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Abstract—We study in this paper the question of determining
locations of base stations (BSs) that may belong to the same or to
competing service providers, taking into account the impact of these
decisions on the behavior of intelligent mobile terminals who can
connect to the base station that offers the best utility. We first study
the SINR association-game: we determine the cells corresponding
to each base stations, i.e. the locations at which mobile terminals
prefer to connect to a given base station than to others. The Signal
to Interference and Noise Ratio (SINR) is used as the quantity that
determines the association. We make some surprising observations:
(i) displacing a base station a little in one direction may result
in a displacement of the boundary of the corresponding cell to
the opposite direction; (ii) A cell corresponding to a BS may be
the union of disconnected sub-cells. We then study the Stackelberg
equilibrium in the combined BS location and mobile association
problem: we determine where to locate the BSs so as to maximize
the revenues obtained at the induced SINR mobile association game.
We consider the cases of single frequency band and two frequency
bands of operation. Finally, we also consider Stackelberg equilibria
in two frequency systems with successive interference cancellation.

I. INTRODUCTION

As mobile communication technologies rapidly develop, in-
telligent mobile terminals capable of accessing multiple radio
access technologies will decide for themselves the wireless access
technology to use and the access point with which to connect.
These capabilities should be taken into account while designing
and deploying wireless networks.

In this paper we study some hierarchical decision making
problems arising in the uplinks of cellular networks. We first
address the problem of association: given multiple base stations
(BS) capable of providing services to a mobile, to which BS
should the mobile connect? This is studied in a non-cooperative
context where each mobile connects to the BS that provides it
with the best signal to interference and noise ratio (SINR). The
associations determine the cells corresponding to each BS. We
characterize the nature of cells as a function of BS locations.

We then consider the problem of determining the location of
base stations, taking into account the behavior of the mobiles
that will be induced by the location decisions. We study cases
where the BSs cooperate (for e.g., they belong to the same service
provider) and those where they compete with each other for
throughput. The later scenario results in a location game between
the BSs.

Related work: Plastria [4] presented an overview of the research
on locating one or more new facilities in an environment where
competing facilities already exist. Gabszewicz & Thisse [1]
provided another general overview on location games.

Mazalov & Sakaguchi [3] and references therein studied
competition over prices of goods between facilities that have
fixed positions. They then derived the equilibrium allocation
of customers. Such games, as well as hierarchical games in
which firms compete for the location or over prices which then
determine the customer-allocation equilibrium, were introduced
by Hotelling [2] in 1929. When considering such games over a
finite line segment with two firms, the models under appropriate
conditions give rise to a partition of the segment into two convex
subsegments or “cells” as introduced in our context.

An interesting difference between the settings above and our
setting, which is also defined on a finite line segment, is that in
our case more complex cells are obtained at equilibrium. Another
difference is the cost structure that arises in the cellular context.
Hotelling [2] considered a general cost related to the distance
between the customer and the firm it chooses; this cost however
depended only on the distance and not on the actual location
of the firm. This does not hold in our case: the throughput of
the mobile depends on the interference at the base station which
in turn depends on the location of the base station. We finally
note that in our model, the throughput of a mobile, which can
be considered as the “demand”, is not fixed and depends on the
location of the base stations.

A description of the model studied in this paper and the
notation used can be found in Section II and Appendix A.

Our contribution: We derive analytical expressions for the cell
boundaries (Section III-A). This allows us to study the geometric
properties of cells as a function of the locations of the BSs.
We then study the Stackelberg equilibrium in the combined BS
location and mobile association problem: we determine where
to locate the BSs so as to maximize the revenues obtained at
the induced SINR-based mobile association game. We consider
cases where BSs are on the same frequency band (Section
III-B) or on different frequency bands (Section IV). Subsequently,
we consider BSs capable of successive interference cancellation
(SIC) decoding. After a discussion on the association problem
and the single frequency band case, we analyse the case of
different frequency bands and give a complete characterization
of the equilibria that arise (Section V).

II. THE MODEL AND NOTATION

Our focus is on communication in the uplink direction, i.e.,
from the mobiles to base stations (BS). Mobiles and BSs lie in the
two-dimensional plane R

2. A large number of mobiles are placed
uniformly over the segment [−L, L] on the first of the coordinate
axes. As the number of mobiles becomes large, we obtain the fluid
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approximation with uniform density of mobiles in the segment
[−L, L]. For details see Appendix A. There are two BSs, BS 1
and BS 2, located at (x1, 1) and (x2, 1), respectively (say on the
top of a flat building whose height is one unit). BSs cooperate
if they belong to the same operator, and compete if they belong
to different operators. We permit placements of BSs outside the
area where mobiles exist, i.e., xj < −L and xj > L are allowed
for j = 1, 2. In the following, we use only the first coordinates to
specify locations (with the understanding that second coordinates
are 0 in case of mobiles, and 1 in case of BSs).

Transmitters are point sources radiating in two-dimensional
space with circular wavefronts (respectively, three-dimensional
with spherical wavefronts). We consider a power law path loss
model with exponent α; i.e., the power from a radio transmitter
attenuates as distance raised to the power α (see Appendix A). A
mobile located at y has a channel “gain” of [(y− xj)

2 + 1]−α/2

to BS j. All mobiles are assumed to transmit at a power such that
the power density along the line is unit power per unit length.
Thermal noise at the BSs is assumed to be Gaussian with noise
variance σ2 per sample.

At any time, each mobile is associated with exactly one BS.
Let Aj ⊂ [−L, L] be such that the mobiles in Aj are associated
with BS j. Aj will be called cell j. The utility of a mobile at y is
assumed to be a non-decreasing function of the SINR density at y,
as seen at the BS to which the mobile is associated. The SINR
density depends on the interference model under consideration
and will soon be specified.

A. Interference models

Mobiles that connect to a particular BS may or may not cause
interference to the other BS depending on whether the BSs
operate on the same or different radio frequency (RF) bands.
We consider both the cases in this paper. The case in which
the same frequency band (channel) is used at both the BSs
occurs if the wireless network operates in an unlicensed band (for
example, WiFi networks); in such a case, base stations belonging
to different networks (or providers) may use the same RF band.
We call this the single-frequency case. If the wireless network
operates in licensed RF bands, two neighboring BSs would
operate in disjoint RF bands. We call this the two-frequencies
case. We now discuss the useful energy collected and interference
seen at a BS in the single- and two-frequencies cases. For this
purpose, it is useful to define the following functions. Define

g(y) := [1 + y2]−α/2. (1)

For a set S ⊆ [−L, L] and candidate BS location x, define

E(x, S) :=

∫

S

g(y − x) dy. (2)

and Eo(x) := E(x, [−L, L]). The dependence of g, E, and Eo

on α is understood.
1) The single-frequency case: In this case, power from all the

mobiles is received at both the BSs. The total received power
at BS j located at xj is therefore given by E(xj , [−L, L]) =
Eo(xj). Assuming that the receiver treats other users’ received
signals as Gaussian noise, all of this received signal will clearly
be interference to a mobile at y because the mobile’s own
contribution to this is infinitesimal.

With this interference interpretation for Eo(xj), we now high-
light some of its properties. It is straightforward to see via change
of variables that

Eo(x) =

∫ L−x

−L−x

g(y) dy =

∫ arctan(L−x)

arctan(−L−x)

(cos θ)α−2 dθ (3)

Closed form expressions are available for Eo when α takes
integer values. In particular, for α = 2 we get

Eo(x) = arctan(L− x) + arctan(L + x), (4)

and for α = 1 we get

Eo(x) = arcsinh(L− x) + arcsinh(L + x). (5)

The above expressions motivate the following definition of the
α-parametric function

arctanα (x) :=

∫ x

0

g(y) dy, x ∈ R.

Then clearly arctanα (·) is an odd function1 that is increasing,
differentiable with derivative g, and sigmoidal2. We may therefore
write the received energy at location xj (and therefore the
interference in the single-frequency case) as

Eo(xj) = arctanα (L− xj) + arctanα (L + xj) . (6)

The following is a useful property of Eo.
Proposition 2.1: Eo is an even function with a unique maxi-

mum at 0. Moreover, Eo(|x|) monotonically decreases with |x|.
Proof: See Appendix B.

2) The two-frequencies case: Unlike the previous setting, in
which the two BSs operate on the same RF band, in the two-
frequencies case the total interference at each BS depends on the
association decisions of mobiles. Indeed, the interference power
at BS j is the total power received at that BS from all mobiles
that actually associate with it. The total received power at BS j
is thus given by E(xj , Aj).

For example, suppose A1 := [−L, θ] and A2 := (θ, L] denote
the two cells for some θ ∈ [−L, L]. Then the interference power
at BS 1 is E(x1, A1) = arctanα (θ − x1)− arctanα (−L− x1).
The formula for E(x2, A2) is obtained analogously.

B. The SINR-equilibrium association

We shall first consider the case in which the BSs locations
are fixed, and each mobile has option of associating with one of
the BSs. The continuum of mobiles constitute the players in this
association game.

Consider a mobile at y. Its utility is a nondecreasing function of
the throughput density at y. From the fluid model (see Appendix
A), the throughput density at location y increases linearly with
SINR density. Thus, this mobile chooses a BS with the higher
SINR density. Let Ij be the set of interferers as seen at BS j. If
the mobiles at point y are associated with BS j, the SINR density
there is

SINR(y, xj , Ij) :=
g(y − xj)

E(xj , Ij) + σ2
(7)

1It is an odd function because arctanα (−x) = − arctanα (x).
2A function is sigmoidal, if it is concave to the right of a particular point and

convex to its left. The second derivative of arctanα (x) = g′(x) = −αx[1 +
x2]−(1+α/2). Inflection point for arctanα (·) is therefore 0.
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A mobile at y ∈ [−L, L] will therefore prefer to associate with
BS 1 if SINR(y, x1, I1) ≥ SINR(y, x2, I2).

We observe that in the single-frequency case, Ij = [−L, L].
Thus, the SINR density at a location, as seen at BS j is fixed.
However, in the two-frequencies case, Ij = Aj , j = 1, 2. Hence,
the SINR density at a location, as seen at BS j is a function of
the cell Aj .

Definition 2.1: The cell partition (A1, A2) is said to be an
SINR-equilibrium if the following holds: y ∈ A1 if and only
if SINR(y, x1, I1) ≥ SINR(y, x2, I2).

Remark 2.1: This definition of equilibrium is similar to the
Wardrop equilibrium in road traffic [6]. Note, however, that
usually, in Wardrop equilibrium the utility of choosing a resource
(a link) depends on the set of users that make the same choice
through their total “number” (their fraction or their mass). Ex-
tensions exist to the case where there is a finite number of user
classes and the utility of using a link for a user in a given class
depends on the amount of users of each one of the classes that
use the link [5]. Our model leads to such a multiclass Wardrop
equilibrium with a continuum of classes.

C. Hierarchical equilibrium problem

We shall also consider placement of BSs taking into account
the SINR-equilibrium that follows when mobiles associate to
maximize their SINR density. The BSs play a location game:
BS j decides to place itself at (xj , 1) where xj ∈ R, j = 1, 2. The
utility of a BS is a monotone function of the aggregate throughput
of all the mobiles associated with it. Since the throughput density
at location y increases linearly with SINR density, we may simply
set the integral of SINR density over the cell of a BS as its utility.
Thus for BS j with cell Aj and interferers Ij , the utility is

1

2

∫

Aj

SINR(y, xj , Ij) dy =
1

2

∫

Aj

g(y − xj) dy

E(xj , Ij) + σ2

Once the BSs choose their locations, Aj , Ij , and thus the utility
of BS j are determined by the association game played by
the mobiles. We thus have a Stackelberg-like game with the
lead players being the two BSs (who may either cooperate or
compete) and the followers the continuum of users (who compete
to maximize their respective SINR densities). We refer to this as
the hierarchical equilibrium problem.

III. CDMA: THE SINGLE-FREQUENCY CASE

A. SINR-equilibrium association

We begin by describing some surprising features of the SINR-
equilibrium (see Definition 2.1) that distinguish this from other
association games. We set L = 10 (so that mobiles are con-
centrated over the interval [−10, 10]) and the noise parameter
σ = 0.3. We place BS 1 at one of the fixed locations x1 where
x1 = −10,−5,−2, 0. For each of these, we vary the location
of BS 2 from x2 = 0 to x2 = 20 (see Figure 1). The left
column of plots corresponds to a path loss exponent of α = 2
and the right one to α = 1. The equilibrium sets Aj turn out
to have the form A1 = [θ1, θ2], A2 = [−L, θ1) ∪ (θ2, L] for
x1 = 0,−2, and A1 = [−L, θ2], A2 = (θ2, L] for x1 = −5,−10.
The top (respectively bottom) row of plots depict the threshold
θ2 (respectively θ1) as a function of BS 2 location x2. See the
following for more details.

1) Observations:
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Fig. 1. Thresholds determining the cell boundaries (vertical axis) as a function
of the location of BS 2 (horizontal axis) for various locations of BS 1. The path
loss exponent α is 2 in the left Figure and 1 in the right one.
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Fig. 2. Upper cell boundary of cell A1 (vertical axis) as a function of the
location of BS 2 (horizontal axis) for various locations of BS 1.

a) Non-convex cells: For all the locations of BS 1, x1 =
−10,−5,−2, 0, mobiles in (θ2, L] have a better SINR density at
BS 2. Let us concentrate on the curves corresponding to x1 = −2
in Figure 1. When BS 2 is located sufficiently far to the right of
the origin, the interference at BS 1 is large compared to that at
BS 2 (see Proposition 2.1). Thus, mobiles sufficiently far away
and to the left of BS 1 (those in [−L, θ1)) also have a better
SINR density at BS 2 despite BS 2 being the farther base station.
Thus, in this case, A2 = [−L, θ1)∪ (θ2, L], a non-convex set. A2

is similarly non-convex when x1 = 0 and x2 is sufficiently far
to the right (or left).

b) Non-monotonicity of the cell boundaries: We observe a
surprising non-monotonicity of the threshold θ2 (θ1 also, in the
the curves corresponding to x1 = −2, 0 and α = 2) as a function
of the location x2 of BS 2. θ2 first increases with x2 until about
x2 = 8, then it decreases with x2 until around x2 = 14; finally,
for larger x2, θ2 again increases. Analogous observations can be
made for θ1.

The dashed line in Figure 2 shows a zoomed-in view of the
x1 = −10 case of the top-left plot of Figure 1. The threshold,
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θ2, increases beyond 0 until x2 is about 8 units to the right of
the origin, and then returns to 0 when x2 = 10. This can be
understood as follows. Clearly, for x2 = 10 the interferences at
both the BSs are the same, hence, θ2 = 0, the midpoint. Now
imagine moving BS 2 a little to the left (i.e., decreasing x2).
Now |x2| < |x1|. Thus, from Proposition 2.1, the interference
Eo(x2) at BS 2 is larger than Eo(x1), the interference at BS 1.
This makes it advantageous for mobiles a little to the right of
the origin also to associate with BS 1; hence θ2 increases as
x2 decreases from x2 = 10. Further decrease in x2 makes BS 2
more proximate to mobiles on the negative x-axis, thus ultimately
causing θ2 to return to 0, and even cross below 0, as x2 decreases
further. As x2 increases beyond 10, the interference perceived
by it decreases, thus making it advantageous for mobiles a little
to the left of the origin also to associate with BS 2; hence θ2

decreases as x2 increases beyond x2 = 10. Once BS 2 is moved
far from the region where the mobiles exist, the signal power
to x2 becomes smaller and smaller, and association with BS 1
becomes increasingly better for mobiles to the right of the origin,
causing θ2 to increase.

The top row of plots in Figure 1 suggests that θ2 is perhaps
monotone in the position of BS 1. But this is not true because a
closer look at the θ2 curves in Figure 2 for x1 = −10,−8 shows
that they cross each other several times.

2) Discussion: The form of equilibria displayed in the SINR-
association examples is unusual in the class of location games.
The reason for the unusual features lies in the SINR criterion:

• If a mobile is very close to a BS, path gain from the mobile
to the BS will be very high. Thus, the mobile connects to this
BS, even if the interference suffered by this BS is relatively
higher.

• If a mobile is located sufficiently far from both BSs, then
the relative difference in the powers received at the BSs will
be small. Thus the mobile will prefer to connect to BS that
suffers from less interference.

• If a mobile is at moderate distance from both the BSs, it
takes into account both the factors (i) path gains to the
BSs and (ii) interferences suffered the BSs, while making
association decision.

3) Closed form expressions for cell boundaries: In this sec-
tion, we provide closed form expressions for cell boundaries.
Without loss of generality we assume that BS 2 is located closer
to the origin than BS 1, i.e., |x1| ≥ |x2| ≥ 0. Define the αth root
of the ratio of the net interferences (including thermal noise) at
the two base stations to be

Bα(x1, x2) =

(

Eo(x1) + σ2

Eo(x2) + σ2

)1/α

.

On account of |x1| ≥ |x2| ≥ 0 and Proposition 2.1, we have
Bα(x1, x2) ≤ 1.

Proposition 3.1: Let BS 1 be located at x1 and BS 2 at x2

where |x1| ≥ |x2| ≥ 0. The set of mobile locations that connect
to BS 2 is nonempty if and only if

τ := |x2 − x1| ·
Bα(x1, x2)

1−B2
α(x1, x2)

≥ 1. (8)

If the condition holds then the set of locations that connects to

BS 2 is given by the interval3

x2 − x1B
2
α(x1, x2)

1−B2
α(x1, x2)

+
(

−
√

τ2 − 1,
√

τ2 − 1
)

.

Proof: Mobiles that connect to BS 2 will have a higher SINR
density to BS 2, i.e.,

[(y − x2)
2 + 1]−α/2

Eo(x2) + σ2
>

[(y − x1)
2 + 1]−α/2

Eo(x1) + σ2

which implies that

(y − x2)
2 + 1 <

(

(y − x1)
2 + 1

)

B2
α(x1, x2).

As B2
α(x1, x2) ≤ 1, the above inequality holds when a convex

quadratic function of y is strictly negative. The positive discrim-
inant condition straightforwardly yields that the set connecting
to BS1 is nonempty if and only if (8) holds. The roots of the
convex quadratic equation are given by the ends of the specified
interval. Since the convex quadratic function is strictly negative
in the interval between the roots, BS 2 has the higher SINR in
this interval.

When |x2| ≥ |x1| ≥ 0, the roles of BS 1 and BS 2 are
switched: BS 1 sees more interference, its cell A1 may be empty,
and when nonempty, A1 is an interval.

B. Hierarchical equilibrium

1) Single base station: Suppose there is only one BS. Given
that the interference is maximum at the origin and decreases
monotonically with distance from the origin, where should it be
placed to maximize utility? The utility of the BS, when placed
at x, is given by

1

2

∫ L

−L

g(y − x)

Eo(x) + σ2
dy =

1

2

Eo(x)

Eo(x) + σ2

which is maximized when Eo(x) is maximized, i.e., at x = 0.
Despite the high interference, the origin is the best location to
maximize the utility given the nature of the utility function.

2) Two cooperating base stations: We now consider optimal
joint placement of two BSs to maximize the sum utility. This
would be of interest when both BSs belong to the same operator.
Recall that BSs make decisions keeping in mind the SINR-
equilibrium associations of mobiles. Simulations indicate that
sum utility is maximized when −x1 = x2, i.e., the BSs are
equidistant from the vertical axis. We call such a placement as
symmetric. The SINR-equilibrium cells turn out to be [−L, 0]
and (0, L] in this symmetric case.

Figure 3 depicts the utility obtained by each BS for symmetric
placement −x1 = x2 = x, as a function of x. We see that the
origin and the extreme points (at distance 10 from the origin)
are suboptimal locations. We also observe that the performance
close to the optimal location is quite robust to perturbations of
BS locations.

Further experimentations reveal that, as σ is increased, optimal
distance of the BSs from the origin as well as the optimal
utility, both decrease (see Figure 4). As σ → ∞, the optimal
symmetric locations of the BSs converge to -5 and 5. This is
expected because at very large σ, interference does not play any
role, and the BSs should be placed to maximize the total energy

3The notation a + (b, c) is short for the interval (a + b, a + c).
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Fig. 3. Optimal symmetric placement of base stations: cooperative case; here
L = 10, α = 2 and σ takes the values 0.4, 1, and 2.
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Fig. 4. The top plot shows optimal utility and the bottom plot the optimal
symmetric distance from origin for two BSs, as a function of thermal noise
standard deviation.

collected from the respective cells, E(x, (0, L])+E(−x, [−L, 0]).
Proposition 2.1 says that this is maximized by choosing x and
−x to be the mid-points of the respective intervals, i.e., x = L/2,
which is 5 in our example.

−10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x
2

Ut
ility

 

 
x

1
 = −2

x
1
 = −5

x
1
 = −8

x
1
 = −10

Fig. 5. Utility of BS 2 as a function of its location when we position BS 1 at
x1 where x1 = −2,−5,−8,−10.

3) Two non-cooperating base stations: We now consider a
non-cooperative game between the two BSs. This may arise when
these BSs belong to two different operators, but operate on the
same RF band. The BSs move simultaneously and pick their
respective locations, again keeping in mind the SINR-equilibrium
associations of mobiles.

Figure 5 has in the horizontal axis the location x2 of BS 2 and
on the vertical axis the utility it achieves. The figures are obtained
for L = 10, σ = 0.3, α = 2. There are 4 curves that correspond
to four locations of BS 1: x1 = −2,−5,−8,−10. From these
curves, one can conclude that the utility of BS 2 is quite robust
to placement errors around the best response location, for the
indicated values of BS 1 locations.

Figure 6 shows the best response of BS 2 to a BS 1 location.
BS 1 is moved along the segment to left of the origin. In the figure
the horizontal axis is −x1, distance of BS 1 from the origin. A
positive best response value indicates a location on the other side
of the origin away from BS 1. The maximum utility itself does not
change that much with location of BS 1. Numerical computations
indicate the existence of a unique pure strategy equilibrium at
−x1 = x2 = 7.36.
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Fig. 6. The top plot shows the best response of BS 2 when BS 1 at a distance
indicated by abscissa to the left of the origin. The bottom plot shows the resulting
throughput for BS 2.

In Table I we compare the optimal location of the cooperative
case and the equilibrium location of the non-cooperative case, as a
function of σ. We observe that at the non-cooperative equilibrium,
the BSs are closer than at the cooperative optimum. In both cases
the distances decrease in σ and tend to a limit which is −x1 =
x2 = 5 for the cooperative case and −x1 = x2 = 4.106 for
the non-cooperative case. (These answers are related to those of
Section V).

TABLE I
COOPERATIVE AND NON-COOPERATIVE PLACEMENTS OF BSS AS A

FUNCTION OF σ

σ 0.1 0.4 1 2 40
Optimum dist.

of BSs to 0 8.658 7.745 6.435 5.591 5.002
(cooperative)

Equilibrium dist.
of BSs to 0 8.10 6.95 5.50 4.667 4.09

(non-cooperative)

IV. CDMA: THE TWO-FREQUENCIES CASE

We now consider the case when the BSs operate on disjoint
RF bands.

A. SINR-equilibrium association

We study the properties of the SINR-equilibrium partition and
arrive at a numerical method to compute it.

Recall that the interference at BS j in the two-frequencies case
is E(xj , Aj). Without loss of generality, relabel indices so that

B :=

[

E(x1, A1) + σ2

E(x2, A2) + σ2

]1/α

≤ 1.

At equilibrium, y ∈ A2 if and only if

g(y − x2)

E(x2, A2) + σ2
>

g(y − x1)

E(x1, A1) + σ2
,

⇐⇒ (y − x2)
2 + 1 <

(

(y − x1)
2 + 1

)

B2,
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where B2 ≤ 1. Proceeding exactly as in the proof of Propo-
sition 3.1, we get A2 to be the set of y such that a convex
quadratic function of y is negative. Thus A2 is an interval and its
complement A1 a union of at most two intervals. More precisely,
the boundaries are given as follows. We first find

τ(B) := |x1 − x2| ·
B

1−B2
. (9)

If τ(B) ≤ 1, A2 is empty, B2 = (E(x1, A1) + σ2)/σ2 > 1, a
contradiction. Thus τ(B) > 1 and A2 is given by the interval (as
in the proof of Proposition 3.1)

(g1(B), g2(B))

:=
x2 − x1B

2

1−B2
+
(

−
√

τ(B)2 − 1,
√

τ(B)2 − 1
)

.

This gives expressions for the end points of intervals that make up
A1 and A2 in terms of B. To emphasize that A1 and A2 depend
only on B, we write A1(B) and A2(B). At SINR-equilibrium,
we must therefore have

Bα =
E(x1, A1(B)) + σ2

E(x2, A2(B)) + σ2
,

for a B ≤ 1. This can be written as an implicit equation in B
when α = 2 as

B2 =
[arctan(L− x1)− arctan(dg2(B)eL − x1)
+ arctan(bg1(B)c−L − x1)− arctan(−L− x1) + σ2

]

arctan(dg2(B)eL − x2)− arctan(bg1(B)c−L − x2) + σ2
,

where dmeL = min{m, L}, bmc−L = max{m,−L}, and
τ(B) > 1. A similar equation holds for all α with a closed
form expression for integral α ≥ 1. (For α = 1, replace arctan
by arcsinh, and B2 on the left side by B). Since τ(B) > 1
implies B ∈ (

√
d2 + 1− d, 1], where d = |x1 − x2|/2, we may

numerically search for a B that solves the above equation through
a suitably fine quantization of the specified interval.

Finally, if a B ≤ 1 satisfying the above equation does not exist,
we relabel the indices and repeat the procedure. Accordingly, we
obtain the higher interference cell, and the corresponding cell
boundaries, for a given pair of BS locations.

As a simple example, consider the symmetric case when
−x1 = x2. It is easy to verify that the cell partition (A1, A2) =
( [−L, 0], (0, L] ) is an equilibrium partition with B = 1.

B. Hierarchical equilibrium

1) Two cooperating base stations: The goal here is to place
the two BSs so that the sum utility is maximized taking into
account the SINR-equilibrium mobile associations.

Proposition 4.1: The locations −x1 = x2 = L/2 with SINR-
equilibrium cell partition (A1, A2) = ( [−L, 0], (0, L] ) maxi-
mizes the sum utility.

Proof: For a given pair of locations x1 and x2, let (A1, A2)
be the SINR-equilibrium cell partition. For convenience let uj :=
E(xj , Aj), j = 1, 2, be the received energy at BS j. Then the

sum utility satisfies the following:
2
∑

j=1

1

2

uj

uj + σ2
≤ (u1 + u2)/2

(u1 + u2)/2 + σ2
(10)

≤ umax/2

umax/2 + σ2
(11)

=
E(L/2, [0, L])

E(L/2, [0, L]) + σ2
(12)

where (10) follows from Jensen’s inequality because the function
u/(u + σ2) is concave in u; inequality (11) follows because
the function u/2

u/2+σ2 is monotone increasing in u with umax the
maximum sum of received energies across any partition (not just
SINR-equilibrium partitions). The last equality (12) follows from
Proposition C.1 in Appendix C. The upper bound is independent
of x1 and x2, and is achieved when −x1 = x2 = L/2. The
corresponding intervals indeed constitute an SINR-equilibrium
cell partition.

2) Two non-cooperating base stations: We now consider the
hierarchical game where the BSs compete with each other as in
Section III-B3, but for the two-frequencies case.

Figure 7 yields the best response for BS 2 given BS 1’s
placement. Given a BS 1 location, the higher interference cell
and the equilibrium ratio B are first found as discussed in Section
IV-A, for each possible location of BS 2. Then the BS 2 location
yielding the maximum utility is identified as the best response
location and is plotted in the figure.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

−x
2
: Distance of BS1 from origin (to the left)

Be
st 

res
po

ns
e l

oc
ati

on
 fo

r B
S2

Fig. 7. Two frequency bands: The best response of BS 2 when BS 1 at a distance
indicated by abscissa to the left of the origin. A positive best response indicates
a location on the other side of BS 1.

Numerical computations indicate that there is a unique equi-
librium for the chosen parameters at −x1 = x2 = 4.1. The
corresponding SINR-equilibrium cell partition is A1 = [−L, 0]
and A2 = (0, L]. Note that any unilateral deviation will change
the cell boundaries and yield lesser utility to the deviating BS. If
the BSs were cooperative, the best locations are −x1 = x2 = 5.
However, this latter set of locations is not an equilibrium under
competition.

V. SUCCESSIVE INTERFERENCE CANCELLATION

A. Mobile Association

We now consider the effect of employing successive interfer-
ence cancellation decoding by the BSs. For model description,
see Appendix A. The SINR density seen at BS j, for a mobile
at y ∈ Aj can range from g(y−xj)

σ2 to g(y−xj)
E(xj ,Aj)+σ2 , depending

on the BS’s decoding order. We assume that each mobile first
associates with a BS. The BSs then choose an arbitrary decoding
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order. In the absence of a clear policy for choosing the decoding
order at the BSs, we assume that the mobiles simply associate
to the nearest BS. We may interpret this as an association where
the mobile optimistically believes that it will be decoded last
and therefore expects to see an SINR density of g(y − xj)/σ2

with BS j. If the BSs are co-located, then either association is
chosen with equal probability. Define v = (x1 + x2)/2. Then,
the equilibrium cell partition is A1 = [−L, v], A2 = (v, L] if
x1 < x2, A1 = [v, L], A2 = [−L, v), if x1 > x2, and an
equiprobable choice at every y if x1 = x2.

B. Single-frequency case

Consider the single-frequency case first. Users connected to
BS 1 cause interference at BS 2 and vice-versa. BS 1 and BS 2
have to choose their respective locations. They may do this
cooperatively, or may compete in a simultaneous move game.
Their actions will immediately fix the cell partition. Each BS
then employs successive interference cancellation decoding for
all mobiles in its cell. From the discussion in Appendix A, the
utility of BS 1 is 1

2 log
(

1 + E(x1,A1)
E(x1,A2)+σ2

)

, independent of the
decoding order. A similar expression is obtained for the utility of
BS 2.

Characterization of jointly optimal locations and competitive
equilibria are topics of current study. We do not pursue them in
this paper, except for making the following interesting observa-
tion. In the cooperative case, if σ2 ≈ 0, it is (nearly) best if all
mobiles can associate to one BS. This is because if there is a non-
zero population of mobiles connected to one BS, it generates a
nonzero interference to the other BS. On the other hand, with all
the mobiles associated to one of the BSs, say BS 1, the sum utility
is 1

2 log
(

1 + Eo(x1)
σ2

)

→ ∞ when σ2 → 0. So BS 2 should be
placed very far away so that its cell is nearly empty. Symmetric
points cannot therefore be optimal.

C. Two-frequencies case

We now proceed to the two-frequencies case and give a
complete characterization of both cooperative and competitive
equilibria. Recall from Appendix A that for BS j, the utility with
successive interference cancellation is 1

2 log(1 +
E(xj ,Aj)

σ2 ), j =
1, 2.

1) The cooperative case: In this case, the two BSs cooperate
to maximize sum utility.

Theorem 5.1: Consider the two-frequencies case with two
cooperating BSs that employ successive interference cancellation
decoding. The BS locations that maximize sum throughput are
−x1 = x2 = L/2.

Proof: Recall the notation used in the proof of Proposi-
tion 4.1 where uj = E(xj , Aj). The sum throughput may be
upper bounded as

2
∑

j=1

1

2
log
(

1 +
uj

σ2

)

≤ log

(

1 +
u1 + u2

2σ2

)

≤ log
(

1 +
umax

2σ2

)

= log(1 +
E(L/2, (0, L])

σ2
).

where the first inequality follows from Jensen’s inequality, while
the second follows as in the proof of Proposition 4.1, and third

follows from Proposition C.1. Finally, the upper bound is attained
at −x1 = x2 = L/2 with cell partition ( [−L, 0], (0, L] ). This
completes the proof.

Consider now a case where the BSs are constrained to be
co-located at x. Recall that mobiles pick one or the other BS
with equal probability, so that the energy collected at each BS is
Eo(x)/2 yielding a sum utility log

(

1 + Eo(x)
2σ2

)

. This attains its
maximum when Eo does, which is at x = 0 (see Proposition 2.1).

2) The Non-cooperative Case: Define a := 22/α. For α ∈
[1,∞), we have a ∈ (1, 4]. Recall that if the two BSs are not
co-located, the cell boundary is (x1 + x2)/2. It is not hard to
see that best responses can lie only within [−L, L]. Thus, for
equilibrium analysis, we only need to focus on x1, x2 ∈ [−L, L].
For x1, x2 ∈ [−L, L], the energy collected by BS 2 is r2(x1, x2)
as given in Table II, with a similar table for r1(x1, x2) of BS 1.
The utility of each BS is a monotone function of the energy
collected, and we may therefore assume that BS j’s goal is to
maximize rj(x1, x2).

TABLE II
ENERGY RECEIVED AT BS 2

r2(x1, x2) x2 ∈

arctanα

(

x1−x2

2

)

+ arctanα (L + x2) [−L,x1)

Eo(x1)/2 {x1}

arctanα (L − x2) + arctanα

(

x2−x1

2

)

(x1, L]

Interestingly, the function r2(x1, ·) as a function of x2 is dis-
continuous at x2 = x1 unless x1 = 0. A similar observation holds
for r1(·, x2). We now characterize all pure strategy equilibria.

Theorem 5.2: (i) For L ≤
√

a− 1, there exists a unique
equilibrium in pure strategies at −x1 = x2 = 0.
(ii) For L >

√
a− 1, there exists a unique equilibrium in pure

strategies (up to a permutation) at

−x1 = x2 =
1

a− 1

(

−L +
√

aL2 − (a− 1)2
)

.

Proof: We only give an outline. Consider L >
√

a− 1. Let
x2 > x1 ≤ 0. Differentiating r2(x1, x2) with respect to x2 and
by equating it to 0, we get

∂r2(x1, x2)

∂x2
=

1

2
g

(

x2 − x1

2

)

− g(L− x2) = 0.

The best response x2 to BS 1’s location x1 should satisfy

(L− x2)
2 + 1 = a

[

1 +

(

x2 − x1

2

)2
]

.

Similarly, the best response x1 to BS 2’s location x2 should
satisfy

(L + x1)
2 + 1 = a

[

1 +

(

x2 − x1

2

)2
]

.

Combining these two conditions and after ruling out an infeasible
solution, we get −x1 = x2 = x ≥ 0, where x satisfies
(L − x)2 + 1 = a(1 + x2), a quadratic equation in x since
a > 1. The positive root of this equation yields the solution.
The condition L ≥

√
a− 1 ensures that a solution always exists

and lies in [0, L]. The proof of uniqueness, and the verification
that this calculus-based procedure indeed yields a best response
are omitted.
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For the case L ≤
√

a− 1, it is easy to verify that −x2 = x1 =
0 is an equilibrium. To prove uniqueness, one argues that if there
were another equilibrium, then necessarily the derivative-based
conditions above must hold and x1 and x2 must have the same
sign. These and L ≤

√
a− 1 yield a contradiction.

Remark 5.1: (i) The equilibria locations do not depend on σ.
(ii) As we saw already in Section III-B3 for the case of single
user decoding, the competitive equilibrium locations of base
stations are closer to each other than the optimum locations under
cooperation, a statement that is easy to verify.

3) Convergence to equilibrium: We consider the best response
dynamics in which the location of each of the two base stations
is sequentially adjusted.

Theorem 5.3: Let L ≥
√

a− 1. Assume that BSs follow the
best response dynamics to adjust their positions. Then, starting
from arbitrary initial positions x1 and x2, the best response
sequence converges to the unique equilibrium.

Proof: Again, we only give an outline. It is sufficient to show
the result for the case when, x1, x2 ∈ [−L, L]. The best response
for BS 2 to x1 ≤ 0 is

BR2(x1) =

{

4L−ax1−2
√

a(L−x1)2+(4−a)(a−1)

4−a , a ∈ (1, 4)
L+x1

2 − 3
2(L−x1)

, a = 4

It can be seen that 0 < ∂BR2(x1)
∂x1

< 1− ε for some ε > 0. The
claim holds for x1 > 0 also. Similar results can be shown for
∂BR1(x2)

∂x2

. Thus a slight change in the position of a BS causes
an even smaller change (in the same direction) in the position of
the other BS. This game is thus contracting and the best response
dynamics converges to the equilibrium.

As an example, consider L = 10 and α = 2, i.e., a = 2. Figure
8 illustrates the fast convergence of dynamics from the starting
locations ±5 to the equilibrium locations ±4.107.
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Fig. 8. Convergence to equilibrium for L = 10.

VI. CONCLUSIONS

We studied combined BS placements and mobile associations
in a game-setting where the utilities were determined by SINR
criteria. We saw that the SINR-equilibrium cells exhibited non-
monotonicity and non-convexity properties that are not seen in the
classical location game problems. These unusual properties arise
because the SINR density that determines association is a function
of distance between mobile and BS and also the BS location. We
studied hierarchical equilibria in the CDMA single-frequency and
two-frequencies cases. We saw evidence (via simulations in the
CDMA single-frequency case and via analysis in the other cases)
of a unique optimal pair of locations in the cooperative scenario.

We also saw evidence of a unique equilibrium pair of locations
(up to permutation) in the competitive scenario. For the SIC case,
we completely characterized the optimal cooperative locations
and all pure-strategy competitive equilibria. Interestingly, in all
scenarios considered, the BS locations are closer to each other in
the competitive case than in the cooperative case.

APPENDIX A
PROPAGATION, PATH LOSS, AND FLUID MODELS

Propagation model: A mobile transmitter is modeled as a
point source that radiates in two-dimensional space or three-
dimensional space. The wavefronts emanating from the point
source are circular (respectively, spherical in three-dimensional
space). We assume that the far field model holds and that
antenna couplings between neighboring transmitters and between
transmitters and receiver are negligible, even in the limit as
mobiles get closer to each other.

Path loss model: Under the far-field model for propagation in
two dimensions with circular wavefronts, a receiver at a distance
r from the point source and having aperture arc width s � r
will capture only s/(2πr) of the total transmitted power, so that
propagation loss is proportional to 1/r. If there is further dissipa-
tion in the medium (analogous to shadowing of electromagnetic
waves in three dimensions) we model the propagation loss as
proportional to 1/rα, where α ≥ 1. The path loss model 1/rα

for three dimensional propagation with α ≥ 2 is of course the
standard one.

Fluid model: Consider n mobiles located on a line at positions
−L + j∆y + ∆y

2 , j = 0, 1, · · · , n − 1 with separation spacing
∆y = 2L

n . We use the letter y to represent the discrete location
for finite n, and the continuum location y ∈ (−L, L) when
n → ∞. Each mobile has power ∆p(y) = ∆y, so that we may
think of transmitted power density per unit distance dp/dy as
1 power unit per unit distance, and the total transmitted power
as 2L power units. Consider the BS located at x at a height
of 1 unit from the line. The path loss for a mobile at y is
g(y − x) =

[

1 + (y − x)2
]−α/2

(see (1)). The total received
energy at the BS, if all of these are in the same frequency band,
is

En(x) :=

L−∆y/2
∑

y=−L+∆y/2

g(y − x)∆y

→
∫ L

−L

g(y − x)dy = Eo(x),

where the limit is taken as n→∞. Similarly, the total received
energy from mobiles in a set A ⊆ [−L, L] is

En(x, A) =
∑

y∈A

g(y − x)∆y

→
∫

A

g(y − x)dy = E(x, A).

E(x, A) was defined in (2) and Eo(x) was defined as
E(x, [−L, L]) immediately after.

SINR Density and throughput: Let I ⊆ [−L, L] denote the set
of locations that may be considered as interferer locations. The
signal to interference and noise ratio is then

SINRn(y, x, I) =
g(y − x)∆y

σ2 +
∑

y∈I g(y − x)∆y
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As n → ∞, the denominator tends to E(x, I) + σ2, the
numerator goes to 0, and the ratio SINRn(y,x,I)

∆y → g(y−x)
E(x,I)+σ2 ,

so that the latter may be thought of as SINR density (SINR per
unit distance). Using Shannon’s capacity formula for Gaussian
channels, the data rate for a mobile at location y is

1

2
log (1 + SINRn(y, x, I)) ≈ 1

2
SINRn(y, x, I)

where the natural logarithm is employed and the unit of informa-
tion is nats. (1 nat = 1/(log 2) bits ≈ 1.44 bits). The aggregate
throughput of users in a set A ⊆ [−L, L] is

∑

y∈A

1

2
SINRn(y, x, I)

→ 1

2

∫

A

g(y − x)

E(x, I) + σ2
dy =

1

2

E(x, A)

E(x, I) + σ2
,

which is taken as the utility of a BS in the continuum case.
Successive Interference Cancellation (SIC): Let the interval

A ⊆ [−L, L] denote a set of locations associated with the BS
at x. Suppose that the BS employs SIC. An arbitrary decoding
order is chosen and communicated with the transmitters. For con-
creteness, let us assume that users are decoded in the decreasing
order of y in A. Then all users in A that are to the left of a given
user at y will become interferers to y. The throughput for user
at y ∈ A is therefore

1

2
log

(

1 +
g(y − x)∆y

σ2 +
∑

y′<y,y′∈A g(y′ − x)∆y

)

=
1

2
log



σ2 +
∑

y′≤y,y′∈A

g(y′ − x)∆y





− 1

2
log



σ2 +
∑

y′<y,y′∈A

g(y′ − x)∆y



 .

Summing these up over discrete y ∈ A, and passing to the limit,
we get the aggregate throughput of all the users in set A to be

1

2
log

(

1 +

∑

y∈A g(y − x)∆y

σ2

)

→ 1

2
log

(

1 +
E(x, A)

σ2

)

,

a formula that is used in Section V for the utility of BS. Note
that this remains the sum utility regardless of the decoding order
chosen at the BS. Of course, the data rates for each mobile will
depend on its position in the decoding order. The sender and the
receiver should agree on this data rate and employ an appropriate
code.

Discussion: It should be noted that the two-dimensional prop-
agation (when α ∈ [1, 2)) and our treatment of mobiles as fluid
particles on a line constitute a toy model. The purpose of their
study is to get a qualitative feel for what one might expect in the
three-dimensional propagation model with mobiles distributed in
a plane and receiver antennas placed at a height from the plane.

APPENDIX B
PROOF OF PROPOSITION 2.1

That Eo is an even function, is obvious from (6). To see the
monotonicity, for x ≥ 0, write

Eo(0)−Eo(−x) =

∫ L

−L

g(y) dy −
∫ L+x

−L+x

g(y) dy (13)

=

∫ −L+x

−L

g(y) dy −
∫ L+x

L

g(y) dy

=

∫ x

0

[g(y − L)− g(y + L)] dy (14)

where (13) follows from (3), and (14) via a change of variable
y − L ← y in the first integral and y + L ← y in the second.
The integrand in (14) is positive for y ∈ [0, x]. This proves the
monotonicity.

APPENDIX C
TWO-FREQUENCY CASE AND SUM RECEIVED POWER

Proposition C.1: Let x1 ≤ x2 and let v = (x1 +x2)/2 denote
the mid-point. Then following results hold.
1. Let (A1, A2) denote a partition of [−L, L]. Then

max
(A1,A2)

[E(x1, A1) + E(x2, A2)]

≤ E(x1, [−L, v]) + E(x2, (v, L]).

2. Furthermore, E(x1, [−L, v]) + E(x2, (v, L]) is maximized at
−x1 = x2 = L/2. The cell partition in this case is [−L, 0] and
(0, L].

Proof: The first statement is obvious once we write out
the integrals and recognize that the integrand is nonnegative,
symmetric, and g(y) is decreasing in |y|. For the same reason,
we may upper bound the sum in the second statement, by
E(x1, I1) + E(x2, I2) where I1 is an interval of length L + v
centered at x1 and I2 is an interval of length L−v centered at x2.
((I1, I2) may not be a partition of [−L, L]). Constraining the sum
of interval lengths to be 2L, the upper bound is further maximized
when the intervals are of equal length L. But this upper bound
is achieved when −x1 = x2 = L/2. The corresponding intervals
[−L, 0] and (0, L] constitute a cell partition, as required. This
concludes the proof.

ACKNOWLEDGMENTS

This project was supported by the Indo-French Centre for the
Promotion of Advanced Research (IFCPAR), project 2900-IT and
by the association program DAWN.

REFERENCES

[1] Jean J. Gabszewicz and Jacques-Francois Thisse. Location. In Robert
Aumann and Sergiu Hart, editors, Handbook of Game Theory with Economic
Applications, volume 1. Elsevier North Holland, 2003.

[2] Harold Hotelling. Stability in competition. Economic Journal, 39:41–57,
1929.

[3] V. Mazalov and M. Sakaguchi. Location game on the plane. International
Game Theory Review, 2003.

[4] Frank Plastria. Static competitive facility location: An overview of optimiza-
tion approaches. European Journal of Operational Research, 129:461–470,
March 2001.

[5] S. C. Dafermos. Static competitive facility location: An overview of
optimization approaches. Transportation Science, 6:73–87, 1972.

[6] J. G. Wardrop. Some theoretical aspects of road traffic research. In
Proceedings of the Institute of Civil Engineers, 1:325–378, 1952.


