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Abstract We consider in this paper a class of vector valued processes that have
the form Yn+1 = An(Yn) + Bn. Bn is assumed to be stationary ergodic and An is
assumed to have a divisibility property. This class includes linear stochastic dif-
ference equations as well as multi-type branching processes (with a discrete or
with a continuous state space). We derive explicit expressions for the probability
distribution as well as for the two first moments of state vectors at the stationary
regime. We then apply this approach to derive two formalisms to describe the infinite
server queue. The first is based on a branching process approach adapted to phase
type service time distributions. The second is based on a linear stochastic difference
equation and is adapted to independent and generally distributed service times with
bounded support. In both cases we allow for generally distributed arrival process
(not necessarily i.i.d. nor Markovian).

Keywords Stochastic recursive equations · Stochastic difference equations ·
Branching processes · Correlations · Second moments · Discrete time

1 Introduction

We introduce in this paper a family of vector valued stochastic recursive equations
that have the form Yn+1 = An(Yn) + Bn. Yn are assumed to be non-negative. Bn,
which we call the “migration” term, is assumed to be stationary ergodic and An are a
sequence of i.i.d. stochastic processes. Moreover, An are assumed to have a divisibil-
ity property: if for some k, y = y0 + y1 + ... + yk then An(y) can be represented as
An(y) = ∑k

i=0 Â(i)
n

(
yi
)

where
{

Â(i)
n

}
i=0,1,2,...,k are identically distributed with the same

distribution as An(·), but they need not be independent.
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We compute for the above model the probability distribution, the two first
moments and correlations. We then apply our results to derive two types of models
for the discrete time infinite server queue.

One can relax the i.i.d. assumptions on An but working with a general stationary
ergodic framework for both An and Bn does not allow one to get explicit expressions
for the two first moments of Yn at stationary regime (which is the main purpose of
this paper) except for some special cases, such as the case where Bn = 0 for all n. We
shall treat this case briefly in Section 5.

The main contribution of the paper is in proposing a unifying framework that is
general enough to include various types of processes that have so far been studied
separately, and is on the other hand simple enough to allow us to derive closed form
expressions for the first two moments. Our framework covers branching processes
(both in discrete as well as in continuous state space), for which

{
Â(i)

n

}
i=0,1,2,...,k

are independent. It also covers stochastic linear difference equations for which{
Â(i)

n

}
i=0,1,2,...,k are equal.

1.1 Related work

As our framework covers both branching processes as well as linear stochastic differ-
ence equations, we present below some background on each of these processes. We
further mention some applications to queueing networks and to network protocols.

Branching processes Branching processes have their origins in the work of
Bienaymé (1845) and Galton and Watson (1874). The first asymptotic result in
the theory of branching processes was obtained by Kolmogorov in (1938). The
first reference on branching with migration is Sevastyanov (1957). Overviews on
branching processes can be found in Athreya and Jaggers (1997), Athreya and
Vidyashankar (2001). We have studied branching processes with stationary ergodic
migration in Altman (2005) and in Altman and Fiems (2007); the first reference
studied the framework of discrete state space and the second studied the contin-
uous one (see Bertoin 2002; Le Gall 2000 and references therein). For branching
processes with an i.i.d. migration process, the two first moments have been derived in
Quine (1970).

Stochastic linear difference equations Stochastic difference equations of the form
Yn+1 = AnYn + Bn have been studied extensively where (An, Bn) can be general
stationary ergodic sequences. Stability conditions and asymptotical expressions for
the stationary distributions can be found in Brandt et al. (1992), Glasserman and
Yao (1995) and references therein. We are not aware however of derivations of the
second moments for these equations.

Queueing applications Branching models appear frequently in queueing theory.
They are already used in the work of Borel in 1942 (Borel 1942) and of Kendal
in 1951 (Kendall 1951) for the busy period of an M/G/1 queue. Connections of
branching processes with the processor sharing queue have been shown in 1988
in Yashkov (1988) and further exploited by Grishechkin in (1992) (see survey on
processor sharing queues in Yashkov and Yashkova (2007) for more recent related
references). At 1992, Grischechkin published in Grishenchkin (1992) an analysis



Discrete Event Dyn Syst (2009) 19:115–136 117

of retrial queues and identified an underlying branching process with immigration.
Polling systems have been related to multi-type branching processes by Resing
in (1993).

Applications to network protocols Linear stochastic difference equations have been
used extensively to study the TCP congestion control protocol over the internet.
One and two dimensional models that describe the behavior of the protocol under a
random loss process have been studied in Dumas et al. (2002), Moller et al. (2007).
Models for any number of competing connections where losses are due to congestion
have been studied in Baccelli and Hong (2002), Altman et al. (2006) and references
therein.

Relation to our previous work Our framework has its origin in Altman (2002),
where we studied a general form of branching process with migration. We have
applied successfully this methodology to study the following models:

• (i) a single gated queue (Altman 2002) with vacations where the dynamics can
be described through a one dimensional branching process,

• (ii) A polling system with two queues with exhaustive or gated service (Groenvelt
and Altman 2005),

• (iii) A symmetric polling system with exhaustive or gated service and with any
number of queues (Altman and Fiems 2007),

On the theoretical side we propose in this paper a general approach that has the
branching processes as a special case. We apply our theoretical framework to derive
two types of models for the discrete time infinite server queue; the first, reported
already in Altman (2005) is based on using a branching process formalism and the
second using linear stochastic difference equations.

1.2 Structure

The structure of the paper is as follows. We introduce the discrete time model in
Section 2. The first and second moments of the corresponding state variables are
introduced in Section 3. The expressions obtained are shown to further simplify for
specific Markovian dynamics that creates the correlation. In Section 4 we illustrate
the above results in a queueing example. We briefly consider in Section 5 the case
with no migration: Bn = 0 for all n.

2 The model

Consider a column vector Yn whose entries are Yi
n, i = 1, ..., d where Yi

n take values
on the nonnegative subset of R+. Consider the following equation in vector form:

Yn+1 = An(Yn) + Bn. (1)

The d-dimensional column vector Bn is a stationary ergodic stochastic process
whose entries Bi

n, i = 1, ..., d are subsets of the nonnegative real numbers.
For each n, An are non-negative vector valued random fields that are non-

decreasing in their arguments. An are i.i.d. with respect to n, and An(0) = 0.
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We shall assume that An satisfy the following conditions:

A1: An(y) has the following divisibility property: if for some k, y = y0 + y1 + ... +
yk where ym are vectors, then An(y) can be represented as

An(y) =
k∑

i=0

Â(i)
n

(
yi)

where
{

Â(i)
n

}
i=0,1,2,...,k are identically distributed with the same distribution as

An(·). In particular, for any sequence k(n),
{

Â(k(n))
n

}
n are independent.

Remark 1 For a given n, we do not assume that
{

Â(i)
n

}
i=0,1,2,...

are independent.

A2: (i) There is some matrix A such that for every y,

E[An(y)] = Ay.

(ii) The correlation matrix of An(y) is linear in yyT and in y. We shall represent
it as

E
[
An(y)An(y)T] = F

(
yyT)+

d∑

j=1

y j�
( j) , (2)

where F is a linear operator that maps d × d nonnegative definite matrices to
other d × d nonnegative definite matrices and satisfies F(0) = 0.

When Y is random and independent of An then A2 yields

E
[
An(Y)An(Y)T] = F

(
E
[
YYT])+

d∑

j=1

E[Y j]�( j) , (3)

cov[An(Y)] = F(cov(Y))+F
(
E[Y]E

[
YT])−AE[Y]E[Y]TAT +

d∑

j=1

E[Y j]�( j)

= F(cov(Y))−AE[Y]E[Y]TAT +E
[
An(E[Y])An(E[Y])T]

= F(cov(Y))+cov[An(E[Y])] (4)

2.1 Examples

Example 1 Linear stochastic difference equations An(·) is assumed to be linear and
thus there is a random matrix, which we denote with some abuse of notation as An,
such that An(Yn) can be written as AnYn. In particular we have Â(i)

n = An. Let (An)i

be the ith row of the matrix An. Now, A2 holds with

F(yyT) = E
(

An(y)(An(y))T
)

= E
(

An yyT [An]T
)
.

We present some more insight on F. Let (An)i denote the ith row of An. Then
[
An yyT AT

n

]
ij = [An y]i[An y] j = (An)i y[(An) jy] = yT((An)i)

T [(An) jy]
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Hence,
[
F
(
yyT)]

ij = yT E
[
((An)i)

T(An) j
]

y.

Example 2 Discrete multitype branching processes with migration The ith element
of the column vector An(Yn) is given by

[An(Yn)]i =
d∑

j=1

Y j
n∑

k=1

ξ
(k)

ji (n) (5)

where ξ (k)(n), k = 1, 2, 3, ..., n = 1, 2, 3, ... are i.i.d. random matrices of size d × d.
Each of its element is a nonnegative integer. We assume further that for any l =
1, 2, 3, ..., l′ = 1, 2, 3, ..., k = 1, ..., d, i = 1, ..., d, m = 1, ..., d, j = 1, ..., d and m �= k,

ξ
(l)
ki (0) and ξ

(l′)
mj (0) are independent. Denote E

[
ξ

(k)

ij (n)
]

= A ji.
{

Â(i)
n

}
i=0,1,2,...,k are i.i.d.

Denote cov(ξ)i
jk = E(ξ

(0)

ij ξ
(0)

ik ) − A jiAki. We show that A2 holds. We have:

E[(An(y))i(An(y)) j] = E

(
d∑

k=1

yk∑

l=1

ξ
(l)
ki (0)

d∑

m=1

ym∑

l′=1

ξ
(l′)
mj (0)

)

= E

⎛

⎝
d∑

k=1

ykAik

∑

m�=k

ymA jm

⎞

⎠+ E

(
d∑

k=1

yk∑

r=1

yk∑

s=1

ξ
(r)
ki ξ

(s)
kj

)

=
d∑

k=1

∑

m�=k

AikA jm yk ym + E

⎛

⎝
d∑

k=1

yk∑

r=1

yk∑

s=1,s�=r

ξ
(r)
ki ξ

(s)
kj

⎞

⎠

+ E

(
d∑

k=1

yk∑

r=1

ξ
(r)
ki ξ

(r)
kj a( j)

)

=
d∑

k=1

∑

m�=k

AikA jm yk ym+
d∑

k=1

(
y2

k−yk
)
AikA jk+

d∑

k=1

yk E
[
ξ

(0)

ki ξ
(0)

kj

]

=
d∑

k=1

d∑

m=1

AikA jm yk ym +
d∑

k=1

ykcov(ξ)k
ij

Thus �(k) is given by the matrix cov(ξ)k.

Example 3 Continuous state branching processes with migration For each An and
for each y ∈ Rm+ , An(y) takes values in Rm+ . An is a nonnegative Additive Lévy field1

We recall the definition of a K-parameter Lévy Field and then that of an additive
Lévy field.

1A random filed is an extension of a stochastic process where the “time” parameter is not a scalar
but a vector in Rm+ .
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Let K be a cone in Rd inducing an ordering ≤K. A K-parameter Lévy process
{A(s), s ∈ K} on Rm is a collection of random variables on Rm satisfying the following
properties.

(a) Independent increments;
(b) Stationarity in each direction in K;
(c) Continuity in probability: for each s ∈ K, A(s′) → A(s) in probability as

|s′ − s| → 0 with s′ ∈ K;
(d) A(0) = 0 almost surely;
(e) Almost surely, A(s) is K-right continuous with K-left limits in s.

For precise definitions of independent increments and stationarity, the reader is
referred to Sato’s monograph (Sato 1999).

We recall first some properties of the case K = R+ and then use them for the
definition of additive Markov fields with K = Rd+. Let m denote the dimension of
A(t). The characteristic function of A(t) is then given by (see a.o. Bertoin 2002; Sato
1999; Khoshnevisan et al. 2003),

E[ei<ξ,A(t)>] = e−tψ(ξ),

for any t ∈ R+, where by the Lévy-Khintchine formula,

ψ(ξ) = i < a, ξ > +
∫

Rm+

[
ei<x,ξ> − 1

]
L(dx), (6)

for all ξ ∈ Rm and for a given a ∈ Rm+ . Here L is a finite measure on Rm concentrated
on Rm+ − {0}. ψ is called the Lévy exponent of A and L is the corresponding Lévy
measure (Khoshnevisan et al. 2003).

The expectation and covariance of a multivariate Lévy process have the following
form:

E[A(t)] = tA, cov[A(t)] = t� (7)

where A is an m-dimensional column vector and � is a symmetric m × m matrix.
The values of A and of � can be obtained by differentiating Eq. 6 once and twice
respectively. That is, the ith element of A and the ijth element of � are given by (see
also Gjessing et al. 2003),

[A]i = ∂ψ(ξ)

i∂ξi

∣
∣
∣
∣
ξ=0

and [�]ij = − ∂ψ(ξ)2

∂ξi∂ξ j

∣
∣
∣
∣
ξ=0

.

We define next an Additive Lévy field with an Rd+ valued “time” parameter. Let
A denote a Lévy field and let A[1], ..., A[d] be d independent Lévy processes on Rm

(with scalar valued time parameters). We then assume that the random field A has
the following decomposition:

A(y) = A[1](y1) + ... + A[d](yd) , (8)

for all y = (y1, ..., yd) ∈ Rd+. Let ψ1, ..., ψd be the Lévy exponents correspond-
ing to A[1], ..., A[d]. Then for any y ∈ Rd, the characteristic function of A(y) =
∑d

j=1 A[ j](y j) is given by

E[ei<ξ,A(y)>] = e−∑d
j=1 y jψ j(ξ) = e−<y,�(ξ)>, ξ ∈ Rm.

where � = (ψ1, ..., ψd) and where < ., . > is the scalar product of two vectors.
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The expectation of A(y) is given by

E[A(y)] =
d∑

j=1

y jA[ j] = Ay , (9)

where A[ j] = E[A[ j](1)] denotes the expectation of A( j)(1) and where A is a matrix
whose jth column equals A[ j]. Similarly, the covariance matrix of A(y) is given by,

cov[A(y)] =
d∑

j=1

y j�
( j) , (10)

where �( j) = cov[A[ j](1)] is the corresponding covariance matrix of A[ j](1).

We next describe a hybrid model whose state has one discrete and one continuous
component.

Example 4 A queue with gated service with vacations.
Consider an M/GI/1 queue with a Poisson arrival process with rate λ and i.i.d.

service times with first and second moment given by s and s(2). Each time the server
arrives at the queue, a gate is closed and the server begins a busy period in which
it serves all those present at the moment that the gate was closed. When this period
ends, the server leaves on vacation.

Denote the nth busy period duration by Hn and the duration of the nth vacation as
(which is the vacation taken at the end of the nth busy period) by Vn. Define a cycle
to be the period consisting of a busy period and the subsequent vacation and denote
the duration of the nth cycle by Cn = Hn + Vn. Let Xn de the number of customers
present at the beginning of the nth cycle. Xn is a discrete branching process and Cn

is a continuous branching process.
Let Yn be a two dimensional vector with entries Yn,1 = Xn+1, Yn,2 = Cn. Next we

present Yn as a single branching process. Let A[1]
n (t) denote the number of arrivals

during an interval of duration t. Let A[2]
n (k) := ∑k

i=1 S(i)
n where S(i)

n are i.i.d. and
represent the duration of the i service time that occurred during the nth cycle. We
now set

An(k, t) = A[1]
n (t)(0, 1)T + A[2]

n (k)(1, 0)T

Let B1
n denote the number of arrivals during Vn and let Bn = (B1

n, Vn)
T . With these

definitions, the dynamics is given by Eq. 1.
The process Yn is neither a discrete nor a continuous branching process, but it is a

semi-linear process. We note that An has the structure of Eq. 8,

2.2 Stability conditions

We shall understand below
⊗k

i=n Ai(x) = x whenever k < n, and
⊗k

i=n Ai(x) =
Ak(Ak−1(...(An(x))..)) whenever k > n.

We have for j > 1

E

[( j⊗

i=1

Ai

)

(y)

]

= A jy (11)
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Define ||y|| stands for the maximum absolute value of the elements of a vector y.
Let ||A|| stands for the largest absolute value of the eigenvalues of A.

We make the following assumptions throughout

A3: ||A|| < 1 and E[B0] < ∞

Theorem 1

(i) For n > 0, Yn can be written in the form

Yn = Ỹn +
(

n−1⊗

i=0

Â(0)

i

)

(Y0) where Ỹn =
n−1∑

j=0

⎛

⎝
n−1⊗

i=n− j

Â(n− j)
i

⎞

⎠ (Bn− j−1) (12)

is the solution of Eq. 1 with initial condition Y0 = 0.
(ii) there is a unique stationary solution Y∗

n of Eq. 1, distributed like

Y∗
n =d

∞∑

j=0

⎛

⎝
n−1⊗

i=n− j

Â(n− j)
i

⎞

⎠ (Bn− j−1), n ∈ Z . (13)

The sum on the right side of Eq. 13 converges absolutely P-almost surely. Fur-
thermore, one can construct a probability space such that limn→∞

∣
∣
∣
∣Yn−Y∗

n

∣
∣
∣
∣=0,

P-almost surely. for any initial value Y0.

Proof Equation 12 is obtained by iterating Eq. 1.
Define the set of stochastic recursions on the same probability space as Yn:

Y [�]
n+1(y) = An

(
Y [�]

n (y)
)+ Bn, m ≥ −�, Y [�]

−�(y) = y. (14)

For each n ≥ 0, Y [�]
n (0) is monotonically non-decreasing in � so that the limit Y∗

n =
limn→∞ Y [�]

n (0) is well defined. Since this is measurable on the tail σ -algebra gener-
ated by the stationary ergodic sequence {An, Bn}, it is either finite P-a.s. or infinite
P-a.s. The last possibility is excluded since it follows by induction that for every � ≥ 0
and n ≥ −� that E[Y [�]

n (0)] ≤ (I − A)−1b , and hence E[Y∗
n] ≤ (I − A)−1b , which is

finite.
By the definition of Â(i)

n , by Remark 1 and by Eq. 11, we have

E

[( j⊗

i=1

Â(0)

i

)

(y)

]

= A jy,

which converges to zero by Assumption A3. Since
(⊗ j

i=1 Â(0)

i

)
(y) is non-negative, it

then follows from Fatou’s Lemma that it converges to zero P-a.s. Finally, this implies
that the difference

Yn − Y∗
n =

( j⊗

i=1

Â(0)

i

)

(Y0) −
( j⊗

i=1

Â(0)

i

)

(Y∗
0 )

converges to 0 P-a.s. This implies also the uniqueness of the stationary regime. 
�
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3 Computation of first and second moments

3.1 General results

Denote by yi and y(2)

i the first and second moment of the ith element of Y∗
n . Denote

cov(Y)ij = E[(Y∗
0 )i(Y∗

0 ) j] − yi y j. Let bi and b (2)

i denote the two first moments of Bi
n.

Define the following d × d matrices:

B(k) is the matrix whose ijth entry equals E
[

Bi
0 B j

k

]
, where k is an integer.

B̂ is the matrix whose ijth entry equals bibj,

cov(B) is the matrix whose ijth entry equals E
[

Bi
0 B j

0

]
− bibj.

Define B̂(k) := B(k) − B̂.

Theorem 2

(i) The first moment of Y∗
n is given by

E[Y∗
0 ] = (I − A)−1b . (15)

(ii) Assume that the first and second moments b i and b (2)

i ’s are finite and that F
satisfies

lim
n→∞ Fn = 0. (16)

Define Q to be the matrix whose ijth entry is Qij = ∑d
k=1 yk�

(k). Then the matrix
cov(Y∗) is the unique solution of the set of linear equations:

cov(Y) = cov(B) +
∞∑

r=1

(
ArB̂(r) +

[
ArB̂(r)

]T)+ F(cov[Y]) + Q. (17)

The second moment matrix E[YYT ] in steady state is the unique solution of the
set of linear equations:

E[YYT ] = E[B0 BT
0 ] +

∞∑

r=1

(
ArB(r) +

[
ArB(r)

]T)+ F(E[YYT ]) + Q. (18)

Remark 2 Note that the sums both in Eq. 17 as well as in Eq. 18 are finite since
the finiteness for all i of the second moments b (2)

i implies that B( j) are uniformly
bounded and since ||A|| < 1. Note also that if for some i, b (2)

i is infinite then it follows
directly from Eq. 1 that E([Yn]2

i ) is infinite for all n > 0 and thus also in the stationary
regime.

Proof of Theorem 2

(i) We first note that Y∗
0 has a finite mean. This can be seen by taking expectation in

Eq. 13 and making use of assumption A3. Taking the first moment at stationary
regime of Eq. 1 we obtain Eq. 15.
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(ii) To obtain the covariance, we first note that Eq. 3 implies

E[(A0(Y0))i(A0(Y0)) j] = [
F
(
E
[
Y0YT

0

])]
ij +

d∑

k=1

yk�
(k)

ij

and, with B−
0 := (B0, B−1, B−2, ...) we have

E[(Y0)i Br
0] =

∞∑

j=0

E

⎧
⎨

⎩

⎡

⎣

⎛

⎝
−1⊗

i=− j

Â(− j)
i

⎞

⎠ (B− j−1)

⎤

⎦

i

Br
0

⎫
⎬

⎭

=
∞∑

j=0

E

⎛

⎝E

⎧
⎨

⎩

⎡

⎣

⎛

⎝
−1⊗

i=− j

Â(− j)
i

⎞

⎠ (B− j−1)

⎤

⎦

i

Br
0

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
B−

0

⎞

⎠

=
∞∑

j=0

E
(
(A jB− j−1)i Br

0

)

=
∞∑

j=0

d∑

s=1

(A j)isB( j + 1)sr

where the last equality follows from Eq. 11. Note that the last sum is finite since
the finiteness for all i of the second moments b (2)

i implies that B( j) are uniformly
bounded and since ||A|| < 1. Next we compute

E[(A0(Y0))i Br
0] = E

[
((A0(Y0))i Br

0

∣
∣
∣Y0, B0

]

=
d∑

k=1

Aik E
[(

Yk
0

)
Br

0

] =
∞∑

j=1

(
A jB( j)

)

ir

We thus obtain

E
[
Yi

0Y j
0

]
= E

[
Bi

0 B j
0

]
+ E

[
(A0(Y0))i B j

0

]
+ E

[
(A0(Y0)) jBi

0

]

+ [
F
(
E
[
Y0YT

0

])]
ij + Qij

= E
[
Bi

0 B j
0

]
+

∞∑

r=1

(
ArB(r) +

[
ArB(r)

]T)

i, j
+ [

F
(
E
[
YoYT

o

])]
ij + Qij

which gives in matrix notation Eq. 18.
We now rewrite Eq. 18 as

cov(Y) + y yT = cov(B) + B̂ +
∞∑

r=1

(
ArB̂(r) +

[
ArB̂(r)

]T)

+A(I−A)−1 B̂+ B̂(I − AT)−1AT +F[cov(Y)]+Ay yTA+Q.

We now note that

y yT = B̂ + A(I − A)−1 B̂ + B̂(I − AT)−1AT + Ay yTAT
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which is obtained after some elementary algebra and after substituting y =
(I − A)−1b by Eq. 24. We conclude that cov(Y) is a solution of Eq. 17.
Next, we show uniqueness. Let Z1 and Z2 be two solutions of Eq. 17 and define
Z = Z1 − Z2. Then Z satisfies Z = Fn[Z ]. Iterating that we obtain that

Z = lim
n→∞ Fn[Z ] = 0

where the last equality follows from Eq. 16. This implies the uniqueness of
the solution for Eq. 17. The uniqueness of the solution of Eq. 18 is obtained
similarly. 
�

Remark 3 We comment on the condition (16). It is equivalent to requesting that all
eigenvalues of F have modulus smaller than one. To illustrate the necessity of this
condition, consider the stochastic difference scalar equation

Yn+1 = AnYn + Bn where An =
{

5 w.p. 0.1
0.1 w.p. 0.9

An are assumed to be i.i.d. and assume Y0 = 0. Then for all n

E[Yn] ≤ b
1 − 0.59

but

E
[
Y2

n

]
> b (2)2.5n

which diverges. Thus Yn does converge to a stationary ergodic regime (since A =
0.59 < 1) but this limit has an infinite second moment.

3.2 Example of a correlated processes

We assume in this Subsection that Bn are random vectors whose distribution depends
on an underlying ergodic Markov chain θn taking values in a finite space �. We
denote its transition probability by P . Let π be the unique steady state probability of
the Markov chain. Let Gi

r(θ) := P(Bi
n = r|θn = θ) and Ĝi be a matrix of size |�| × Z+

whose lrth component Ĝi
r(l) equals Gi

r(l)π(l). Let J be a row vector whose ith entry
equals i, i ∈ Z+ Then for j > 0, Our goal is to compute the quantities that appear in
Eq. 17 (in particular B(k)).

Lemma 1 In the Markov correlated model described above, we have

[B(k)]ij = E
[

Bi
0 B j

k

]
= JĜiPk−1[G j]T JT . (19)

If we denote by 1 the column vector with appropriate size whose entries are all ones,
then we further have:

[
B̂(k)

]
ij = (J − bi1T)ĜiPk−1

[
G j]T

(J − b j1)T , (20)
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where b i = ∑
l∈� E

[
Bi

0|θ0 = l
]
π(l).2 Moreover.

[cov(B)]ij =
∑

θ∈�

π(θ)cor[B(θ)]ij, (21)

where cor[B(θ)]ij = E
[

Bi
0 B j

0|θ0 = θ
]
.

Proof We have

P
(

Bi
0 = r, B j

k = s|θn = θ
)

= Gi
r(θ)

∑

θ ′∈�

[
Pk−1]

θθ ′ G j
s(θ

′)

which implies

P(Bi
0 = r, B j

k = s) =
∑

θ∈�

π(θ)Gi
r(θ)

∑

θ ′∈�

[Pk−1]θθ ′ G j
s(θ

′) =
∑

θ∈�

Ĝi
r(θ)

∑

θ ′∈�

[Pk−1]θθ ′ G j
s(θ

′)

= [ĜiPk−1(G j)T ]rs.

Hence
[
B(k)

]
ij = ∑

s

∑
r rs[ĜiPk−1GT ]rs which gives Eq. 19. The rest is direct. 
�

Next, consider the special case that the Bi
n’s have only values 0 or 1. Let p and p̂

denote the matrices whose (i, θ) entry equal, respectively, to pθ (i) := P(Bi
n = 1|θn =

θ) and p̂θ (i) := P(Bi
n = 1|θn = θ) − P(Bi

n = 1). Let g denote the matrix whose (i, θ)

entry equals gθ (i) = π(θ) p̂θ (i). Then Eq. 20 simplifies to

B̂(k) = gPk−1 p̂T (22)

3.3 Example: the single type discrete branching process (one dimension case)

We consider a scalar branching process, i.e. d = 1. Yn in Eq. 1 is then a scalar instead
of a vector and Eq. 5 simplifies to

An(Yn) =
Yn∑

k=1

ξ (k)(n). (23)

ξ (k) and A are scalar too with E
[
ξ (k)(n)

] = A. Note also that ||A|| = |A|. Theorem 2
simplifies to:

Theorem 3

(i) The first moment of Y∗
n is given by

E[Y∗
0 ] = b

1 − A . (24)

2Note that (J − bi1T )Ĝi is a row vector of dimension |�| whose lth entry equals E[Bi
0 − bi|θ0 =

l]π(l).
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(ii) The variance of Y∗
n is given by

var[Y∗] = E[(Y∗)2] − (E[Y∗])2 =
var[B] +

∞∑

r=1

(
ArB̂(r) +

[
ArB̂(r)

]T)+ Ab

1 − A2
.

Next, we shall further restrict to the Markovian setting of Section 3.2. We shall
provide an explicit expression for

∑∞
r=1 ArB(r).

Lemma 2 In the case of one dimensional state space with the Markov model for
correlation, we have

∞∑

r=1

ArB(r) = A(J − b1T)Ĝ[I − AP]−1GT(J − b)T . (25)

Proof We get using Eq. 20

ArB(r) = A(J − b1T)Ĝ[AP]r−1GT(J − b)T .

∑∞
r=1[AP]r−1 is well defined since |A| < 1 and since P is a stochastic matrix. Define

Jx to be a row vector whose ith entry equals min(i, x), i ∈ Z+. Then for any x > 0, we
have by the bounded convergence theorem:

∞∑

r=1

A(Jx − b1T)Ĝ[AP]r−1GT(Jx − b)T = A(Jx − b1T)Ĝ[I − AP]−1GT(Jx − b)T .

Equation 25 is then obtained by the monotone convergence theorem. 
�

We thus obtain the following:

Corollary 1 Consider the scalar case, and consider the Markov model for the correla-
tion process of Section 3.2. Then

var[Y∗] = var[B] + 2A(J − b1T)Ĝ[I − AP]−1GT(J − b)T + Ab
1 − A2

Moreover, in the special case that the Bi
n’s have only values 0 or 1, then we get

var[Y∗] = var[B] + 2Ag(I − AP)−1 p̂T + Ab
1 − A2

(26)

4 Application to the G/GI/∞ queue

The infinite server queue has been frequently used in networking. Some examples
are Miorandi and Altman (2006), Zukerman (1989), and references therein. We use
this queueing model here to provide an application to the theoretical tools that we
develop.

We shall apply in this section the general theory of previous sections in order to
compute the two first moments of the size of an infinite server queue in discrete
time. Our model contains in particular the G/PH/∞ queue; we have reported on



128 Discrete Event Dyn Syst (2009) 19:115–136

that model already in Altman (2005). We further introduce an alternative modeling
approach based on stochastic linear difference equations for a discrete time infinite
server queue, that contains also general bounded service times with arbitrary service
time distribution.

A discrete time model of the infinite server queue, similar to the one we present
here, has been studied independently in Eliazar (2008) with great generality. The
derivation there does not rely on the branching framework, and is achieved using a
one dimensional discrete time state model.

In this section we first show that the known results for some infinite server queue
can be obtained by applying our methodology. However, the fact that we base
our analysis on a multidimensional branching process approach allows us to obtain
results on the infinite server queue that have not been known before: (i) we are
able to analyze (in Section 4.6) a network of G/GI/∞ queues. Moreover, (ii) our
framework allows us to obtain correlations between the number of customers in
different phases for a discrete G/PH/∞ queue.

4.1 A discrete branching model

Service times Service times are considered to be i.i.d. and independent of the arrival
process. We represent the service time associated to any customer in the queue as
the discrete time analogous of a phase type distribution: there are d possible service
phases. The initial service phase of the customer k is chosen at random according to
some probability p(k). If at the beginning of slot n a customer is in a service phase
i then it will move at the end of the slot to a service phase j with probability Pij.
With probability 1 −∑d

j=1 Pij it ends service and leaves the system at the end of the
time slot.

Remark 4 A special case of our model is the one in which the service time is generally
distributed over an interval [1, ..., d] (for any d). We delay the discussion over this
case to Section 4.7.

Modeling the service time Let ξ (k)(n), k = 1, 2, 3, ..., n = 1, 2, 3, ... be i.i.d. random
matrices of size d × d. Each of its element can take values of 0 or 1, and the elements
are all independent. The ijth element of ξ (k)(n) has the interpretation of the indicator
that equals one if at time n, the kth customer among those present at service phase

i moved to phase j. Obviously, E
[
ξ

(k)

ij (n)
]

= Pij. P is a sub-stochastic matrix (it has

nonnegative elements and it’s largest eigenvalue is strictly smaller than 1), which
means that services ends in finite time w.p. 1 and that (I − P) is invertible.

Arrivals Let Bn = (
B1

n, ..., Bd
n

)T
be a column vector for each integer n, where Bi

n
is the number of arrivals at the nth time slot that start their service at phase i. Bn is
assumed to be a stationary ergodic sequence and that they have finite expectation.

The state and the recursive equation Let Yi
n denote the number of customers in

phase i at time n. Then Yn satisfies the recursion (1) where An is given in Eq. 5.
In particular, A = P and indeed we have ||A|| < 1 so that Assumption A3 holds.

We can thus apply the results of the previous sections to get the first two moments
as well as the general distribution at stationary regime.
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4.2 Main results

Corollary 2

(i) Theorems 1 and 2 hold for the G/PH/∞ queue.
(ii) The first and second moments of the number of customers at the system in station-

ary regime are given respectively by 1T(I − A)−1b and 1Tcov(Y)1, respectively,
where 1 is a column vector with all entries 1’s.

Remark 5 We present a simple interpretation of the first moment of the number
of customers at the system. Denote by λ the expected number of arrivals per slot.
Clearly λ = |b | where |b | is the sum of entries of the vector b . Define ζ to be the
expected service time of an arbitrary customer and let ρ = λζ . We shall first compute
ζ . The ijth element of the matrix (I − A)−1 has the interpretation of the total
expected number of slots that a customer that had arrived at service phase j spent at
state i. Thus the jth entry of the vector 1T(I − A)−1 has the interpretation of the total
expected number of slots that a customer that had arrived at service phase j spent in
the system. and let the vector β be the vector whose ithe entry is b/|b |. Then

ζ = 1T(I − A)−1β

and

ρ = (
1T(I − A)−1β

) |b | = 1T(I − A)−1b ,

which is our expression for the first moment of the number of customers at the
system. This relation is known to hold in fact for general G/G/∞ queues, see e.g.
Baccelli and Brémaud (2003, p. 134).

4.3 Departure process

One can use the same methodology to describe the departure process. To do that, we
can augment the system with a new “phase” which we call “D” (for Departure), and
update the phase transitions as follows:

Pij = Pij, i, j ∈ {1, ..., d},

PiD = 1 −
d∑

j=1

Pij, i ∈ {1, ..., d}

PDi = 0, i ∈ {1, ..., d, D}

Quantities corresponding to the new system are denoted by adding a bar. We set

B
i
n = Bi

n for i = 1, ..., d and B
d
n = 0 for all integers n. Since P is assumed to be sub-

stochastic, so is P. Note that in our new system, only customers in phases 1,...,d
correspond to those really present in the original system, whereas customers at phase
D are already out of the system.
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4.4 The case of geometric service times

We now study the special case of geometrically distributed service times. In other
words, if at the beginning of slot n a customer is in the system then it will end service
at the end of the slot with some probability p (it thus remains in the system during
a geometrically distributed duration). Recall that the dimension d is determined by
the number of service phases; here we have a single phase in which we remain with
probability p. Thus the problem can indeed be formulated using random variables
(dimension one) instead of random vectors. Yn is a scalar and denotes the number
of customers in the system. ξ (k)

n has the interpretation of the indicator that the kth
customer present at the beginning of time-slot n will still be there at the end of the
time-slot. Thus the probability that a customer in the system finishes its service within
a time slot is precisely p = 1 − A. We apply below directly the results of Section 3.3.

To illustrate the one dimensional case obtained with service times that are
geometrically distributed, we consider the following simple scenario. The arrival
process depends on a Markov chain as in Section 3.2, and moreover, there can be
either one or no arrival at a time slot.

We consider a Markov chain with two states {γ, δ} with transition probabilities
given by

P =
(

1 − εp εp
εq 1 − εq

)

ε > 0 is a parameter that will be varied later in order to vary the correlations. The
steady state probabilities of this Markov chain are

π =
(

q
p + q

,
p

p + q

)

.

Hence

b = E[B] = E[B2] = qpγ + ppδ

p + q
, (27)

where pγ := P(Bn = 1|θn = γ ), and pδ := P(Bn = 1|θn = δ) (this is in line with the
definition of pθ at the end of Section 3.2). Equation 27 then implies the following:

var[B] = (qpγ + ppδ)(q(1 − pγ ) + p(1 − pδ))

(p + q)2
(28)

Note that π, b , E[B2] and var[B] do not depend on ε.
Applying the first part of Theorem 3 we get the following expression for the

expected number of customers in the system in stationary regime:

E[Y∗
0 ] = 1

1 − A × qpγ + ppδ

p + q
. (29)

Next, we wish to compute the variance of Y. We have

p̂ =
[ p(pγ − pδ)

p + q
,

q(pδ − pγ )

p + q

]
, g = pq(pγ − pδ)

(p + q)2

[
1,−1

]
,

(I − AP)−1 = 1

(1 − A)(1 − A + ε(p + q)A)
×
(

1 − A + εAq εAp
εAq 1 − A + εAp

)
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We thus obtain

g(I − AP)−1 p̂T = pq(pγ − pδ)
2

(1 − A + ε(p + q)A)(p + q)2
(30)

Substituting in Eq. 26 yields the following expression for var[Y∗]:
1

(1 − A2)(p + q)2

×
(

(qpγ + ppδ)(q(1 − pγ )+ p(1 − pδ))+ 2Apq(pγ − pδ)
2

1−A+ε(p+q)A+Ab(p+q)2

)

(31)

Remark 6 In the above expression for var[Y∗], we see that the dependence on ε

comes only through the term in Eq. 30. Moreover, we see that for any value of A,
this term, and hence var[Y∗], decrease with ε. Large ε means that the Markov chain
alternates rapidly between its two states, which results in a lower overall effect of
correlation. Equation 30 can precisely be used to determine this overall effect as it
can be viewed as the total weighted sum of correlations B̂(k), i.e.

g(I − AP)−1 p̂T =
∞∑

k=0

g(AP)k p̂T =
∞∑

k=1

Ak−1B̂(k)

where we used Eq. 22.

4.5 A numerical example

As a numerical example for the model introduced in the last subsection, we set the
following parameters: p = q = 1, pγ = 1, pδ = 0.5. Substituting these parameters in
Eq. 31 we obtain the following expression:

var[Y∗] = 1

(1 − A2)

(
3

16
+ 2A

1 − A + 2εA + 3

4
A
)

.

In Fig. 1 we plot the variance of the steady state number of customers, var[Y∗], while
varying ε and A.

Recall that for a fixed A, the expectation of Y∗ does not depend on ε. The variance
of Y∗ on the other hand is seen to be quite sensitive to the correlation between
the Bn’s as determined by the parameter ε. This sensitivity is seen to increase as
A increases and sensitivity is largest when A approaches 1. As already mentioned
in Remark 6 we see that ε = 1 gives the smallest value of var[Y∗] and that var[Y∗]
increases as ε decrease. For A = 0.5 we get a difference of around 30% between
the lowest and the largest value of ε, where as form A = 0.9 we obtain a difference
of 250%.

4.6 Extension to a network

Consider now M stations, each with infinite number of servers. The service time at
station i has a set Ni of di phases. Let d = d1 + ... + dM. For any j = 1, ..., d let s( j)
denote the station to which j corresponds, i.e. if j ∈ Ni then s( j) = i.

If at time n a customer were at phase j in station s( j) then it either moves to
another phase at the same station or moves to another phase in another station; the
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Fig. 1 var[Y∗] (vertical axis)
as a function of ε (horizontal
axis) and of A
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next phase k (either at the same station or at another one) is chosen with probability
Pjk; with probability 1 −∑d

k=1 Pjk the customer leaves the system. Again we assume
that the choice of next phase are independent.

Let Bn = (
B1

n, ..., Bd
n

)T
be a column vector for each integer n, where Bi

n is the
number of arrivals at the nth time slot that start their service at phase i in station s(i).
Bn is assumed to be a stationary ergodic sequence.

With this description we see that we can identify the whole network as a single
server station problem with infinite number of servers and with d phases. Thus we
can apply all previous results.

4.7 Linear difference equation model for the G/GI/∞ with general
bounded service time

A special case of our model is the one in which the service time is generally
distributed over an interval [1, ..., d] (for any d). Indeed, this is obtained by setting

Pij =
{

1 if i > 1 and j = i − 1
0 otherwize.

Notice that if in the beginning of a slot a customer is in phase 1, then it leaves
the system at the end of the slot. With this definition of Pij we see that the
probability distribution of the service duration of an arbitrary customer is given by
p(·). An(y) can then be represented as the product of the matrix A and the column
vector y = (y1, ..., yd)

T where A has the form

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(32)
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We note the following:

• ||A|| = 0 in agreement with Assumption A3. The dynamics is then given as
a linear stochastic difference equation, which is at the same time a special
degenerate case of a discrete branching process.

• We note that Ad = 0. This implies that Eqs. 12 and 13 simplify to

Yn = Y∗
n =

d−1∑

j=0

A jBn− j−1

for any n ≥ d, so that for any value of Y0, there is coupling between the process
Yn and Y∗

n after time d.

As in Section 4.3, we may augment the state if we wish to include the departure
process. The state is then of dimension (d + 1) and the d + 1st element of Yn

represents the number of departures at time slot n. Again An(y) can be written as
the product Ay of a matrix A and the state vector y where A is a matrix of the form
given in Eq. 32 whose dimensions are now (d + 1) × (d + 1).

5 The case of Bn = 0

In this Section, we study the homogeneous case, i.e. we study the dynamics Eq. 1 for
the case Bn = 0 under the assumption that E[(log ||A0||)] < ∞ where we define

||An|| = sup
y�=0

||An(y)||
||y|| .

We show that this implies that Yn converges to zero. The proof is a direct extension
of the one in Glasserman and Yao (1995) that treats the case where An are linear.

We relax the assumption that An are i.i.d., we assume instead that they are sta-
tionary ergodic (with respect to the shift in n).

Define P̂(k, n) := ⊗n
i=k+1 Ai for k, n ∈ Z , k < n. Then

log
∣
∣
∣
∣P̂(l, n)

∣
∣
∣
∣ ≤ log

∣
∣
∣
∣P̂(l, k)

∣
∣
∣
∣+ log

∣
∣
∣
∣P̂(k, n)

∣
∣
∣
∣ .

Combining this with the fact that E[(log ||A0||)] < ∞, we have by Kingman’s ergodic
theorem (Carmona and Lacroix 1990; Steele 1989) (for the discrete time):

Theorem 4 Assume that An are stationary ergodic and that E[(log ||A0||)] < ∞. Then
there is a finite constant γ ∗ such that

lim
n→∞ n−1 log

∣
∣
∣
∣P̂(0, n)

∣
∣
∣
∣ = γ ∗, P − a.s.

Noticing that
(

n⊗

i=1

Ai

)

(y) ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n⊗

i=1

Ai

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
||y|| =

(

exp

(
1

n
log
∣
∣
∣
∣P̂(0, n)

∣
∣
∣
∣
))n

||y||

we obtain the following.
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Corollary 3 Assume that An are stationary ergodic, that E[(log ||A0||)] < ∞, and
that γ ∗ (defined in Theorem 4) is strictly negative. Then for any initial state y, we
have P-a.s.

lim
n→∞

(
n⊗

i=1

Ai

)

(y) = 0.

6 Conclusion

In this paper we have studied a class of stochastic recursive equations and derived
their first two moments for the case of (possibly non Markov) stationary ergodic
migration process. The framework applies to stochastic auto regressive processes as
well as to branching processes with either a discrete state space or a continuous state
space. We have used the results on the second moments to investigate the discrete
infinite server queue with batch arrivals where the size of the batches follow a
general stationary ergodic process. We then proposed more specific Markov models
for correlation that further simplify the expressions for the first two moments. Our
results were illustrated through the analysis of a G/GI/∞ queue as well as through
an extension to a network of such queues.
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