Simplex convexity , with application to open loop
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Abstract

In this paper, we present the notion of multimodular tri-
angulation under a new geometrical point of view. We
also show the link with multimodular functions by a new
proof of the convexity theorem. This is used to define a
partial ordering compatible with multimodularity called
the cone ordering. An application in admission control
in queues is then presented.

Keywords Multimodular functions, convexity, tiling,
triangulation, admission control.

1 Introduction

The notion of multimodular triangulation was introduced
in [3] as a generalization of a construction first presented
in [5]. Here, we will give a completely new vision of mul-
timodular triangulation using a geometric point of view.
This approach has several advantages. First, we general-
ize the multimodular triangulations to meshes generated
by n arbitrary independent vectors (instead of Z™). Also,
the proofs are elementary and do not use set indexing
techniques as in [3]. Finally, the link with multimodu-
lar functions is more natural and does not use lower en-
velopes as in [5]. This new approach of multimodularity
allows us to construct a cone partition of the initial set.
Within each cone, one can define an appropriate “norm”
compatible with a multimodular function f, in the sense
that when the norm of point x is larger than the norm
of point y, then f(xr) > f(y). Finally an application to
admission policies into G/G/1 queues in tandem is given.

2 Multimodular Triangulations

Let us start with a matrix D of size (n + 1) x n of rank
n such that the rows of matrix D define n + 1 vectors
(do,--- ,dy) verifying do + --- + d,, = 0. Such a matrix
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will be called a multimodular (m.m.) matrix in the fol-
lowing. For example, a multimodular matrix D can be
constructed starting with any n x n matrix M with full
rank and appending the opposite of sum of all the rows
of M as the last row of D.

Definition 2.1 The mesh Mp associated with the m.m.
matriz D is the set of all the points {aodo +ardy + -+ +
andn, a; €Z, i=0,---,n}.

Lemma 2.2 The following properties are true.
i) A point in R™ has a unique non-negative decomposi-
tion in (do, - ,dy) (up to the addition of (ao, - ,an)

with ap =+ =an )

it)A point in Mp has a unique integer mon-negative
decomposition in (do, - ,dyn) (up to the addition of
(ao, -+ ,an) withao =--- = an ).

Proof: i) Since di,--- ,d, is a base of R™, then for
any point z in R® © = a1d1 + - - - + andn. Let a; be the
minimal coordinate. If a; < 0, then

r= aidi + -+ andn —ai(do + - + dy) (1)
—aido + (01 —ai)dy + - + (an — ai)dn  (2)

where all the coordinates are non-negative. As for
uniqueness, let * = apdo+- - - +and, = Bodo+- - -+ Bndn
where we may assume that all coordinates are non-
negative and o; = 3; = 0. If ¢ = j, then a = 3 because
(do,--- ,dn)\d;i is a base of R*. If no coordinates are
jointly null, then we can write x = (8o — Bi)do + -+ +
(Brn — Bi)dn which means for the jth coordinate in the
base (do,- - ,dn)\di, is aj = —f;, which is impossible by
non-negativity.

ii) A point in Mp has a unique decomposition in
(di,--- ,dn), this decomposition being in Z. By using
the same method as in (2), then we transform this de-
composition into a non-negative integer decomposition in
(do,d1,- -+ ,dn). ]

Definition 2.3 A D-atom is a simplex in R", made of



the n + 1 points

bo = a,

b1 = a +do'(0)7

p2 = a+ dg(o) + dcr(l) (3)
P = a+-+dy) +do) tdom1)

where a € Mp (the root) and o is a permutation of
{0,--- ,n}. This atom will be denoted S(po,- - ,Pn)-

Note that an atom is indeed a simplex since D is of rank
n and that S(po, - ,pn) and S(p1,- - ,pn,po) are two
notations for the same atom, when starting with po (resp.
p1) as a root.

Definition 2.4 A collection of simplezes is a triangula-
tion of E (an arbitrary subset of R™ ) if

E is the union of all the simplezes and

the intersection of two simplezes is either empty or a
common face.

Theorem 2.5 The set of all the D-atoms forms a tri-
angulation of R™, called a multimodular triangulation.

Proof: Let x be a point in R". By Lemma 2.2, z =
aodo + -+ + and,, with non-negative coordinates, one
of which is 0. We construct a = |a1|di + -+ + [@n]dn
and o such that Qg (i) — Laa(i)J 2 Qg (i41) — |_a(,(i+1)J.
We define ﬂn = 0, ﬁnfl = a(,(n,l) - Lao(n,l)J, ,31 =
Qo (i) — Laa(i)J — Qg (i+1) — |_Oé[,—(i+1)J, all of them verify
0< B <land Y1) Bi < 1. We have = = a+ fod, (o) +
<+ Bn1(dooy + - - +dsn—1)). Therefore, x belongs to
the atom with root a and permutation o. Now, assume
that a point = belongs to the interior of two different
atoms with respective roots a and b and permutations o
and 7 Since everything is shift invariant, we may assume
that b = 0 and 7 is the identity.

r = a+ady)+ -+ an1(dyo)+ - Fdono1))
= Bodo+ -+ Bn-1(do---+dn-1),

with 32770 3 < 1 and 37 a; < 1. Since 7 is in the

interior of both atoms, we also have 8; > 0 and a; > 0

for all i =0,--- ,n — 1. Therefore, by uniqueness of the
decomposition of z, and writing a = aodo + - - - + andn,

n—1
ao + Z Qo (j)

j=o=1(0)

Bo+ -+ B

n—1

an-1+ Z Qo(j) = Pn-1

j=o=1(n-1)

n—1
an + Z asy = 0.

j=r =t (n)

Since all the partial sums of the a; or of the 3; are all
smaller than one and since a; are integer numbers, then,
a; = 0 for all i = 0,--- ,n. Both atoms have the same
root.

Now, the equality of the partial sums taken one by one

imply first that E;’;;,l(n) a,(;) = 0. Since a; > 0 for all

i, then the only possibility is 0~'(n) = n. Considering
vectors di and di4+1, we have:

n—1 n—1
Yoo — Y, i = B
j=o~1(k) j=o~t(k+1)

> 0.

This implies that ¢~ (k) > ¢~ (k+1). This means that
o is the identical permutation. Therefore, both atoms
are equal. u

In the restricted case when the mesh is Z" and D the
incidence matrix of a graph, this theorem was proved in
[3] using an intricate set indexing argument.

Lemma 2.6 Combinatorial properties of m.m. triangu-
lations.

1) A point in Mp belongs to (n+ 1)! D-atoms.

1) The unit-cube in Mp 1is partitioned into n! D-
atoms.

Proof: i) This is a straightforward consequence of the
definition of atoms. ii) The unit-cube U in Mp is the set
of points of the form aidi1+- - -+andy, with a; € {0,1} for
all 1 < i < n. Given a permutation o, there exists a point
b € U such that the atom S(b,b+d, (o), - ,b+dy(n—1) is
included in U. The point b = bidy + - - - + b, d,, is chosen
in the following way:

_J o0
-y

Each atom in U has n + 1 vertices, hence n + 1 represen-
tation of the form S(b,b+d, (o), - ,b+dy(n—1)) Finally,
(n+1)!/(n + 1) atoms are contained in U. Since all the
atoms triangulate R™, those in U triangulate U. ]

if 671(i) < o7 (0),
otherwise.

(4)

Some multimodular triangulations have a special inter-
est. The most used ones are the triangulations with a
m.m. matrix D being the incidence matrix of a graph.
An oriented tree G = (V, E) with n + 1 nodes (and n
arcs) has an incidence matrix D of size (n + 1) x n is
defined by

+1 if vertex ¢ is the start point of edge j
D;; = —1 if vertex i is the end point of edge j
0 otherwise

First note that if D has rank n, then the graph has to be
a tree. Also, since D is totally unimodular, then its mesh



Mp is Z" (see for example [4] for a detailed presentation
on totally unimodular matrices). The L-triangulation
is the triangulation associated with a linear graph The
associated m.m. matrix is

1 0 0 0 0
-1 1 0 0 0
0 -1 1 0 0
D= (5)
0 0 0 - -1 1
0o 0 0 - 0 -1

On the other hand, some triangulations of the space into
simplexes are not multimodular triangulations. Such an
example in dimension 3 is given in Figure 1. The triangu-
lation in Figure 1 decompose the unit cube in 5 simplexes
instead of 3!=6 for any multimodular triangulation.

Figure 1: The triangulation of the unit cube of R® with
a minimal number of simplices is not multi-
modular

3 Multimodular Functions

Let D be a m.m. matrix with row vectors, (do, - ,dp).
Sometimes in the following, the mention to D may be
forgotten. Everything implicitly refers to D such as mul-
timodularity and atoms.

Definition 3.1 A function f : Mp — R is D-
multimodular if and only if for all a € Mp, and for all
0<i<jsm,

fla+di)+ fla+d;) > f(a) + fla+di +d;). (6)

From f, we construct a function f : R® = R by linear
interpolation of f over the atoms defined by D.

Theorem 3.2 f is D-multimodular if and only if f 18
conver.

The hard part (“only if”), in the restricted case of the L-
triangulation, was done in [5]. The extension to the case
of tree triangulations as well as the easy reverse part
(“if” part) were presented in [3]. Using the formalism
presented here, the proof in the most general case is sim-
ilar to the version presented in [2] for the restricted case
of the L-triangulation.

Lemma 3.3 We consider all the n-periodic sequences
a = (ai)ien with values in N satisfying Y . a;i = k.
Let f be a multimodular function defined on a mesh Mp
of dimension n. Then, the quantity

Yor o flaidy + -+ + @ign_1dn) is minimized at point
r=(Ed +- 4+ 2d,).

Proof: Let A be the set of all integer sequences a,
which are n-periodic and such that within one period,
they add up to k, Y, a; = k. By periodicity, and using
Jensen inequality, the quantity min,ea % E?:l flaidi +
c++ @iyn_1dn) is equal to nf(Ldy + -+ + £d,). n

4 Sub-meshes

Definition 4.1 A sub-mesh A of Mp is a convez set of
R™ which is the union of (faces of ) D-atoms.

Since any union of D-atoms which forms a convex set
is a sub-mesh by definition, typical sub-meshes are: the
positive quadrant: {aodo + -+ + an—1dn—1,a; > 0} and
the unit cube {aodo + -+ + an—1dn—1,a; € {0,1}}. The
hyper-plane {aodo + -+ -+ an_1dn_1,Y, a; = k} is a sub-
mesh of dimension n — 1 of the L-triangulation.

Lemma 4.2 Any sub-mesh A has the following proper-
ties:

i) The faces defining A form a multimodular triangula-
tion of A.

i1) The vectors of this new multimodular triangulation are
disjoint sums of the original vectors.

Proof: First, by convexity, A has the same dimension
,say k, as any of its faces. It should be obvious that the
faces defining A form a triangulation of A. Now, let us
show that this is a multimodular triangulation. Let F'
(resp. F?) be a face in A of a simplex S* (resp. S?) with
root a (resp. b) and permutation o (resp. 7). Without
loss of generality, we may assume that a € S* and b € S,
by shifting the starting points in the definitions of atoms
S* and S%. Now, the vertices of F' (resp. F?) are visited
in an order depending on o (resp. ), such that

p=a
Pi a1+ dooy + -+ +dogi, 1)
P2 =p1 +dggyy + 0t dogin—1)

Po = Pi +dogiy) + o+ do(ny1
pi=b

Pz =bAdyo) +- +dyi-
P2 =pi+dygy +- Fdyga-n

o = pi +dyiy) + 0+ dy)



Since both faces are in the same space of dimension k,
then for any m < k, we have the linear combination

k-1

Ay(jm) + -+ dv(]'m+1*1)zz U, tdg(ip) + -+ dU(i£+1*1)'
{=0

This is a linear combination between the vectors
do,d1,- - ,dp (with the convention that ip = 0 and jo =
0). We know that the only relation is do+di+- - -+d, = 0.
Therefore, for all m, there exists a unique ¢ such that ,
Qm,q = 1. (all the other coefficients ay, ¢ are null.

Ay(Gm) + 0 Fldy(pr—1) = do(iy) T+ dogigy)-1-

This means that the vectors defining face F'? are the same
as the vectors defining face F* (up to a permutation). m

Lemma 4.3 Let p be a point in Mp, o be a permutation
of {0,--- ,n} and {ix}r=0,..m be an increasing sequence
of integers with io = 0 and i, = n. We define the vectors
0; = d(,(ij) + - ~~d[,.(ij+1_1) for all j = 0,---m. The set
p+{aodo + -+ amdm,a; € N} is a sub-mesh of Mp.

Proof: First note that the set A is a convex subset of
Mp of dimension m. Now we consider the triangulation
of A defined by the vectors do, - - ,0m, each atom of this
triangulation is a face of a D-atom. ]

Thus the hyper-plane P = {aodo + --- +
an—1dn_1,y ,a; = k} is a sub-mesh of dimension
n — 1 of the L-triangulation by choosing dy =
di, - ,0p—2 = dn—1 and dp—1 = d,, + do, which yields
P = (k,0,0--- ,0) +{$060+---+$n_16n_1,$i € N}

Lemma 4.4 A function f multimodular on the whole
space is multimodular on any sub-mesh A with respect
to the induced multimodular matriz of A.

Proof: Let a be a point in A and let u and v be two
arbitrary rows for the multimodular matrix of A. By
Lemma 4.2, v = d;; +---+d;;, and v = dj; +--- +
d;,, where the sets {d;,, - ,d;.} and {d;,,-- ,d;,, } are
pairwise distinct. Therefore, we have

fla) + fla+u+v)

= fla) + fla+di, +-+di, +dj, +-+dj,,)
<fla+di +---+di)+ fla+dj, +---+dj,,)
= fla+u)+ fla+v).

Corollary 4.5 The function f is multimodular in a sub-
mesh A if and only if f is convex on A.

A second corollary of Theorem 3.2 concerns the mini-
mization of multimodular functions. For a function de-
fined on A, we call z a local minimum on A if f(z) <
f(z+/—d;) for all i such that z+/—d; is in A.

Corollary 4.6 Let the function f be multimodular in A.
Then a local minimum is a global minimum on A.

Proof: If f is multimodular in A, then f is convex
in A, and is linear on the (faces of) atoms forming A.
The graph of f (i.e. {z:3ys.t. z > f(y)}) is a convex
polytope. Therefore, all the local minima are global and
are extreme points of atoms. ™

5 Cones

Now, the convex space A of dimension n will be divided
into (n+1)! cones, all starting at point h, any point of the
mesh of A. Consider one atom S = S(h = po,p1,--* ,Pn)
containing h as a vertex. Let o and 7 be the permutations
on {0, ---n} such that 7(0) = 0 and

Pr1y = h+dso
Pr2) = Pr) tdo)

Pr(n) = Prin-1) T dom-1)
h = pra) +dom)-

Now, we define for all 1 < i < n, b; = E;‘:l do ()
and b = (b1, -+ ,bn). Therefore, p.;y = h + b;. The
vectors (b1,--- ,bn) will be called the generators of the
cone. The cone associated with S, denoted C(S) is made
of all the points p of A such that p = h + ¢'b where ¢ is
a non-negative vector in N™. First, note that vector ¢’ is
uniquely defined since (b1, - ,b,) are independent vec-
tors. Second, note that when we consider all the atoms
containing h as a vertex, then all the (n + 1)! associated
cones will cover A. If two neighbor atoms share a face,
the two corresponding neighbor cones will also share a
“face” (of dimension n — 1). For any point p in A, p will
be in one cone and we will have p = h+c’(p)b, where b is
uniquely defined on the support of ¢(p). We shall denote
d(h,p) = ci(p) + - - + cn(p) and call it the distance from
h to p. All the previous remarks show that d(h, p) is well
defined.

5.1 Minimization

In this section, we consider the case where A = R" and
h = 0. We also consider a function f multimodular with
respect to the row vectors of D, do,--- ,d,. We focus
on one arbitrary cone, C, defined by the permutation ~.
This means that the generators of C are the vectors

bo = dy),
by dy (o) +dy1y,

bnfl

dyo) +dy) +- -+ dym-1)-

Any point in C has non-negative coordinates
Bo, ++ ,Bn=1 in the base by, - ,bp—1. We call P



the linear application which is the passage from the base
bo,- -+ ,bn_1 to the base dﬂr(o), dw(l), s ,dﬂr(n,l).

Lemma 5.1 Let k be an integer. The set Ci of points
in C such that o+ -+ Bn—1 =k is a sub-mesh of Mp.

Proof: Set p = kd. ) and 0o = dy1y, yOn_2 =
d,y(n_l), Op—1 = d,y(o) + d,y(n). Then the sub-mesh p +
{3°; aidi, a; € N} is precisely the set C. ™

The following lemma is some kind of generalization of
Theorem 3.4 in [2] from the L-triangulation and the pos-
itive quadrant to any multimodular triangulation and one
of its cones.

Lemma 5.2 Let f be a m.m. function, then the quantity
1 n
EZfOP(ﬂi"' ) Bitn—1)
i=1

is minimized over the set Cy at all the points 5(6), 0 <
0 < 1 of coordinates

8i(0) = Li% 6] — L(i—l)% +0.

Proof: The function + >0 foPBi-,Bitn-1)
is clearly convex and is minimized at point r = (8o =
L s Ba1 = £) over Ck (see Lemma 3.3). This func-
tion is linear on the atoms of the sub-mesh Cj. Therefore,
it is also minimum at all the vertices of the face contain-
ing the point r. The vertices of this face are the points

B(6) with coordinates
) k k
B = LG+ 1)% o) - 1:F +o)

when 6 varies from 0 to 1. Indeed, these points are all
in the sub-mesh, since all their coordinates are integer
number and since P is totally-unimodular. Now, Let f; =
1—(i+1) 24| (i+1)£ |, all ordered in the increasing order.
By construction, when 6 varies from 0 to 1, then the point
B(0) takes only n values. The point 3(#) changes at all
the points of the form f; for ¢ =0,--- ,n—2. At 0 = f;
we add —d;4+1. Therefore, all the points 3(f) form a
hyper-face. Noting that

L BO) L BU0)  BU L Blfume)
n—1 n—-1 n-1 n—1
shows that r belongs to that face. u

5.2 Partial order and monotonicity

Now, we define a partial order on A by choosing h =
r, where r is the minimal point of a m.m. function f
on A. First, this partial order is defined in a different
manner on each cone. In a given cone C, with generating
vectors b1, -+ , by, then we say that ¢ <c¢ y is c(z) <
c(y) component-wise. Note that in a given cone, this
partial order is a lattice which is isomorphic to N* with
the classical component-wise order.

Theorem 5.3 If f is a multimodular function on A,
then x <c y implies that f(x) < f(y). In other words, f
is monotone with respect to the partial order <c.

Proof: Since x and y are comparable, this means
that they are in the same cone. From now on, by, , b,
will be the generators of this cone. First note that we
can assume that d(z,y) = 1. If not, then we prove step
by step along the path from z to y along the direction
of the generators, say ¢ = =1 <¢ -+ <¢ Tm = y that
f(z) = f(z1) € -+ £ f(zxm) = f(y). The proof will
now proceed by induction on d(r, ). First note that the
property is true if d(x,r) = 0, since 7 is the argmin of f
on S. Now, let assume that we have d(z,r) > 1. Pick a
point z such that £ = z +b; in cone C. (equivalently, we
have ¢(y) + e; = c¢(z) and ¢(y) < 0). Note that d(z,r) =
d(z,r) —1 and z <¢ z. By induction, this means f(z) <
f(z). Since d(z,y) = 1, there exist j such that y = z+b;.
Now we have two cases, since we may not be able to
choose ¢ such that ¢ = j.

If i = j, then by convexity of f,

f(z+bi) = f(2) < f(z+bi +bi) — f(z+bi).

We also know by induction that f(z + bi) — f(z) > 0.
This means that f(z) < f(y).

If ¢ # j, then we choose yet another point, w, such that
w = z+b;. We can assume that i > j (the case j < i
is similar by inverting the role played by b; and b; in
the following). Since b; is a sum of base vectors, it is
also a sum of opposites of base vectors, since all base
vectors add up to 0. Note that all these base vectors are
distinct from the base vectors involved in b;. We have:
bj = do1) + - +ds(), and by = —dy(iy1) — dy(iva) —
-+ —dy(n+1). Therefore,

fw) = f(2)

=f@+doqy + o+ doy +doirny + o+ do(ntn)
—f@+dogivny + o+ donin)

Sfle+doqy +- o+ doy) = fl2), (M)
= f(y) = f(@).

where Inequality 7 is a direct consequence of the defini-
tion of multimodularity. Since d(r,w) = d(r,z) + 1, by
induction we have, f(w) — f(z) > 0, then this implies

fly) = f(x) > 0. n

6 Application: periodic admission sequences in
G/G/1/co tandem queues

We consider queues in tandem with general stationary
service times. As for the arrival sequence, let (u;);en be
a stationary process. The integer sequence {a;};en is the
admission sequence into the queues. The inter-arrival
times of customers in the queue is a sequence (7;)ien
defined by:

a1+ ta;
T = Uj .
j=ai+-ta;—1



In the following, the admission sequence will be as-
sumed to be periodic with period n. As to introduce
multimodularity, we choose the L-triangulation of Z™.
The atoms given by the L-triangulation with row vec-
tors d; = —e; + €i+1, and do = e1,d, = —en,, as
in (5). The sub-set of Z"™ that we will work with is
A = {(ao, - ,an),a; > 0Vi,>." ja; = k}, where k is
a given integer. The set A corresponds to all admission
sequences with n admitted customers among k slots.

Lemma 6.1 A is a convex union of hyper-faces of atoms
in Z".

Proof: Let us consider the constraints one by one. The
constraints a; > 0 restrict A to N™ which is made of a
convex union of atoms. Now, let us look at the constraint
>, ai = k. This constraint is a convex union of faces of
atoms. To finish the proof, remark that the intersection
of convex union of faces of atoms is a convex union of
faces of atoms. ™

The atoms on A are defined by the vectors d} =
di, - ,dy,_y = d,_1 as for the L-triangulation of Z",
and a new vector dy = do +dn = e, —e1. If fis a
multimodular function, f : Z" — R, we will consider
the restriction of f to A which is also multimodular on
A with its own atoms (see Lemma 4.4). By Corollary
4.6 f has a global minimum on A. In the following, this
minimum will be called r.

Theorem 6.2 The average expected waiting time W in
a SEG is a multimodular function on A.

Proof: From the vector a = (a1, - ,an)
we construct an infinite sequence a = a*. Let
Wn(ai, - ,an) = % S wi(a, -+, ay), where wy is
the expected total sojourn time of the kth customer, and
let W(ai, - ,an) = imn 0o Wn (a1, - ,an). We also
denote p the largest integer such that pn < N. From
[1], we know that wy is multimodular with respect to
the L-triangulation in Z*. Since the m.m. matrix for
the L-triangulation in Z* is a sub-matrix of the m.m.
matrix for the L-triangulation in Z" then we also know
that Wj, is multimodular in ZV. Therefore, the func-
tion H(ai, -+ ,an) = & ZQI:l wg (a1, -+ ,ar) is mul-
timodular in Z¥. For all 0 < i < n, Wn(a + d;) =
H(a+di+diyn+---+ditin), where k = N;lj Now, us-
ing the general characterization of multimodularity, that
is f(a + D1 + D3) — f(a+ D1) < f(a+ D2) — f(a), for
D, and D> any arbitrary sum of base vectors, with the
only restriction that no base vector appears in D; and in
Dy, then it is immediate to check that Wy (a+d; +d;) —
Wn(a+d;) < Wn(a+dj) — Wn(a), for d; and d; any
arbitrary distinct m.m. row vectors. Therefore, Wy is
multimodular in Z". The limit W is also multimodular
in Z". By using Corollary 4.4 | W is also multimodular
on A. .

\ Cone C3 1

Cone Cy Cone Ca
_do
VA
AA AA Cone C1
Cone Cj
b1 = dop
2 =do +di

/ \
Cone Cg

Figure 2: comparison of b = (1,1,4) and a = (1,2, 3)

For example, let us compare the expected waiting time
under admission sequence a = (1,2,3) and under admis-
sion sequence b = (1,1,4). The corresponding space A is
the hyper-plane of R®, defined by {(z,y, 2), z+y+2z = 6}.
The space A is of dimension 2 with induced multi-
modular vectors di = (+1,—1,0),d> = (0,+1,—1) and
do = (—1,0,+1) (from the L-triangulation of R*). The
function W (expected waiting time) is minimized at point
r = (2,2,2). This is a direct consequence of a combina-
tion of Lemma 5.2 (used with the L-triangulation and
the cone constructed with the n first vectors, which is
the positive quadrant) and Theorem 6.2. If we consider
the cone C; generated by b1 = do and b2 = do + di,
then we have a = r + b1 and b = r + by + ba. Therefore,
a <c¢ b, which implies W(a) < W(b) by Theorem 5.3.
This example is illustrated in Figure 2.
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