate send rate
higher-order statistics is not insensitive on the loss policy.

The throughput insensitivity in the general form found in
this paper was motivated by original finding in [5]. Note that
we generalize the finding of [5] in the following directions:
(i) to any finite number of connections N ( [5] is for N = 2)
and (ii) a larger set of loss policies. We discuss (ii) in some
more detail now. The loss policies in [5] are restricted to those
that base decision which connection to signal a congestion
indication only on the send rates just before a link congestion
event. As an aside, note that this renders the send rates a
Markov process. The result of Theorem 1 tells us that the
throughput insensitivity holds for a much broader set of loss

policies that can depend on any past system state as long as
the mild stability conditions of the theorem hold.

Note that the throughput insensitivity allows to bias sig-
naling congestion indication to some connections at link
congestion times. The throughputs achieved by these special
connections would indeed deteriorate by this bias, however, the
aggregate throughput over all connections remains the same.
This is illustrated by the following example.

Example 1: Consider 4 AIMD connections competing for
a link of unit capacity. The connections have identical AIMD
parameters, set as ηi = 1 and βi = 1/2. The loss policy is
rate-independent with the probability that a connection i is
selected equal to σ/2, for i = 1,2, and (1−σ)/2, for i = 3,4,
for some 0 < σ < 1. The parameter σ is the bias parameter that
for σ < 1/2 favors picking either connection 1 or 2, σ = 1/2
favors no connection, and σ > 1/2 favors picking connections
3 or 4. Hence, as σ ranges from 0 to 1, the connections 1
and 2 (resp. 3 and 4) will receive equal throughput that will
decrease (resp. increase) with σ. In the prevailing example,
the system does have a unique time-stationary distribution,
hence the hypotheses of Theorem 1 are satisfied. Theorem 1
implies that the mean aggregate throughput is insensitive to the
preferential treatment of connections. The simulation results in
Figures 3 and 4 indeed validate the claim.

3) Comparison with the synchronized case: Consider now
the loss policy we call ALL, which signals all connections
a congestion indication at each link congestion event. Note
that this loss policy satisfies (ONE) only if N = 1. The loss
policy ALL models the special regime of synchronized TCP
connections. A natural question is to compare the throughputs
under loss policy ALL and loss policies that verify (ONE).
The throughput under loss policy ALL is readily obtained to
be†

IE(XALL(0))
c

=
1+β1

2
. (6)

It is easy to check that

IE(XONE(0)) ≥ IE(XALL(0))

with equality only if N = 1. Note that, indeed, the throughput
achieved under the loss policy ALL for N > 1 is exactly
that achieved by a single connection under either ALL or
ONE. Thus, the ratio of the throughputs achieved under a loss
policy that satisfies (ONE) and under the loss policy ALL
corresponds to the throughput gain achieved under the loss
policy that satisfies (ONE) for N connections with respect
to the throughput for N = 1. The loss policies under (ONE)
provide no gain with respect to the loss policy ALL for
N = 1, but they provide larger throughput for a factor which
is exactly that given by (5) divided by (1 + β1)/2. The last
means that loss policies under (ONE) provide throughput gain
with respect the loss policy ALL equal to 2/(1 + β1), as

†This follows by the fact that under ALL there is a unique limit point
x∗ of the send rates just before a link congestion event such that x∗i = c/N,
i = 1,2, . . . ,N.
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Fig. 3. Throughputs of 4 AIMD connections in Example 1. There are two
classes of connections, each class containing 2 connections. A connection
selected at a link congestion time is from the first class with probability σ.
The flows of the two classes attain throughputs that depend on the parameter
σ. However, the aggregate throughput is insensitive (dots aligned with the
analytical prediction shown by the solid line). This validates Theorem 1.

the number of connections N tends to infinity. For TCP-like
setting, this amounts to 4/3, which is precisely compensating
for the throughput deficiency of a single TCP connection.

4) What this tells us about MultTCP?: MultTCP, proposed
by Oechlin and Crowcroft [10], is a window control protocol
that aims at emulating a given number of N TCP connections.
The design rationale is to scale the linear increase of the
control with N as Nη1 and set the multiplicative decrease
parameter to 1− (1− β1)/N. MultTCP can thus be seen as
a single AIMD connection with appropriately set additive-
increase and multiplicative-decrease parameters as a function
of N. The choice of the multiplicative decrease parameter is
based on an approximation by considering a virtual set of
N parallel connections. It is assumed that at each congestion
indication to these connections, only one connection under-
goes a multiplicative decrease. Thus, it admits loss policies
verifying (ONE). The send rate of this selected connection at
a time just before a congestion indication is x/N, where x is the
aggregate rate over all connections just before the congestion
indication. The last is an approximation as, indeed, the selected
connection may have the send rate other than the even share
x/N. In the sequel, we consider MultTCP for TCP-like setting
β1 = 1/2. We already observed that MultTCP can be treated
as a single AIMD connection with additive-increase parameter
Nη1 and multiplicative-decrease parameter 1−N/2, hence, the
throughput follows immediately from (6)

IE(XMultTCP(0))
c

= 1− 1
4N

.

From (5), the throughput of N TCP-like connections is:

IE(XONE(0))
c

= 1− 1
1+3N

.
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Fig. 4. Sample-paths of the rates of the 4 AIMD connections ”orchestrated”
by the rate-independent policy (Example 1). A connection is chosen from
the probability distribution [σ,σ,1−σ,1−σ]/2. (Left) σ = 1/2 so that each
connection has equal chance to be selected. (Right) σ = 1/8 so that two
connections are selected more often than the other two connections.

We note that IE(XMultTCP(0)) ≥ IE(XONE(0)), for all N ≥ 1,
with equality only if N = 1. It is readily computed that the
mean throughput of a MultTCP connection is less than 1.025
of the mean aggregate throughput of N TCP-like connections
under a loss policy in ONE. It is hence, for any practical
purpose, a good approximation. The last observation does not
provide much motivation to obtain a correction for MultTCP
so that its throughput is exactly that of N TCP-like connec-
tions under a loss policy that verifies (ONE). Note, however,
redefining only β1 to a function of N provides no solution,
except for the trivial case N = 1. Indeed, by equating (5) and
(6) and a simple calculation one obtains β1(N − 1) = N − 1,
hence, a 0 < β1 < 1 exists only if N = 1.

5) Round-trip time insensitivity: The result (1) suggests
insensitivity of the mean throughput to the round-trip time of
the connections as (5) does not depend on η1. With TCP-like
connections, the parameter η1 will be defined as reciprocal of
a fixed round-trip time to the power of 2.

III. STEADY-STATE DISTRIBUTION OF THE AGGREGATE

SEND RATE IS NOT INSENSITIVE

The insensitivity property found in the earlier section is for
the first-order moment of the time-stationary aggregate send
rate. The time-stationary distribution is not insensitive to the
loss policy. This was already showed in [5] by computation
of the time-stationary second moments for particular policies.
We provide a complete proof for the second moments, which
yields corrected versions of the corresponding expressions in
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[5]. A new information is for the beatdown policy.

Theorem 2: Consider two identical AIMD connections with
β1 = 1/2. The time-stationary second moments for either
flow are given by

1) Beatdown: IE(X(1)(0)2)
c2 = 1

3 ≈ 0.33333

2) Rate-independent: IE(X(1)(0)2)
c2 = 5

24 ≈ 0.20833

3) Rate-proportional: IE(X(1)(0)2)
c2 = 679

3396 ≈ 0.19994

4) Largest-rate: IE(X(1)(0)2)
c2 = 4

21 ≈ 0.1905.

The proof is a tedious exercise of elementary and Palm
calculus and is deferred to [6].

Note that the order of the loss policies with respect to
the time-stationary second-order moment of the throughput is
rather natural. Intuitively, one would expect that the largest-
rate policy attains smallest second-order moment as it balances
the rates at congestion times by picking a connection with
largest rate. One also would expect that the rate-proportional
policy has a larger second-order moment of the throughput,
but not too much as it also favors selecting connections with
larger rates at link congestion times. The rate-independent
policy, with each connection selected equally likely, has a
larger second-order moment of the throughput than both the
largest-rate and rate-proportional. The beatdown policy attains
the largest second-order moment of the throughput within the
given set of policies.

IV. ADDITIONAL ANALYSIS FOR LARGEST-RATE AND

BEATDOWN POLICIES

This section shows some auxiliary results on the dynamics
for particular loss policies, the largest-rate and beatdown. The
analysis provides some insight on the dynamics of the send
rates and serve in the proof of the second-order moment
results in the earlier section. It may be however skipped by a
reader non interested in technical details, with no sacrifice of
continuity.

A. Largest-rate policy

From now, we use the short-cut notation xi(n) := Xi(Tn).
We show that for a homogeneous population of N AIMD
connections, there exists a unique stationary point for the rate
vector x(n) = (x1(n), · · · ,xN(n)), under the largest-rate policy
and identify this stationary point.

In view of (3) and (4), dynamics of the rates under the
largest-rate policy is fully described by the following deter-
ministic dynamical system:

xi(n+1) = xi(n)+
(

ηi

η
−1{Mn=i}

)
(1−βMn)∨N

j=1 {x j(n)}

where Mn ∈ argmax jx j(n). Throughout, we use the operators
x∨ y := max{x,y} and x∧ y := min{x,y}, for x,y ∈ R.

This can be further rewritten as follows. Let x̃(n) be the
vector x(n) with coordinates ordered in decreasing order, for
any given n. Thus, x̃1(n) ≥ x̃2(n) ≥ ·· · ≥ x̃N(n), for all n. We

can write:

xi(n+1) =
{

aix̃1(n), Mn = i
xi(n)+bix̃1(n), Mn �= i,

(7)

where ai := βi +ηi(1−βi) and bi := ηi(1−βi), i = 1,2, . . . ,N.
In the remainder of this section, we confine to homogeneous

flows, thus ai = a1 and bi = b1, for all i = 2,3, . . . ,N. Without
loss of generality, we assume c = 1. Thus, for any n, x(n)
takes value on a N−1 dimensional simplex SN−1 = {x ∈ R

N
+ :

∑N
i=1 xi = 1} and x̃(n) on the subset of SN−1, S 0

N−1 = {x ∈R
N
+ :

∑N
i=1 xi = 1, xi ≥ x j, i ≤ j}.

Lemma 1 (representation): Consider a homogeneous popu-
lation of N AIMD users competing for a link under the
largest-rate loss policy. The dynamics of the ordered vector
of rates x̃(n) is given by the recurrence

x̃(n+1) = g(x̃(n)), (8)

where S 0
N−1 �−→ S 0

N−1

x → g(x)

with g(·) = (g1(·),g2(·), . . . ,gN(·)), and

gi(x) =




a1x1 ∨ (x2 +b1x1), i = 1
(a1x1 ∨ (xi+1 +b1x1))∧ (xi +b1x1), else
a1x1 ∧ (xN +b1x1), i = N.

This lemma is proved in [6].

Proposition 1: The map g : SN−1 → SN−1 of the recurrence
(8) has a unique fixed point x0 in the interior of SN−1 (all
coordinates strictly positive) given by

x0
i =

{ 2
(1+β1)N+(1−β1) i = 1

x0
1

(
1− 1−β1

N (i−1)
)

i = 2,3, . . . ,N.
(9)

The proof is deferred to [6].
Remark 1: The fixed point uniquely identifies a N-periodic

sequence x0(n) in the simplex SN−1. We readily construct a
continuous-time function x0(t) with values in SN−1 associated
to the sequence x0(n) by the definition of the inter-congestion
times (4), with T0 = 0. As customary, a time-stationary sample-
path is constructed by shifting the T -periodic function x0(t)
for a time uniformly at random on the interval [0,T ].

Remark 2: The proposition says that the stationary point
of the rates just before link congestion event is such that that
connections are signaled a congestion indication in a round-
robin fashion.

B. Beatdown

It is particular to the beatdown loss policy that congestion
times accumulate, i.e. the number of congestion events on
some finite time intervals is infinite (see Figure 5). This implies
that IE0(T1) = 0. This prevents us from applying Theorem 1.
In this section we circumvent this problem by looking at
some special link congestion times, and show that indeed the
throughput-insensitivity property holds.
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Fig. 5. Sample-paths of the rates of two AIMD flows ”orchestrated” by the
beatdown policy.

Define τn as a link congestion time at which a connection
becomes tagged according to the beatdown policy. Let yi(n)
be the rate of a flow i at time τn (subsequence of xi(n)). With
an abuse of notation, let zi(n) indicates whether a flow i was
selected at time τn. The rates embedded at the selected link
congestion times evolve as follows:

y(n+1) = (1− zi(n))(yi(n)+ηi(τn+1 − τn)). (10)

Indeed, if a flow i is tagged at τn, i.e. zi(n) = 1, then yi(n+1) =
0. Else, zi(n) = 0, and thus the flow continues increasing
its rate with rate ηi from the initial rate yi(n). Summing
∑N

j=1 y j(n) = c, yields

τn+1 − τn =
∑N

j=1 z j(n)y j(n)

∑N
j=1(1− z j(n))η j

. (11)

Finally, we have:

yi(n+1) = (1− zi(n))
(

yi(n)+
ηi

η−ηMn

yMn(n)
)

,

where, recall, Mn = i for i such that zi(n) = 1.
We have the following result whose proof is in [6].

Theorem 3: For a finite and homogeneous population of
AIMD connections, any time-stationary beatdown loss pol-
icy is throughput-insensitive.

In the sequel of this section, we give the stationary point for
the flow rates at selected congestion times, for a homogeneous
population of AIMD connections. Let ỹ(n) be the vector of
the rates y(n) sorted in decreasing order. The dynamics is as
follows:

yi(n+1) =
{

0 Mn = i
yi(n)+ 1

N−1 ỹ1(n) otherwise.

The stationary point satisfies the following identities: ỹk =
ỹk+1 + 1

N−1 ỹ1, k = 1,2, . . . ,N −1. It follows

ỹk =
N − k
N −1

ỹ1.

Now, ∑N
i=1 ỹi = c, from which it follows ỹ1 = 2c/N. In sum-

mary,

ỹi

c
=




2
N i = 1

1
N−1

(
1− i

N

)
i = 2,3, . . . ,N −1

0 i = N.

1

2

N

...

10 Mb/s, 5 ms

...

TCP sink

1

2

N
DropTail or RED

10 Mb/s, 5 ms

c

TCP source

r1 r2

Fig. 6. ns-2 network configuration.

V. EXPERIMENTAL RESULTS

The results in earlier sections are exact for AIMD connec-
tions and the prevailing assumptions therein. In this section, we
provide experimental validation of our analysis by simulations
and internet measurements. Simulation and measurements
scripts and data are available on-line at [1].

We performed ns-2 simulations as this allows us to easily
configure queueing disciplines in order to conduct controlled
experiments. Our internet measurements provide validation in
real-world scenarios.

A. Setup of ns-2 experiments

We describe first our ns-2 experiments. We consider a
system of N identical TCP-SACK connections that traverse
a bottleneck as showed in Figure 6. The bottleneck link im-
plements either DropTail or RED queueing discipline. Payload
of a TCP packet is set to 1000 bytes. Maximum window size is
set to 20000 packets. Each simulation is run for 2000 seconds
and initial 1000 seconds are truncated to reduce the effect
of initial transient. Start times of connections are randomized
by uniformly drawing the starting times within interval [0,4]
seconds.

In some simulations we use RED bottleneck. Original
design goal of RED was to mitigate TCP window synchro-
nization [12]. RED parameters are set as follows. Minimum
and maximum threshold sizes are set to 0.6 and 0.8 factor of
the buffer length. The RED packet drop probability function
is chosen with the value equal to 0.1 at the maximum buffer
threshold. The queue size averaging factor is set to 0.001.
The RED option wait was enabled; this would enforce some
waiting between successive packet drops.

Theorem 1 suggests the following claim: (H) a system of N
identical TCP connections that compete for a bottleneck with
a small buffer attains link utilization 1−1/(1+3N).

B. DropTail

The results are shown in Figure 7. We observe that typically,
for small buffer lengths, the achieved throughput is smaller
than predicted by the analysis. Moreover, we note that the
larger the buffer is, the larger the throughput is. If buffer
length is sufficiently large, throughput is larger than predicted
by the analysis. We verified by inspection that in many cases
in Figure 7, TCP windows are synchronized. This is exhibited
for N = 5 and 10 in Figure 8. The figure shows sum of
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Fig. 7. Time-average send rate normalized with link capacity versus the
number of TCP connections. Results are obtained in ns-2 for DropTail with
varying buffer length b as indicated in the figure.

congestion windows over all connections versus time. The
sum of congestion windows essentially evolves over time
as congestion window of a single TCP connection, which
indicates synchronization. This is further reflected in Figure 9
that shows congestion windows of individual connections.

C. RED

We show results in Figure 10. The results exhibit reasonable
conformance to Theorem 1.

D. Loss polices that conform to ONE

We observed TCP window synchronization in experiments
with DropTail. In order to validate Theorem 1, our aim is to
design experiments in which assumption ONE holds, i.e. at
each congestion event exactly one connection is signaled con-
gestion. To that end, we implement a loss-policy—threshold-
dropper—described as follows. The queue buffer length is set
to virtually infinite value. The dropping is based on a finite
positive threshold Th and loss policy described as follows.
Consider the system from a time at which there are at most Th

queued packets. The first packet arrival that exceeds threshold
is dropped and the corresponding connection is declared se-
lected. The selected connection remains selected for an interval
of τ time units, where τ is set to a factor of the mean round-trip
time. This process repeats. No packets are dropped during this
period. It is clear from the description that threshold-dropper
enforces assumption ONE. It also permits implementation of
various loss polices.

Figure 11–left shows throughput achieved with threshold-
dropper that implements rate-independent loss policy. We
note a good qualitative conformance with Theorem 1, in
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Fig. 8. Sum of congestion windows over all TCP connections for (top) N = 5
and (bottom) N = 10, competing for bottleneck link with propagation round-
trip time 120 ms and buffer lengths as indicated in the figure. The results
clearly indicate synchronization of TCP connections.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

time (sec)

W
in

d
o
w

s
 (

p
a
c
k
e
ts

)

Fig. 9. Synchronization in DropTail bottleneck with N = 10 and b = 5.

particular when the number of connections is not too large.
For sufficiently large number of connections, the throughput
is essentially equal to the link capacity. In these case, the
queue does not deplete, which explains larger throughput than
predicted by the analysis. Analogous results for largest-rate
loss policy are showed in Figure 11–right. The experimental
results obtained for rate-independent and largest-rate policy
match well, which indicates throughput insensitivity. This is
in conformance to the analysis.

We further provide results that indicate threshold-dropper
mitigates TCP window synchronization. Figure 12–top shows
the congestion window evolution of 10 individual TCP connec-
tions. This is substantiated by looking at the sum of congestion
windows in Figure 12–bottom. The alert reader will compare
this with Figure 8.

1) What loss polices emerge with DropTail and RED?: It
is often assumed that a connection observes loss events with
intensity in time proportional to send rate. This corresponds

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



0 5 10 15
0.75

0.8

0.85

0.9

0.95

1

N

T
hr

ou
gh

pu
t/C

ap
ac

ity

T
h
=3,b=100

T
h
=2,b=100

T
h
=3,b=30

Theorem 1

0 5 10 15
0.75

0.8

0.85

0.9

0.95

1

N

T
hr

ou
gh

pu
t/C

ap
ac

ity

T
h
=3,b=100

T
h
=2,b=100

T
h
=3,b=30

Theorem 1

Fig. 11. The ratio of the throughput and link capacity versus the number of connections N with threshold-dropper: (left) rate-independent, (right) largest-rate.
The results conform well with Theorem 1 (solid line).
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Fig. 10. Time-average send rate normalized with link capacity versus the
number of TCP connections. Results are obtained in ns-2 for RED with
varying buffer length as indicated in the figure.

to rate-proportional loss policy introduced earlier. We inves-
tigate over a limited set of experiments whether or not rate-
proportional loss policy emerges with DropTail and RED. To
that end, we proceed with the following test. Time is binned
into consecutive intervals of length T time units. A connection
is assumed to receive a congestion indication in a bin n, if there
is at least one packet drop for this connection in the nth bin.
The window size of the connection i in bin n is denoted by
wi(n). Our goal is to estimate IP(zi(n) = 1|wi(n) = w), where
zi(n) = 1 if the connection i is indicated congestion in bin n,
else zi(n) = 0. We estimate this conditional probability by the
empirical mean

z̄(w) :=
∑n ∑N

i=1 1{zi(n)=1,wi(n)=w}
∑n ∑N

i=1 1{wi(n)=w}
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Fig. 12. (Top) Congestion windows of N = 10 TCP connections, (bottom)
sum of all congestion windows. The loss policy is threshold-dropper with
threshold Th = 3. The results suggest absence of synchronization.

which under stationary and ergodicity assumptions converges
with probability 1 to IP(zi(n) = 1|wi(n) = w), as number of
time bins tends to infinity. In Figure 13, we show the empirical
mean z̄(w) versus w for systems of N = 10 TCP connections
with propagation round-trip time of 120 ms and DropTail link
for buffer sizes = 5, 10, 15, 20 packets. Same is showed
in Figure 14, but for RED. Some of the results suggest the
larger the congestion window of a connection just before a
link loss event is, the more likely the connection is signaled
a congestion indication.
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Fig. 13. Empirical estimate of IP(zi(n)|wi(n) = w) versus the window size
w for DropTail link and 10 TCP connections, for buffer length as indicated
in the graphs.
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E. Internet measurements

We now proceed with more realistic experiments by mea-
surements on the internet planet-scale testbed, PlanetLab [2].
We choose randomly a set of distinct end-to-ends path from
different continents such as Europe and North America. For
each path, we conduct 10 repeated experiments. Each set of
measurement starts with parallel TCP transfers with up to 20
or 50 parallel TCP connections. We measure the aggregate
throughput obtained using the tool iperf [3] and round-trip
time using ping. Some basic information about end-to-end
paths is showed in Table I.

The measured throughputs are showed in Figure 16 in which
each run is for 10 sec duration (i.e., default in iperf and corre-
sponds to at least 50 RTT samples). We set c to be the highest
throughput ever observed among all runs. In Figure 16, we
note a very good match of measurements inria-stanford
with Theorem 1. The measurements LAN suggests buffer
saturation. All results exhibit qualitative conformance with the
throughput increase with the number of connections predicted
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Fig. 15. Complementary distribution function of the number of connection
assigned a packet drop in an interval length of const times RTT for 10 parallel
TCP connections.

by the analysis. In Figure 16, the receiver window sizes are set
as given in Table I. In order to ensure that TCP connections are
not receiver window constrained, we increase the receiver win-
dow to 200 MBytes on a linux host, frumious.bu.edu. In
Figure 18, we show measured throughputs on planetlab hosts
at MIT, UCSD and Cornell along with result of Theorem 1.

We next investigate whether connections are synchronized.
On distinct end-to-end paths, we run iperf tool with 10
parallel TCP connections. We collect packets transmitted in
both directions of a connection with tcpdump from which we
infer loss events. We clump loss events to congestion events
based on a time threshold (a factor of the round-trip time) and
count the number of distinct connections, Mn, that suffer at
least one loss event in a time bin n. We plot the empirical
complementary distribution function of Mn in Figure 15. We
observe that Mn is a small fraction of N = 10 on almost all
paths. Furthermore, we plot loss events over time in Figure 17
and observe that losses do not appear clustered together, which
suggests absence or weak TCP window synchronization. We
further plot congestion window evolution of 10 connections
transferring data for 20 mins on the path Cornell-BU–see
Figure 19. We found this path to be lossy and congestion
window evolutions exhibit some synchronization. In Figure 18
(middle), we observe a linear growth in throughput for N ≤ 5
but we ensure there is no receiver window limit by setting it a
sufficiently large value. Moreover, bandwidth-delay product
of the path, UCSD-BU is around 1MByte (assuming c =
100Mbps). It could be the reason that the connections are
application limited (i.e., iperf) and N ≤ 5 connections may
never saturate the link. We observe 5 loss-events in MIT-BU
path, 2 on UCSD-BU path and 501 on Cornell-BU path in
one run of each experiment whereas the measured throughputs
are averaged over 10 runs.
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TABLE I

SET OF END-TO-END PATHS USED IN MEASUREMENTS

path Source host Destination Host RTT Receiver Buffer Size

umass-berkeley planetlab1.cs.umass.edu planetlab2.millennium.berkeley.edu 97ms 256 KBytes
inria-stanford planetlab3.inria.fr planet2.scs.stanford.edu 194.7ms 256 KBytes
cornell-greece planetlab4-dsl.cs.cornell.edu planet2.ics.forth.gr 337.9ms 256 KBytes

LAN einat.inria.fr titeuf.inria.fr 1.6 ms 128 KBytes

MIT-BU planetlab1.csail.mit.edu frumious.bu.edu 0.993ms 200 MBytes
UCSD-BU planetlab1.ucsd.edu frumious.bu.edu 84.2ms 200 MBytes
Cornell-BU planetlab4-dsl.cs.cornell.edu frumious.bu.edu 66.7ms 200 MBytes
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Fig. 16. Throughputs measurements of N parallel TCP connections. For each N, 10 distinct measurements were conducted and aggregate throughput was
measured using [17]. The figures show boxplots that indicate the measurement samples are concentrated around corresponding average values. Solid line
is the result of Theorem 1 interpolated by fitting the measured value for N = 50 with the corresponding analytical value. The measurement results exhibit
qualitative growth of the throughput with N as predicted by the analysis. The latter shows particularly good conformance with Theorem 1.
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Fig. 18. Same as in Figure 16 but for paths MIT-BU, UCSD-BU and Cornell-BU. Measurements were done directly using iperf and aggregate throughput
is averaged over 10 runs where each run was for 50sec

VI. CONCLUSION

We found a formula for aggregate throughput of parallel
connections that individually adapt their send rates according
to additive-increase, multiplicative-decrease connections, as
in TCP congestion avoidance mode. The result is obtained
under assumption that loss events over connections are non
synchronized and queueing is negligible. Other than that, the
result holds under much generality; in particular, it allows for
various loss assignments over connections over distinct loss
events in time.

The implications of the result are: (i) it suggests an explicit
dependence of the aggregate throughput on the number of par-

allel TCP sockets; (ii) it tells the throughput deficiency due to
additive-increase, multiplicative-decrease adaptation is almost
entirely eliminated already with a few connections (≥ 90%
utilization for as few as 3 sockets); (iii) it reveals aggregate
throughput insensitivity on the way losses are assigned over
competing connections [a property found in [5], but under
more restrictive assumptions].

Our Internet measurements identify cases when the model
assumptions seem to be verified and there is a good confor-
mance between the theory and measurements. On the other
hand, the measurements also discover cases when throughput-
deficiency is due to synchronization of losses (window syn-
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Fig. 17. Connections incurring loss events versus time These experiments
show loss events when 10 parallel connections run for 5 mins subsequently
to experiments in Figure 16. In some cases loss events are rare.

chronization) and receiver window constraint.
The result suggests that over Internet paths with neither

synchronized losses nor receiver window limitation, already
a few parallel TCP sockets would suffice to eliminate the
throughput-deficiency of the additive-increase, multiplicative-
decrease adaptation.
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