Simplex convexity, with application to open loop stochastic control in networks

Eitan ALTMAN¹

Bruno GAUJAL²

Arie HORDIJK³

Abstract

In this paper, we present the notion of multimodular triangulation under a new geometrical point of view. We also show the link with multimodular functions by a new proof of the convexity theorem. This is used to define a partial ordering compatible with multimodularity called the *cone ordering*. An application in admission control in queues is then presented.

Keywords Multimodular functions, convexity, tiling, triangulation, admission control.

1 Introduction

The notion of multimodular triangulation was introduced in [3] as a generalization of a construction first presented in [5]. Here, we will give a completely new vision of multimodular triangulation using a geometric point of view. This approach has several advantages. First, we generalize the multimodular triangulations to meshes generated by *n* arbitrary independent vectors (instead of \mathbb{Z}^n). Also, the proofs are elementary and do not use set indexing techniques as in [3]. Finally, the link with multimodular functions is more natural and does not use lower envelopes as in [5]. This new approach of multimodularity allows us to construct a cone partition of the initial set. Within each cone, one can define an appropriate "norm" compatible with a multimodular function f, in the sense that when the norm of point x is larger than the norm of point y, then $f(x) \ge f(y)$. Finally an application to admission policies into G/G/1 queues in tandem is given.

2 Multimodular Triangulations

Let us start with a matrix D of size $(n + 1) \times n$ of rank n such that the rows of matrix D define n + 1 vectors (d_0, \dots, d_n) verifying $d_0 + \dots + d_n = 0$. Such a matrix

will be called a multimodular (m.m.) matrix in the following. For example, a multimodular matrix D can be constructed starting with any $n \times n$ matrix M with full rank and appending the opposite of sum of all the rows of M as the last row of D.

Definition 2.1 The mesh M_D associated with the m.m. matrix D is the set of all the points $\{a_0d_0 + a_1d_1 + \cdots + a_nd_n, a_i \in \mathbb{Z}, i = 0, \cdots, n\}.$

Lemma 2.2 The following properties are true.

i) A point in \mathbb{R}^n has a unique non-negative decomposition in (d_0, \dots, d_n) (up to the addition of (a_0, \dots, a_n) with $a_0 = \dots = a_n$). ii) A point in M_D has a unique integer non-negative decomposition in (d_0, \dots, d_n) (up to the addition of (a_0, \dots, a_n) with $a_0 = \dots = a_n$).

Proof: i) Since d_1, \dots, d_n is a base of \mathbb{R}^n , then for any point x in \mathbb{R}^n $x = \alpha_1 d_1 + \dots + \alpha_n d_n$. Let α_i be the minimal coordinate. If $\alpha_i < 0$, then

$$x = \alpha_1 d_1 + \dots + \alpha_n d_n - \alpha_i (d_0 + \dots + d_n) \tag{1}$$

$$= -\alpha_i d_0 + (\alpha_1 - \alpha_i) d_1 + (\alpha_n - \alpha_i) d_n \qquad (2)$$

where all the coordinates are non-negative. As for uniqueness, let $x = \alpha_0 d_0 + \cdots + \alpha_n d_n = \beta_0 d_0 + \cdots + \beta_n d_n$ where we may assume that all coordinates are nonnegative and $\alpha_i = \beta_j = 0$. If i = j, then $\alpha = \beta$ because $(d_0, \cdots, d_n) \setminus d_i$ is a base of \mathbb{R}^n . If no coordinates are jointly null, then we can write $x = (\beta_0 - \beta_i) d_0 + \cdots + (\beta_n - \beta_i) d_n$ which means for the *j*th coordinate in the base $(d_0, \cdots, d_n) \setminus d_i$, is $\alpha_j = -\beta_i$, which is impossible by non-negativity.

ii) A point in M_D has a unique decomposition in (d_1, \dots, d_n) , this decomposition being in \mathbb{Z} . By using the same method as in (2), then we transform this decomposition into a non-negative integer decomposition in (d_0, d_1, \dots, d_n) .

Definition 2.3 A D-atom is a simplex in \mathbb{R}^n , made of

¹INRIA, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France. Email: altman@sophia.inria.fr. URL:http://wwwsop.inria.fr/mistral/personnel/Eitan.Altman/me.html

²LORIA, 615, rue du jardin botanique, BP 101, 54602 Villers lès Nancy Cedex, France. E-mail: Bruno.Gaujal@loria.fr. URL:http://www.loria.fr/~gaujal

³Dept. of Mathematics and Computer Science, Leidelan University, P.O.Box 9512, 2300RA Leiden, The Netherlands. E-mail: hordijk@wi.leidenuniv.nl.

the n+1 points

$$p_{0} = a,$$

$$p_{1} = a + d_{\sigma(0)},$$

$$p_{2} = a + d_{\sigma(0)} + d_{\sigma(1)}$$

$$\vdots$$

$$p_{n} = a + \dots + d_{\sigma(0)} + d_{\sigma(1)} + d_{\sigma(n-1)}$$
(3)

where $a \in M_D$ (the root) and σ is a permutation of $\{0, \dots, n\}$. This atom will be denoted $S(p_0, \dots, p_n)$.

Note that an atom is indeed a simplex since D is of rank n and that $\mathcal{S}(p_0, \dots, p_n)$ and $\mathcal{S}(p_1, \dots, p_n, p_0)$ are two notations for the same atom, when starting with p_0 (resp. p_1) as a root.

Definition 2.4 A collection of simplexes is a triangulation of E (an arbitrary subset of \mathbb{R}^n) if E is the union of all the simplexes and the intersection of two simplexes is either empty or a common face.

Theorem 2.5 The set of all the D-atoms forms a triangulation of \mathbb{R}^n , called a multimodular triangulation.

Proof: Let x be a point in \mathbb{R}^n . By Lemma 2.2, $x = \alpha_0 d_0 + \cdots + \alpha_n d_n$, with non-negative coordinates, one of which is 0. We construct $a = \lfloor \alpha_1 \rfloor d_1 + \cdots + \lfloor \alpha_n \rfloor d_n$ and σ such that $\alpha_{\sigma(i)} - \lfloor \alpha_{\sigma(i)} \rfloor \ge \alpha_{\sigma(i+1)} - \lfloor \alpha_{\sigma(i+1)} \rfloor$. We define $\beta_n = 0$, $\beta_{n-1} = \alpha_{\sigma(n-1)} - \lfloor \alpha_{\sigma(n-1)} \rfloor$, $\beta_i = \alpha_{\sigma(i)} - \lfloor \alpha_{\sigma(i)} \rfloor - \alpha_{\sigma(i+1)} - \lfloor \alpha_{\sigma(i+1)} \rfloor$, all of them verify $0 \le \beta_i \le 1$ and $\sum_{i=0}^{n-1} \beta_i \le 1$. We have $x = a + \beta_0 d_{\sigma(0)} + \cdots + \beta_{n-1} (d_{\sigma(0)} + \cdots + d_{\sigma(n-1)})$. Therefore, x belongs to the atom with root a and permutation σ . Now, assume that a point x belongs to the interior of two different atoms with respective roots a and b and permutations σ and τ Since everything is shift invariant, we may assume that b = 0 and τ is the identity.

$$x = a + \alpha_0 d_{\sigma(0)} + \dots + \alpha_{n-1} (d_{\sigma(0)} + \dots + d_{\sigma(n-1)})$$

= $\beta_0 d_0 + \dots + \beta_{n-1} (d_0 \dots + d_{n-1}),$

with $\sum_{i=0}^{n-1} \beta_i \leq 1$ and $\sum_{i=0}^{n-1} \alpha_i \leq 1$. Since x is in the interior of both atoms, we also have $\beta_i > 0$ and $\alpha_i > 0$ for all $i = 0, \dots, n-1$. Therefore, by uniqueness of the decomposition of x, and writing $a = a_0 d_0 + \dots + a_n d_n$,

$$a_{0} + \sum_{j=\sigma^{-1}(0)}^{n-1} \alpha_{\sigma(j)} = \beta_{0} + \dots + \beta_{n-1}$$

$$\vdots$$

$$a_{n-1} + \sum_{j=\sigma^{-1}(n-1)}^{n-1} \alpha_{\sigma(j)} = \beta_{n-1}$$

$$a_{n} + \sum_{j=\sigma^{-1}(n)}^{n-1} \alpha_{\sigma(j)} = 0.$$

Since all the partial sums of the α_i or of the β_i are all smaller than one and since a_i are integer numbers, then, $a_i = 0$ for all $i = 0, \dots, n$. Both atoms have the same root.

Now, the equality of the partial sums taken one by one imply first that $\sum_{j=\sigma^{-1}(n)}^{n-1} \alpha_{\sigma(j)} = 0$. Since $\alpha_i > 0$ for all i, then the only possibility is $\sigma^{-1}(n) = n$. Considering vectors d_k and d_{k+1} , we have:

$$\sum_{j=\sigma^{-1}(k)}^{n-1} \alpha_{\sigma(j)} - \sum_{j=\sigma^{-1}(k+1)}^{n-1} \alpha_{\sigma(j)} = \beta_k$$

> 0.

This implies that $\sigma^{-1}(k) > \sigma^{-1}(k+1)$. This means that σ is the identical permutation. Therefore, both atoms are equal.

In the restricted case when the mesh is \mathbb{Z}^n and D the incidence matrix of a graph, this theorem was proved in [3] using an intricate set indexing argument.

Lemma 2.6 Combinatorial properties of m.m. triangulations.

- i) A point in M_D belongs to (n + 1)! D-atoms.
- ii) The unit-cube in M_D is partitioned into n! Datoms.

Proof: i) This is a straightforward consequence of the definition of atoms. ii) The unit-cube U in M_D is the set of points of the form $a_1d_1 + \cdots + a_nd_n$, with $a_i \in \{0, 1\}$ for all $1 \leq i \leq n$. Given a permutation σ , there exists a point $b \in U$ such that the atom $\mathcal{S}(b, b + d_{\sigma(0)}, \cdots, b + d_{\sigma(n-1)})$ is included in U. The point $b = b_1d_1 + \cdots + b_nd_n$ is chosen in the following way:

$$b_i = \begin{cases} 0 & \text{if } \sigma^{-1}(i) < \sigma^{-1}(0), \\ 1 & \text{otherwise.} \end{cases}$$
(4)

Each atom in U has n+1 vertices, hence n+1 representation of the form $\mathcal{S}(b, b+d_{\sigma(0)}, \cdots, b+d_{\sigma(n-1)})$ Finally, (n+1)!/(n+1) atoms are contained in U. Since all the atoms triangulate \mathbb{R}^n , those in U triangulate U.

Some multimodular triangulations have a special interest. The most used ones are the triangulations with a m.m. matrix D being the incidence matrix of a graph. An oriented tree G = (V, E) with n + 1 nodes (and narcs) has an incidence matrix D of size $(n + 1) \times n$ is defined by

$$D_{i,j} = \begin{cases} +1 & \text{if vertex } i \text{ is the start point of edge } j \\ -1 & \text{if vertex } i \text{ is the end point of edge } j \\ 0 & \text{otherwise} \end{cases}$$

First note that if D has rank n, then the graph has to be a tree. Also, since D is totally unimodular, then its mesh M_D is \mathbb{Z}^n (see for example [4] for a detailed presentation on totally unimodular matrices). The *L*-triangulation is the triangulation associated with a linear graph The associated m.m. matrix is

$$D = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{pmatrix}.$$
 (5)

On the other hand, some triangulations of the space into simplexes are not multimodular triangulations. Such an example in dimension 3 is given in Figure 1. The triangulation in Figure 1 decompose the unit cube in 5 simplexes instead of 3!=6 for any multimodular triangulation.

Figure 1: The triangulation of the unit cube of R³ with a minimal number of simplices is not multimodular

3 Multimodular Functions

Let D be a m.m. matrix with row vectors, (d_0, \dots, d_n) . Sometimes in the following, the mention to D may be forgotten. Everything implicitly refers to D such as multimodularity and atoms.

Definition 3.1 A function $f : M_D \to \mathbb{R}$ is Dmultimodular if and only if for all $a \in M_D$, and for all $0 \leq i < j \leq n$,

$$f(a+d_i) + f(a+d_j) \ge f(a) + f(a+d_i+d_j).$$
(6)

From f, we construct a function $\tilde{f} : \mathbb{R}^n \to \mathbb{R}$ by linear interpolation of f over the atoms defined by D.

Theorem 3.2 f is *D*-multimodular if and only if \tilde{f} is convex.

The hard part ("only if"), in the restricted case of the Ltriangulation, was done in [5]. The extension to the case of tree triangulations as well as the easy reverse part ("if" part) were presented in [3]. Using the formalism presented here, the proof in the most general case is similar to the version presented in [2] for the restricted case of the L-triangulation. **Lemma 3.3** We consider all the n-periodic sequences $a = (a_i)_{i \in \mathbb{N}}$ with values in \mathbb{N} satisfying $\sum_{i=1}^{n} a_i = k$. Let f be a multimodular function defined on a mesh M_D of dimension n. Then, the quantity $\sum_{i=1}^{n} f(a_i d_1 + \cdots + a_{i+n-1} d_n)$ is minimized at point

 $\sum_{i=1}^{r} \int (a_i a_1 + \cdots + a_{i+n-1} a_n) \text{ is minimized at point} r = \left(\frac{k}{n} d_1 + \cdots + \frac{k}{n} d_n\right).$

Proof: Let *A* be the set of all integer sequences *a*, which are *n*-periodic and such that within one period, they add up to k, $\sum_{i=1}^{n} a_i = k$. By periodicity, and using Jensen inequality, the quantity $\min_{a \in A} \frac{1}{n} \sum_{i=1}^{n} \tilde{f}(a_i d_1 + \dots + a_{i+n-1} d_n)$ is equal to $n \tilde{f}(\frac{k}{n} d_1 + \dots + \frac{k}{n} d_n)$.

4 Sub-meshes

Definition 4.1 A sub-mesh A of M_D is a convex set of \mathbb{R}^n which is the union of (faces of) D-atoms.

Since any union of *D*-atoms which forms a convex set is a sub-mesh by definition, typical sub-meshes are: the positive quadrant: $\{a_0d_0 + \cdots + a_{n-1}d_{n-1}, a_i \ge 0\}$ and the unit cube $\{a_0d_0 + \cdots + a_{n-1}d_{n-1}, a_i \in \{0, 1\}\}$. The hyper-plane $\{a_0d_0 + \cdots + a_{n-1}d_{n-1}, \sum_i a_i = k\}$ is a sub-mesh of dimension n-1 of the *L*-triangulation.

Lemma 4.2 Any sub-mesh A has the following properties:

i) The faces defining A form a multimodular triangulation of A.

ii) The vectors of this new multimodular triangulation are disjoint sums of the original vectors.

Proof: First, by convexity, A has the same dimension ,say k, as any of its faces. It should be obvious that the faces defining A form a triangulation of A. Now, let us show that this is a multimodular triangulation. Let F^1 (resp. F^2) be a face in A of a simplex S^1 (resp. S^2) with root a (resp. b) and permutation σ (resp. γ). Without loss of generality, we may assume that $a \in S^1$ and $b \in S_2$ by shifting the starting points in the definitions of atoms S^1 and S^2 . Now, the vertices of F^1 (resp. F^2) are visited in an order depending on σ (resp. γ), such that

$$\begin{array}{l} p_{0}^{1} = a \\ p_{1}^{1} = a + d_{\sigma(0)} + \dots + d_{\sigma(i_{1}-1)} \\ p_{2}^{1} = p_{1}^{1} + d_{\sigma(i_{1})} + \dots + d_{\sigma(i_{2}-1)} \\ \vdots \\ p_{0}^{1} = p_{k}^{1} + d_{\sigma(i_{k})} + \dots + d_{\sigma(n)-1} \\ p_{0}^{2} = b \\ p_{1}^{2} = b + d_{\gamma(0)} + \dots + d_{\gamma(j_{1}-1)} \\ p_{2}^{2} = p_{1}^{2} + d_{\gamma(j_{1})} + \dots + d_{\gamma(j_{2}-1)} \\ \vdots \\ p_{0}^{2} = p_{k}^{2} + d_{\gamma(j_{k})} + \dots + d_{\gamma(n)} \end{array}$$

p. 3

Since both faces are in the same space of dimension k, then for any m < k, we have the linear combination

$$d_{\gamma(j_m)} + \dots + d_{\gamma(j_{m+1}-1)} = \sum_{\ell=0}^{k-1} \alpha_{m,\ell} d_{\sigma(i_{\ell})} + \dots + d_{\sigma(i_{\ell+1}-1)}.$$

This is a linear combination between the vectors d_0, d_1, \cdots, d_n (with the convention that $i_0 = 0$ and $j_0 = 0$). We know that the only relation is $d_0+d_1+\cdots+d_n = 0$. Therefore, for all m, there exists a unique q such that, $\alpha_{m,q} = 1$. (all the other coefficients $\alpha_{m,\ell}$ are null.

$$d_{\gamma(j_m)} + \dots + d_{\gamma(j_{m+1}-1)} = d_{\sigma(i_q)} + \dots + d_{\sigma(i_{q+1})-1}.$$

This means that the vectors defining face F^2 are the same as the vectors defining face F^1 (up to a permutation).

Lemma 4.3 Let p be a point in M_D , σ be a permutation of $\{0, \dots, n\}$ and $\{i_k\}_{k=0,\dots m}$ be an increasing sequence of integers with $i_0 = 0$ and $i_m = n$. We define the vectors $\delta_j = d_{\sigma(i_j)} + \dots + d_{\sigma(i_{j+1}-1)}$ for all $j = 0, \dots m$. The set $p + \{a_0 \delta_0 + \dots + a_m \delta_m, a_i \in \mathbb{N}\}$ is a sub-mesh of M_D .

Proof: First note that the set A is a convex subset of M_D of dimension m. Now we consider the triangulation of A defined by the vectors $\delta_0, \dots, \delta_m$, each atom of this triangulation is a face of a D-atom.

Thus the hyper-plane $P = \{a_0d_0 + \cdots + a_{n-1}d_{n-1}, \sum_i a_i = k\}$ is a sub-mesh of dimension n-1 of the *L*-triangulation by choosing $\delta_0 = d_1, \cdots, \delta_{n-2} = d_{n-1}$ and $\delta_{n-1} = d_n + d_0$, which yields $P = (k, 0, 0, \cdots, 0) + \{x_0\delta_0 + \cdots + x_{n-1}\delta_{n-1}, x_i \in \mathbb{N}\}.$

Lemma 4.4 A function f multimodular on the whole space is multimodular on any sub-mesh A with respect to the induced multimodular matrix of A.

Proof: Let a be a point in A and let u and v be two arbitrary rows for the multimodular matrix of A. By Lemma 4.2, $u = d_{i_1} + \cdots + d_{i_k}$ and $v = d_{j_1} + \cdots + d_{j_m}$ where the sets $\{d_{i_1}, \cdots, d_{i_k}\}$ and $\{d_{j_1}, \cdots, d_{j_m}\}$ are pairwise distinct. Therefore, we have

$$\begin{aligned} &f(a) + f(a + u + v) \\ &= f(a) + f(a + d_{i_1} + \cdots + d_{i_k} + d_{j_1} + \cdots + d_{j_m}) \\ &\leqslant f(a + d_{i_1} + \cdots + d_{i_k}) + f(a + d_{j_1} + \cdots + d_{j_m}) \\ &= f(a + u) + f(a + v). \end{aligned}$$

Corollary 4.5 The function f is multimodular in a submesh A if and only if \tilde{f} is convex on A.

A second corollary of Theorem 3.2 concerns the minimization of multimodular functions. For a function defined on A, we call x a local minimum on A if $f(x) \leq f(x+/-d_i)$ for all i such that $x+/-d_i$ is in A. **Corollary 4.6** Let the function f be multimodular in A. Then a local minimum is a global minimum on A.

Proof: If f is multimodular in A, then \tilde{f} is convex in A, and is linear on the (faces of) atoms forming A. The graph of \tilde{f} (*i.e.* $\{x : \exists y \text{ s.t. } x \ge \tilde{f}(y)\}$) is a convex polytope. Therefore, all the local minima are global and are extreme points of atoms.

5 Cones

Now, the convex space A of dimension n will be divided into (n+1)! cones, all starting at point h, any point of the mesh of A. Consider one atom $S = S(h = p_0, p_1, \dots, p_n)$ containing h as a vertex. Let σ and τ be the permutations on $\{0, \dots n\}$ such that $\tau(0) = 0$ and

$$p_{\tau(1)} = h + d_{\sigma(0)}$$

$$p_{\tau(2)} = p_{\tau(1)} + d_{\sigma(1)}$$

$$\vdots = \vdots$$

$$p_{\tau(n)} = p_{\tau(n-1)} + d_{\sigma(n-1)}$$

$$h = p_{\tau(n)} + d_{\sigma(n)}.$$

. Now, we define for all $1 \leq i \leq n$, $b_i = \sum_{j=1}^i d_{\sigma(j)}$ and $b = (b_1, \dots, b_n)$. Therefore, $p_{\tau(i)} = h + b_i$. The vectors (b_1, \dots, b_n) will be called the *generators* of the cone. The cone associated with S, denoted C(S) is made of all the points p of A such that $p = h + c^t b$ where c is a non-negative vector in \mathbb{N}^n . First, note that vector c^t is uniquely defined since (b_1, \dots, b_n) are independent vectors. Second, note that when we consider all the atoms containing h as a vertex, then all the (n+1)! associated cones will cover A. If two neighbor atoms share a face, the two corresponding neighbor cones will also share a "face" (of dimension n-1). For any point p in A, p will be in one cone and we will have $p = h + c^t(p)b$, where b is uniquely defined on the support of c(p). We shall denote $d(h, p) = c_1(p) + \cdots + c_n(p)$ and call it the distance from h to p. All the previous remarks show that d(h, p) is well defined.

5.1 Minimization

In this section, we consider the case where $A = \mathbb{R}^n$ and h = 0. We also consider a function f multimodular with respect to the row vectors of D, d_0, \dots, d_n . We focus on one arbitrary cone, C, defined by the permutation γ . This means that the generators of C are the vectors

$$b_0 = d_{\gamma(0)},$$

$$b_1 = d_{\gamma(0)} + d_{\gamma(1)},$$

$$\vdots$$

$$b_{n-1} = d_{\gamma(0)} + d_{\gamma(1)} + \dots + d_{\gamma(n-1)}.$$

Any point in C has non-negative coordinates $\beta_0, \dots, \beta_{n-1}$ in the base b_0, \dots, b_{n-1} . We call P

the linear application which is the passage from the base b_0, \dots, b_{n-1} to the base $d_{\gamma(0)}, d_{\gamma(1)}, \dots, d_{\gamma(n-1)}$.

Lemma 5.1 Let k be an integer. The set C_k of points in C such that $\beta_0 + \cdots + \beta_{n-1} = k$ is a sub-mesh of M_D .

Proof: Set $p = kd_{\gamma(0)}$ and $\delta_0 = d_{\gamma(1)}, \dots, \delta_{n-2} = d_{\gamma(n-1)}, \ \delta_{n-1} = d_{\gamma(0)} + d_{\gamma(n)}$. Then the sub-mesh $p + \{\sum_i a_i \delta_i, a_i \in \mathbb{N}\}$ is precisely the set C_k .

The following lemma is some kind of generalization of Theorem 3.4 in [2] from the *L*-triangulation and the positive quadrant to any multimodular triangulation and one of its cones.

Lemma 5.2 Let f be a m.m. function, then the quantity

$$\frac{1}{n}\sum_{i=1}^n f \circ P(\beta_i \cdots, \beta_{i+n-1})$$

is minimized over the set C_k at all the points $\beta(\theta)$, $0 \leq \theta \leq 1$ of coordinates

$$\beta_i(\theta) = \lfloor i\frac{k}{n} + \theta \rfloor - \lfloor (i-1)\frac{k}{n} + \theta \rfloor.$$

Proof: The function $\frac{1}{n} \sum_{i=1}^{n} \tilde{f} \circ P(\beta_i \cdots, \beta_{i+n-1})$ is clearly convex and is minimized at point $r = (\beta_0 = \frac{k}{n}, \cdots, \beta_{n-1} = \frac{k}{n})$ over C_k (see Lemma 3.3). This function is linear on the atoms of the sub-mesh C_k . Therefore, it is also minimum at all the vertices of the face containing the point r. The vertices of this face are the points $\beta(\theta)$ with coordinates

$$\beta_i(\theta) = \lfloor (i+1)\frac{k}{n} + \theta \rfloor - \lfloor i\frac{k}{n} + \theta \rfloor$$

when θ varies from 0 to 1. Indeed, these points are all in the sub-mesh, since all their coordinates are integer number and since P is totally-unimodular. Now, Let $f_i = 1 - (i+1)\frac{k}{n} + \lfloor (i+1)\frac{k}{n} \rfloor$, all ordered in the increasing order. By construction, when θ varies from 0 to 1, then the point $\beta(\theta)$ takes only n values. The point $\beta(\theta)$ changes at all the points of the form f_i for $i = 0, \dots, n-2$. At $\theta = f_i$ we add $-d_{i+1}$. Therefore, all the points $\beta(\theta)$ form a hyper-face. Noting that

$$r = \frac{\beta(0)}{n-1} + \frac{\beta(f_0)}{n-1} + \frac{\beta(f_1)}{n-1} + \dots + \frac{\beta(f_{n-2})}{n-1},$$

shows that r belongs to that face.

5.2 Partial order and monotonicity

Now, we define a partial order on A by choosing h = r, where r is the minimal point of a m.m. function f on A. First, this partial order is defined in a different manner on each cone. In a given cone C, with generating vectors b_1, \dots, b_n , then we say that $x \leq_C y$ is $c(x) \leq c(y)$ component-wise. Note that in a given cone, this partial order is a lattice which is isomorphic to \mathbb{N}^n with the classical component-wise order.

Theorem 5.3 If f is a multimodular function on A, then $x \leq_C y$ implies that $f(x) \leq f(y)$. In other words, f is monotone with respect to the partial order \leq_C .

Proof: Since x and y are comparable, this means that they are in the same cone. From now on, b_1, \dots, b_n will be the generators of this cone. First note that we can assume that d(x, y) = 1. If not, then we prove step by step along the path from x to y along the direction of the generators, say $x = x_1 \leqslant_C \cdots \leqslant_C x_m = y$ that $f(x) = f(x_1) \leqslant \cdots \leqslant f(x_m) = f(y)$. The proof will now proceed by induction on d(r, x). First note that the property is true if d(x, r) = 0, since r is the argmin of f on S. Now, let assume that we have $d(x, r) \ge 1$. Pick a point z such that $x = z + b_i$ in cone C. (equivalently, we have $c(y) + e_i = c(x)$ and $c(y) \leq 0$. Note that d(z, r) =d(x,r) - 1 and $z \leq_C x$. By induction, this means $f(z) \leq$ f(x). Since d(x, y) = 1, there exist j such that $y = x + b_j$. Now we have two cases, since we may not be able to choose i such that i = j.

If i = j, then by convexity of f,

$$f(z+b_i) - f(z) \leq f(z+b_i+b_i) - f(z+b_i).$$

We also know by induction that $f(z + b_i) - f(z) \ge 0$. This means that $f(x) \le f(y)$.

If $i \neq j$, then we choose yet another point, w, such that $w = z + b_j$. We can assume that i > j (the case j < i is similar by inverting the role played by b_i and b_j in the following). Since b_i is a sum of base vectors, it is also a sum of opposites of base vectors, since all base vectors add up to 0. Note that all these base vectors are distinct from the base vectors involved in b_j . We have: $b_j = d_{\sigma(1)} + \cdots + d_{\sigma(j)}$, and $b_i = -d_{\sigma(i+1)} - d_{\sigma(i+2)} - \cdots - d_{\sigma(n+1)}$. Therefore,

$$f(w) - f(z) = f(x + d_{\sigma(1)} + \dots + d_{\sigma(j)} + d_{\sigma(i+1)} + \dots + d_{\sigma(n+1)}) -f(x + d_{\sigma(i+1)} + \dots + d_{\sigma(n+1)}) \leqslant f(x + d_{\sigma(1)} + \dots + d_{\sigma(j)}) - f(x),$$
(7)
= $f(y) - f(x).$

where Inequality 7 is a direct consequence of the definition of multimodularity. Since d(r, w) = d(r, z) + 1, by induction we have, $f(w) - f(z) \ge 0$, then this implies $f(y) - f(x) \ge 0$.

6 Application: periodic admission sequences in $G/G/1/\infty$ tandem queues

We consider queues in tandem with general stationary service times. As for the arrival sequence, let $(u_i)_{i \in \mathbb{N}}$ be a stationary process. The integer sequence $\{a_i\}_{i \in \mathbb{N}}$ is the *admission sequence* into the queues. The inter-arrival times of customers in the queue is a sequence $(\tau_i)_{i \in \mathbb{N}}$ defined by:

$$\tau_i = \sum_{j=a_1+\dots+a_{i-1}}^{a_1+\dots+a_i} u_j.$$

In the following, the admission sequence will be assumed to be periodic with period n. As to introduce multimodularity, we choose the *L*-triangulation of \mathbb{Z}^n . The atoms given by the *L*-triangulation with row vectors $d_i = -e_i + e_{i+1}$, and $d_0 = e_1, d_n = -e_n$, as in (5). The sub-set of \mathbb{Z}^n that we will work with is $A = \{(a_0, \dots, a_n), a_i \ge 0 \ \forall i, \sum_{i=0}^n a_i = k\}$, where k is a given integer. The set A corresponds to all admission sequences with n admitted customers among k slots.

Lemma 6.1 A is a convex union of hyper-faces of atoms in \mathbb{Z}^n .

Proof: Let us consider the constraints one by one. The constraints $a_j \ge 0$ restrict A to N^n which is made of a convex union of atoms. Now, let us look at the constraint $\sum_{i=0}^{n} a_i = k$. This constraint is a convex union of faces of atoms. To finish the proof, remark that the intersection of convex union of faces of atoms is a convex union of faces of atoms.

The atoms on A are defined by the vectors $d'_1 = d_1, \dots, d'_{n-1} = d_{n-1}$ as for the *L*-triangulation of \mathbb{Z}^n , and a new vector $d'_0 = d_0 + d_n = e_n - e_1$. If f is a multimodular function, $f : \mathbb{Z}^n \to \mathbb{R}$, we will consider the restriction of f to A which is also multimodular on A with its own atoms (see Lemma 4.4). By Corollary 4.6 f has a global minimum on A. In the following, this minimum will be called r.

Theorem 6.2 The average expected waiting time W in a SEG is a multimodular function on A.

Proof: From the vector $a = (a_1, \cdots, a_n)$ we construct an infinite sequence $\alpha = a^{\omega}$. Let $W_N(a_1, \cdots, a_n) = \frac{1}{N} \sum_{k=1}^N w_k(\alpha_1, \cdots, \alpha_k)$, where w_k is the expected total sojourn time of the kth customer, and let $W(a_1, \dots, a_n) = \lim_{N \to \infty} W_N(a_1, \dots, a_n)$. We also denote p the largest integer such that $pn \leq N$. From [1], we know that w_k is multimodular with respect to the *L*-triangulation in \mathbb{Z}^k . Since the m.m. matrix for the *L*-triangulation in \mathbb{Z}^k is a sub-matrix of the m.m. the *L*-triangulation in \mathbb{Z}^n is a sub-matrix of the m.m. matrix for the *L*-triangulation in \mathbb{Z}^N then we also know that W_k is multimodular in \mathbb{Z}^N . Therefore, the func-tion $H(\alpha_1, \dots, \alpha_N) = \frac{1}{N} \sum_{k=1}^N w_k(\alpha_1, \dots, \alpha_k)$ is mul-timodular in \mathbb{Z}^N . For all $0 \leq i \leq n$, $W_N(a + d_i) =$ $H(\alpha + d_i + d_{i+n} + \dots + d_{i+kn})$, where $k = \lfloor \frac{N-i}{n} \rfloor$. Now, us-ing the general characterization of multimodularity that ing the general characterization of multimodularity, that is $f(a + D_1 + D_2) - f(a + D_1) \leq f(a + D_2) - f(a)$, for D_1 and D_2 any arbitrary sum of base vectors, with the only restriction that no base vector appears in D_1 and in D_2 , then it is immediate to check that $W_N(a+d_i+d_j)$ - $W_N(a + d_i) \leq W_N(a + d_j) - W_N(a)$, for d_i and d_j any arbitrary distinct m.m. row vectors. Therefore, W_N is multimodular in \mathbb{Z}^n . The limit W is also multimodular in \mathbb{Z}^n . By using Corollary 4.4, W is also multimodular on A.

Figure 2: comparison of b = (1, 1, 4) and a = (1, 2, 3)

For example, let us compare the expected waiting time under admission sequence a = (1, 2, 3) and under admission sequence b = (1, 1, 4). The corresponding space A is the hyper-plane of \mathbb{R}^3 , defined by $\{(x, y, z), x+y+z=6\}$. The space A is of dimension 2 with induced multimodular vectors $d_1 = (+1, -1, 0), d_2 = (0, +1, -1)$ and $d_0 = (-1, 0, +1)$ (from the *L*-triangulation of \mathbb{R}^3). The function W (expected waiting time) is minimized at point r = (2, 2, 2). This is a direct consequence of a combination of Lemma 5.2 (used with the *L*-triangulation and the cone constructed with the n first vectors, which is the positive quadrant) and Theorem 6.2. If we consider the cone C_1 generated by $b_1 = d_0$ and $b_2 = d_0 + d_1$, then we have $a = r + b_1$ and $b = r + b_1 + b_2$. Therefore, $a \leq_C b$, which implies $W(a) \leq W(b)$ by Theorem 5.3. This example is illustrated in Figure 2.

References

[1] E. Altman, B. Gaujal, and A. Hordijk. Admission control in stochastic event graphs. Technical Report 3179, RUL-TW-97-06, INRIA and Leiden University, June 1997.

[2] E. Altman, B. Gaujal, and A. Hordijk. Multimodularity, convexity and optimization properties. Technical Report 3181, RUL-TW-97-07, INRIA and Leiden University, June 1997.

[3] Marcelo Bartroli and Jr Shaler Stidham. Towards a unified theory of structure of optimal policies for control of network of queues. Technical report, Department of Operations Research, University of North Carolina, Chapel Hill, 1987.

[4] M. Gondran and M. Minoux. *Graphs and algo*rithms. Eyrolles, 1983.

[5] B. Hajek. Extremal splittings of point processes. Mathematics of Operation Research, 10(4):543-556, 1985.
[6] R. T. Rockafellar. Convex analysis. Princeton University press, 1972.