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Abstract

In this paper, we present the notion of multimodular tri-
angulation under a new geometrical point of view. We
also show the link with multimodular functions by a new
proof of the convexity theorem. This is used to de�ne a
partial ordering compatible with multimodularity called
the cone ordering. An application in admission control
in queues is then presented.
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1 Introduction

The notion of multimodular triangulation was introduced
in [3] as a generalization of a construction �rst presented
in [5]. Here, we will give a completely new vision of mul-
timodular triangulation using a geometric point of view.
This approach has several advantages. First, we general-
ize the multimodular triangulations to meshes generated
by n arbitrary independent vectors (instead of Zn). Also,
the proofs are elementary and do not use set indexing
techniques as in [3]. Finally, the link with multimodu-
lar functions is more natural and does not use lower en-
velopes as in [5]. This new approach of multimodularity
allows us to construct a cone partition of the initial set.
Within each cone, one can de�ne an appropriate \norm"
compatible with a multimodular function f , in the sense
that when the norm of point x is larger than the norm
of point y, then f(x) > f(y). Finally an application to
admission policies into G/G/1 queues in tandem is given.

2 Multimodular Triangulations

Let us start with a matrix D of size (n+ 1)� n of rank
n such that the rows of matrix D de�ne n + 1 vectors
(d0; � � � ; dn) verifying d0 + � � � + dn = 0. Such a matrix
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will be called a multimodular (m.m.) matrix in the fol-
lowing. For example, a multimodular matrix D can be
constructed starting with any n � n matrix M with full
rank and appending the opposite of sum of all the rows
of M as the last row of D.

De�nition 2.1 The mesh MD associated with the m.m.
matrix D is the set of all the points fa0d0 + a1d1 + � � �+
andn; ai 2 Z; i = 0; � � � ; ng.

Lemma 2.2 The following properties are true.
i) A point in R

n has a unique non-negative decomposi-
tion in (d0; � � � ; dn) (up to the addition of (a0; � � � ; an)
with a0 = � � � = an ).
ii)A point in MD has a unique integer non-negative
decomposition in (d0; � � � ; dn) (up to the addition of
(a0; � � � ; an) with a0 = � � � = an ).

Proof: i) Since d1; � � � ; dn is a base of Rn , then for
any point x in Rn x = �1d1 + � � �+ �ndn. Let �i be the
minimal coordinate. If �i < 0, then

x= �1d1 + �+ �ndn � �i(d0 + �+ dn) (1)

= ��id0 + (�1 � �i)d1 + � + (�n � �i)dn (2)

where all the coordinates are non-negative. As for
uniqueness, let x = �0d0+ � � �+�ndn = �0d0+ � � �+�ndn
where we may assume that all coordinates are non-
negative and �i = �j = 0. If i = j, then � = � because
(d0; � � � ; dn)ndi is a base of Rn . If no coordinates are
jointly null, then we can write x = (�0 � �i)d0 + � � � +
(�n � �i)dn which means for the jth coordinate in the
base (d0; � � � ; dn)ndi, is �j = ��i, which is impossible by
non-negativity.

ii) A point in MD has a unique decomposition in
(d1; � � � ; dn), this decomposition being in Z. By using
the same method as in (2), then we transform this de-
composition into a non-negative integer decomposition in
(d0; d1; � � � ; dn).

De�nition 2.3 A D-atom is a simplex in Rn , made of
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the n + 1 points

p0 = a;

p1 = a+ d�(0);

p2 = a+ d�(0) + d�(1) (3)

...

pn = a+ � � �+ d�(0) + d�(1) + d�(n�1)

where a 2 MD (the root) and � is a permutation of
f0; � � � ; ng. This atom will be denoted S(p0; � � � ; pn).

Note that an atom is indeed a simplex since D is of rank
n and that S(p0; � � � ; pn) and S(p1; � � � ; pn; p0) are two
notations for the same atom, when starting with p0 (resp.
p1) as a root.

De�nition 2.4 A collection of simplexes is a triangula-
tion of E (an arbitrary subset of Rn) if
E is the union of all the simplexes and
the intersection of two simplexes is either empty or a
common face.

Theorem 2.5 The set of all the D-atoms forms a tri-
angulation of Rn , called a multimodular triangulation.

Proof: Let x be a point in Rn . By Lemma 2.2, x =
�0d0 + � � � + �ndn, with non-negative coordinates, one
of which is 0. We construct a = b�1cd1 + � � � + b�ncdn
and � such that ��(i) � b��(i)c > ��(i+1) � b��(i+1)c.
We de�ne �n = 0, �n�1 = ��(n�1) � b��(n�1)c, �i =
��(i) � b��(i)c � ��(i+1) � b��(i+1)c, all of them verify

0 6 �i 6 1 and
Pn�1

i=0 �i 6 1. We have x = a+ �0d�(0)+
� � �+�n�1(d�(0)+ � � �+d�(n�1)). Therefore, x belongs to
the atom with root a and permutation �. Now, assume
that a point x belongs to the interior of two di�erent
atoms with respective roots a and b and permutations �
and � Since everything is shift invariant, we may assume
that b = 0 and � is the identity.

x = a+ �0d�(0) + � � �+ �n�1(d�(0) + � � �+ d�(n�1))

= �0d0 + � � �+ �n�1(d0 � � �+ dn�1);

with
Pn�1

i=0 �i 6 1 and
Pn�1

i=0 �i 6 1. Since x is in the
interior of both atoms, we also have �i > 0 and �i > 0
for all i = 0; � � � ; n� 1. Therefore, by uniqueness of the
decomposition of x, and writing a = a0d0 + � � �+ andn,

a0 +

n�1X
j=��1(0)

��(j) = �0 + � � �+ �n�1

...

an�1 +

n�1X
j=��1(n�1)

��(j) = �n�1

an +

n�1X
j=��1(n)

��(j) = 0:

Since all the partial sums of the �i or of the �i are all
smaller than one and since ai are integer numbers, then,
ai = 0 for all i = 0; � � � ; n. Both atoms have the same
root.

Now, the equality of the partial sums taken one by one
imply �rst that

Pn�1

j=��1(n)
��(j) = 0. Since �i > 0 for all

i, then the only possibility is ��1(n) = n. Considering
vectors dk and dk+1, we have:

n�1X
j=��1(k)

��(j) �

n�1X
j=��1(k+1)

��(j) = �k

> 0:

This implies that ��1(k) > ��1(k+1). This means that
� is the identical permutation. Therefore, both atoms
are equal.

In the restricted case when the mesh is Zn and D the
incidence matrix of a graph, this theorem was proved in
[3] using an intricate set indexing argument.

Lemma 2.6 Combinatorial properties of m.m. triangu-
lations.

i) A point in MD belongs to (n+ 1)! D-atoms.

ii) The unit-cube in MD is partitioned into n! D-
atoms.

Proof: i) This is a straightforward consequence of the
de�nition of atoms. ii) The unit-cube U in MD is the set
of points of the form a1d1+� � �+andn, with ai 2 f0; 1g for
all 1 6 i 6 n. Given a permutation �, there exists a point
b 2 U such that the atom S(b; b+d�(0); � � � ; b+d�(n�1) is
included in U . The point b = b1d1 + � � �+ bndn is chosen
in the following way:

bi =

�
0 if ��1(i) < ��1(0);
1 otherwise.

(4)

Each atom in U has n+1 vertices, hence n+1 represen-
tation of the form S(b; b+d�(0); � � � ; b+d�(n�1)) Finally,
(n+ 1)!=(n + 1) atoms are contained in U . Since all the
atoms triangulate Rn , those in U triangulate U .

Some multimodular triangulations have a special inter-
est. The most used ones are the triangulations with a
m.m. matrix D being the incidence matrix of a graph.
An oriented tree G = (V;E) with n + 1 nodes (and n
arcs) has an incidence matrix D of size (n + 1) � n is
de�ned by

Di;j =

8<
:

+1 if vertex i is the start point of edge j
�1 if vertex i is the end point of edge j
0 otherwise

First note that if D has rank n, then the graph has to be
a tree. Also, since D is totally unimodular, then its mesh
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MD is Zn (see for example [4] for a detailed presentation
on totally unimodular matrices). The L-triangulation
is the triangulation associated with a linear graph The
associated m.m. matrix is

D =

0
BBBBBBB@

1 0 0 � � � 0 0
�1 1 0 � � � 0 0
0 �1 1 � � � 0 0
...

. . .
. . .

. . .
...

...
0 0 0 � � � �1 1
0 0 0 � � � 0 �1

1
CCCCCCCA
: (5)

On the other hand, some triangulations of the space into
simplexes are not multimodular triangulations. Such an
example in dimension 3 is given in Figure 1. The triangu-
lation in Figure 1 decompose the unit cube in 5 simplexes
instead of 3!=6 for any multimodular triangulation.

Figure 1: The triangulation of the unit cube of R3 with
a minimal number of simplices is not multi-
modular

3 Multimodular Functions

Let D be a m.m. matrix with row vectors, (d0; � � � ; dn).
Sometimes in the following, the mention to D may be
forgotten. Everything implicitly refers to D such as mul-
timodularity and atoms.

De�nition 3.1 A function f : MD ! R is D-
multimodular if and only if for all a 2 MD, and for all
0 6 i < j 6 n,

f(a+ di) + f(a+ dj) > f(a) + f(a+ di + dj): (6)

From f , we construct a function ~f : Rn ! R by linear
interpolation of f over the atoms de�ned by D.

Theorem 3.2 f is D-multimodular if and only if ~f is
convex.

The hard part (\only if"), in the restricted case of the L-
triangulation, was done in [5]. The extension to the case
of tree triangulations as well as the easy reverse part
(\if" part) were presented in [3]. Using the formalism
presented here, the proof in the most general case is sim-
ilar to the version presented in [2] for the restricted case
of the L-triangulation.

Lemma 3.3 We consider all the n-periodic sequences
a = (ai)i2N with values in N satisfying

Pn

i=1 ai = k:
Let f be a multimodular function de�ned on a mesh MD

of dimension n. Then, the quantityPn

i=1
~f(aid1 + � � � + ai+n�1dn) is minimized at point

r = ( k
n
d1 + � � �+ k

n
dn).

Proof: Let A be the set of all integer sequences a,
which are n-periodic and such that within one period,
they add up to k,

Pn
i=1 ai = k. By periodicity, and using

Jensen inequality, the quantity mina2A
1
n

Pn

i=1
~f(aid1 +

� � �+ ai+n�1dn) is equal to n ~f (
k
n
d1 + � � �+ k

n
dn):

4 Sub-meshes

De�nition 4.1 A sub-mesh A of MD is a convex set of
R
n which is the union of (faces of) D-atoms.

Since any union of D-atoms which forms a convex set
is a sub-mesh by de�nition, typical sub-meshes are: the
positive quadrant: fa0d0 + � � � + an�1dn�1; ai > 0g and
the unit cube fa0d0 + � � �+ an�1dn�1; ai 2 f0; 1gg. The
hyper-plane fa0d0+ � � �+an�1dn�1;

P
i ai = kg is a sub-

mesh of dimension n� 1 of the L-triangulation.

Lemma 4.2 Any sub-mesh A has the following proper-
ties:
i) The faces de�ning A form a multimodular triangula-
tion of A.
ii) The vectors of this new multimodular triangulation are
disjoint sums of the original vectors.

Proof: First, by convexity, A has the same dimension
,say k, as any of its faces. It should be obvious that the
faces de�ning A form a triangulation of A. Now, let us
show that this is a multimodular triangulation. Let F 1

(resp. F 2) be a face in A of a simplex S1 (resp. S2) with
root a (resp. b) and permutation � (resp. ). Without
loss of generality, we may assume that a 2 S1 and b 2 S2
by shifting the starting points in the de�nitions of atoms
S1 and S2. Now, the vertices of F 1 (resp. F 2) are visited
in an order depending on � (resp. ), such that

p10 = a
p11 = a+ d�(0) + � � �+ d�(i1�1)
p12 = p11 + d�(i1) + � � �+ d�(i2�1)
...
p10 = p1k + d�(ik) + � � �+ d�(n)�1

p20 = b
p21 = b+ d(0) + � � �+ d(j1�1)
p22 = p21 + d(j1) + � � � + d(j2�1)
...
p20 = p2k + d(jk) + � � �+ d(n)
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Since both faces are in the same space of dimension k,
then for any m < k, we have the linear combination

d(jm) +� � �+ d(jm+1�1)=
k�1X
`=0

�m;`d�(i`) +� � �+ d�(i`+1�1):

This is a linear combination between the vectors
d0; d1; � � � ; dn (with the convention that i0 = 0 and j0 =
0). We know that the only relation is d0+d1+� � �+dn = 0.
Therefore, for all m, there exists a unique q such that ,
�m;q = 1. (all the other coeÆcients �m;` are null.

d(jm) + � � �+ d(jm+1�1) = d�(iq) + � � �+ d�(iq+1)�1:

This means that the vectors de�ning face F 2 are the same
as the vectors de�ning face F 1 (up to a permutation).

Lemma 4.3 Let p be a point in MD, � be a permutation
of f0; � � � ; ng and fikgk=0;���m be an increasing sequence
of integers with i0 = 0 and im = n. We de�ne the vectors
Æj = d�(ij) + � � � d�(ij+1�1) for all j = 0; � � �m. The set
p+ fa0Æ0 + � � �+ amÆm; ai 2 Ng is a sub-mesh of MD.

Proof: First note that the set A is a convex subset of
MD of dimension m. Now we consider the triangulation
of A de�ned by the vectors Æ0; � � � ; Æm, each atom of this
triangulation is a face of a D-atom.

Thus the hyper-plane P = fa0d0 + � � � +
an�1dn�1;

P
i ai = kg is a sub-mesh of dimension

n � 1 of the L-triangulation by choosing Æ0 =
d1; � � � ; Æn�2 = dn�1 and Æn�1 = dn + d0, which yields
P = (k; 0; 0 � � � ; 0) + fx0Æ0 + � � �+ xn�1Æn�1; xi 2 Ng.

Lemma 4.4 A function f multimodular on the whole
space is multimodular on any sub-mesh A with respect
to the induced multimodular matrix of A.

Proof: Let a be a point in A and let u and v be two
arbitrary rows for the multimodular matrix of A. By
Lemma 4.2, u = di1 + � � � + dik and v = dj1 + � � � +
djm where the sets fdi1 ; � � � ; dikg and fdj1 ; � � � ; djmg are
pairwise distinct. Therefore, we have

f(a) + f(a+ u+ v)
= f(a) + f(a+ di1 + �+ dik + dj1 + �+ djm)
6 f(a+ di1 + � � �+ dik ) + f(a+ dj1 + � � �+ djm)
= f(a+ u) + f(a+ v):

Corollary 4.5 The function f is multimodular in a sub-
mesh A if and only if ~f is convex on A.

A second corollary of Theorem 3.2 concerns the mini-
mization of multimodular functions. For a function de-
�ned on A, we call x a local minimum on A if f(x) 6
f(x+=�di) for all i such that x+=�di is in A.

Corollary 4.6 Let the function f be multimodular in A.
Then a local minimum is a global minimum on A.

Proof: If f is multimodular in A, then ~f is convex
in A, and is linear on the (faces of) atoms forming A.

The graph of ~f (i.e. fx : 9y s.t. x > ~f(y)g) is a convex
polytope. Therefore, all the local minima are global and
are extreme points of atoms.

5 Cones

Now, the convex space A of dimension n will be divided
into (n+1)! cones, all starting at point h, any point of the
mesh of A. Consider one atom S = S(h = p0; p1; � � � ; pn)
containing h as a vertex. Let � and � be the permutations
on f0; � � �ng such that �(0) = 0 and

p�(1) = h+ d�(0)

p�(2) = p�(1) + d�(1)

... =
...

p�(n) = p�(n�1) + d�(n�1)

h = p�(n) + d�(n):

. Now, we de�ne for all 1 6 i 6 n, bi =
Pi

j=1 d�(j)
and b = (b1; � � � ; bn). Therefore, p�(i) = h + bi. The
vectors (b1; � � � ; bn) will be called the generators of the
cone. The cone associated with S, denoted C(S) is made
of all the points p of A such that p = h + ctb where c is
a non-negative vector in Nn . First, note that vector ct is
uniquely de�ned since (b1; � � � ; bn) are independent vec-
tors. Second, note that when we consider all the atoms
containing h as a vertex, then all the (n+ 1)! associated
cones will cover A. If two neighbor atoms share a face,
the two corresponding neighbor cones will also share a
\face" (of dimension n� 1). For any point p in A, p will
be in one cone and we will have p = h+ ct(p)b, where b is
uniquely de�ned on the support of c(p). We shall denote
d(h; p) = c1(p)+ � � �+ cn(p) and call it the distance from
h to p. All the previous remarks show that d(h; p) is well
de�ned.

5.1 Minimization

In this section, we consider the case where A = R
n and

h = 0. We also consider a function f multimodular with
respect to the row vectors of D, d0; � � � ; dn. We focus
on one arbitrary cone, C, de�ned by the permutation .
This means that the generators of C are the vectors

b0 = d(0);

b1 = d(0) + d(1);

...

bn�1 = d(0) + d(1) + � � �+ d(n�1):

Any point in C has non-negative coordinates
�0; � � � ; �n�1 in the base b0; � � � ; bn�1. We call P
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the linear application which is the passage from the base
b0; � � � ; bn�1 to the base d(0); d(1); � � � ; d(n�1).

Lemma 5.1 Let k be an integer. The set Ck of points
in C such that �0+ � � �+�n�1 = k is a sub-mesh of MD.

Proof: Set p = kd(0) and Æ0 = d(1); � � � ; Æn�2 =
d(n�1), Æn�1 = d(0) + d(n). Then the sub-mesh p +
f
P

i aiÆi; ai 2 Ng is precisely the set Ck.

The following lemma is some kind of generalization of
Theorem 3.4 in [2] from the L-triangulation and the pos-
itive quadrant to any multimodular triangulation and one
of its cones.

Lemma 5.2 Let f be a m.m. function, then the quantity

1

n

nX
i=1

f Æ P (�i � � � ; �i+n�1)

is minimized over the set Ck at all the points �(�), 0 6
� 6 1 of coordinates

�i(�) = bi
k

n
+ �c � b(i� 1)

k

n
+ �c:

Proof: The function 1
n

Pn

i=1
~f Æ P (�i � � � ; �i+n�1)

is clearly convex and is minimized at point r = (�0 =
k
n
; � � � ; �n�1 = k

n
) over Ck (see Lemma 3.3). This func-

tion is linear on the atoms of the sub-meshCk. Therefore,
it is also minimum at all the vertices of the face contain-
ing the point r. The vertices of this face are the points
�(�) with coordinates

�i(�) = b(i+ 1)
k

n
+ �c � bi

k

n
+ �c;

when � varies from 0 to 1. Indeed, these points are all
in the sub-mesh, since all their coordinates are integer
number and since P is totally-unimodular. Now, Let fi =
1�(i+1) k

n
+b(i+1) k

n
c, all ordered in the increasing order.

By construction, when � varies from 0 to 1, then the point
�(�) takes only n values. The point �(�) changes at all
the points of the form fi for i = 0; � � � ; n� 2. At � = fi
we add �di+1. Therefore, all the points �(�) form a
hyper-face. Noting that

r =
�(0)

n� 1
+
�(f0)

n� 1
+
�(f1)

n� 1
+ � � �+

�(fn�2)

n� 1
;

shows that r belongs to that face.

5.2 Partial order and monotonicity

Now, we de�ne a partial order on A by choosing h =
r, where r is the minimal point of a m.m. function f
on A. First, this partial order is de�ned in a di�erent
manner on each cone. In a given cone C, with generating
vectors b1; � � � ; bn, then we say that x 6C y is c(x) 6
c(y) component-wise. Note that in a given cone, this
partial order is a lattice which is isomorphic to Nn with
the classical component-wise order.

Theorem 5.3 If f is a multimodular function on A,
then x 6C y implies that f(x) 6 f(y). In other words, f
is monotone with respect to the partial order 6C.

Proof: Since x and y are comparable, this means
that they are in the same cone. From now on, b1; � � � ; bn
will be the generators of this cone. First note that we
can assume that d(x; y) = 1. If not, then we prove step
by step along the path from x to y along the direction
of the generators, say x = x1 6C � � � 6C xm = y that
f(x) = f(x1) 6 � � � 6 f(xm) = f(y). The proof will
now proceed by induction on d(r; x). First note that the
property is true if d(x; r) = 0, since r is the argmin of f
on S. Now, let assume that we have d(x; r) > 1. Pick a
point z such that x = z+ bi in cone C. (equivalently, we
have c(y) + ei = c(x) and c(y) 6 0). Note that d(z; r) =
d(x; r)� 1 and z 6C x. By induction, this means f(z) 6
f(x). Since d(x; y) = 1, there exist j such that y = x+bj .
Now we have two cases, since we may not be able to
choose i such that i = j.
If i = j, then by convexity of f ,

f(z + bi)� f(z) 6 f(z + bi + bi)� f(z + bi):

We also know by induction that f(z + bi) � f(z) > 0.
This means that f(x) 6 f(y).
If i 6= j, then we choose yet another point, w, such that
w = z + bj . We can assume that i > j (the case j < i
is similar by inverting the role played by bi and bj in
the following). Since bi is a sum of base vectors, it is
also a sum of opposites of base vectors, since all base
vectors add up to 0. Note that all these base vectors are
distinct from the base vectors involved in bj . We have:
bj = d�(1) + � � � + d�(j); and bi = �d�(i+1) � d�(i+2) �
� � � � d�(n+1). Therefore,

f(w)� f(z)

= f(x+ d�(1) + � � � + d�(j) + d�(i+1) + � � �+ d�(n+1))

�f(x+ d�(i+1) + � � �+ d�(n+1))

6 f(x+ d�(1) + � � � + d�(j))� f(x); (7)

= f(y)� f(x):

where Inequality 7 is a direct consequence of the de�ni-
tion of multimodularity. Since d(r;w) = d(r; z) + 1, by
induction we have, f(w) � f(z) > 0, then this implies
f(y)� f(x) > 0.

6 Application: periodic admission sequences in

G=G=1=1 tandem queues

We consider queues in tandem with general stationary
service times. As for the arrival sequence, let (ui)i2Nbe
a stationary process. The integer sequence faigi2N is the
admission sequence into the queues. The inter-arrival
times of customers in the queue is a sequence (�i)i2N
de�ned by:

�i =

a1+���+aiX
j=a1+���+ai�1

uj :
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In the following, the admission sequence will be as-
sumed to be periodic with period n. As to introduce
multimodularity, we choose the L-triangulation of Zn.
The atoms given by the L-triangulation with row vec-
tors di = �ei + ei+1, and d0 = e1; dn = �en, as
in (5). The sub-set of Zn that we will work with is
A = f(a0; � � � ; an); ai > 0 8i;

Pn
i=0 ai = kg, where k is

a given integer. The set A corresponds to all admission
sequences with n admitted customers among k slots.

Lemma 6.1 A is a convex union of hyper-faces of atoms
in Zn.

Proof: Let us consider the constraints one by one. The
constraints aj > 0 restrict A to Nn which is made of a
convex union of atoms. Now, let us look at the constraintPn

i=0 ai = k. This constraint is a convex union of faces of
atoms. To �nish the proof, remark that the intersection
of convex union of faces of atoms is a convex union of
faces of atoms.

The atoms on A are de�ned by the vectors d01 =
d1; � � � ; d

0

n�1 = dn�1 as for the L-triangulation of Zn,
and a new vector d00 = d0 + dn = en � e1. If f is a
multimodular function, f : Zn ! R, we will consider
the restriction of f to A which is also multimodular on
A with its own atoms (see Lemma 4.4). By Corollary
4.6 f has a global minimum on A. In the following, this
minimum will be called r.

Theorem 6.2 The average expected waiting time W in
a SEG is a multimodular function on A.

Proof: From the vector a = (a1; � � � ; an)
we construct an in�nite sequence � = a!. Let
WN(a1; � � � ; an) =

1
N

PN
k=1 wk(�1; � � � ; �k), where wk is

the expected total sojourn time of the kth customer, and
let W (a1; � � � ; an) = limN!1WN(a1; � � � ; an). We also
denote p the largest integer such that pn 6 N . From
[1], we know that wk is multimodular with respect to
the L-triangulation in Z

k. Since the m.m. matrix for
the L-triangulation in Z

k is a sub-matrix of the m.m.
matrix for the L-triangulation in ZN then we also know
that Wk is multimodular in Z

N. Therefore, the func-
tion H(�1; � � � ; �N ) = 1

N

PN
k=1 wk(�1; � � � ; �k) is mul-

timodular in Z
N. For all 0 6 i 6 n, WN(a + di) =

H(�+di+di+n+� � �+di+kn), where k = bN�i
n
c. Now, us-

ing the general characterization of multimodularity, that
is f(a +D1 + D2) � f(a + D1) 6 f(a+ D2)� f(a), for
D1 and D2 any arbitrary sum of base vectors, with the
only restriction that no base vector appears in D1 and in
D2, then it is immediate to check that WN(a+di+dj)�
WN(a + di) 6 WN(a + dj) �WN(a), for di and dj any
arbitrary distinct m.m. row vectors. Therefore, WN is
multimodular in Zn. The limit W is also multimodular
in Zn. By using Corollary 4.4 , W is also multimodular
on A.
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Figure 2: comparison of b = (1; 1; 4) and a = (1; 2; 3)

For example, let us compare the expected waiting time
under admission sequence a = (1; 2; 3) and under admis-
sion sequence b = (1; 1; 4). The corresponding space A is
the hyper-plane of R3 , de�ned by f(x; y; z); x+y+z = 6g.
The space A is of dimension 2 with induced multi-
modular vectors d1 = (+1;�1; 0); d2 = (0;+1;�1) and
d0 = (�1; 0;+1) (from the L-triangulation of R3). The
functionW (expected waiting time) is minimized at point
r = (2; 2; 2). This is a direct consequence of a combina-
tion of Lemma 5.2 (used with the L-triangulation and
the cone constructed with the n �rst vectors, which is
the positive quadrant) and Theorem 6.2. If we consider
the cone C1 generated by b1 = d0 and b2 = d0 + d1,
then we have a = r + b1 and b = r + b1 + b2. Therefore,
a 6C b, which implies W (a) 6 W (b) by Theorem 5.3.
This example is illustrated in Figure 2.
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