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Abstract—A major contribution of biology to competitive Although ESS has been defined in the context of biological
decision making is the area of evolutionary games. It describes systems, it is highly relevant to engineering as well (s¢e [6
the evolution of sizes of large populations as a result of many local {;q biological context, the replicator dynamics is a moael f

interactions, each involving a small number of randomly selected . . . .
individuals. An individual plays only once; it plays in a one shot the change of the size of the population(s) as biologistese

game against another randomly selected player with the goal of Where as in engineering, we can go beyond characterizing and
maximizing its utility (fitness) in that game. We introduce here modelling existing evolution. The evolution of protocolanc

a new more general type of games: a Stochastic Evolutionary be engineered by providing guidelines or regulations fer th
Game where each player may be in different states; the player way to upgrade existing ones and in determining parameters

may be involved in several local interactions during his life time .
and his actions determine not only the utilities but also the related to deployment of new protocols and services. In

transition probabilities and his life duration. This is used to study d0iNg SO we may wish to achieve adaptability to changing
a large population of mobiles forming a sparse ad-hoc network, environments (growth of traffic in networks, increase ofesjse
where mobiles compete with their neighbors on the access to aor of congestion) and yet to avoid instabilities that could
radio channel. We study the impact of the level of energy in gtherwise prevent the system to reach an ESS.

the battery on the aggressiveness of the access policy of mOb"esEvolutionary Stable StrategiesConsider a large population

at equilibrium. We obtain properties of the ESS (Evolutionary L .
Stable Strategy) equilibrium which, Unlike the Nash equilibrium ~ ©f Players. Each individual needs occasionally to take sacae

concept, is robust against deviations of a whole positive fraction tion (such as power control decisions, or forwarding decisi
of the population. We further study dynamical properties of the We focus on some (arbitrary) tagged individual. Occasignal

system when it is not in equilibrium. the action of someN (possibly random number of) other
individuals interact with the action of that individual geother
[. INTRODUCTION neighboring nodes transmit at the same time). In order tcemak

e of the wealth of tools and theory developed in the biology

. L . u
The evolutionary games formalism Sa central m.athemat'qfﬁarature, we shall often restrict, as they do, to intécact that
tools developed by biologists for predicting populatiomaig- are limited to pairwise, i.e. t&v = 1. This will correspond

ics in the context ofinteractions between population$his ; :
. " ) to networks operating at light loads, such as sensor neswvork
formalism identifies and studies two concepts: The ESS (fﬁ{ P g g

Evoluti Stable Strat d theReolicator D ) at need to track some rare events such as the arrival at the
[1\6? utionary Stable Strategyan ereplicator ynamics vicinity of a sensor of some tagged animal.

The ESS is characterized by a property of robustness again%fvedder'nfe. by.J(p,q) the expectled paﬁog forllour tz;gged
invaders (mutations). More specifically, ndivigual 1 I uses g_strategy (also called policy)w en
meeting another individual who adopts the strategyThis

« (i) if an ESS is reached, then the proportions of eagayoff is called “fitness” and strategies with larger fithass
population do not change in time. expected to propagate faster in a population.

« (ii) at ESS, the populations are immune from being in- ,, 404 4 belong to a setk of available strategies. In
vaded by other small populations. This notion is stronggfe standard framework for evolutionary games there are a
than Nash equilibrium in which it is only requested thafinite number of so called "pure strategies”, and a general
a single user would not benefit by a change (mutatiogyrategy of an individual is a probability distribution ovire
of its behavior. pure strategies. An equivalent interpretation of straegs

ESS has first been defined in 1972 by M. Smith [3], whobtained by assuming that individuals choose pure stretegi
further developed it in his seminal teEvolution and the and then the probability distribution represents the foacof
Theory of Game$4], followed shortly by Axelrod’s famous individuals in the population that choose each strategyeNo
work [1]. that J is linear inp andgq.



Suppose that the whole population uses a strageayd that in [8]. We shall propose a replicator dynamics that extehds t
a small fractiore (called “mutations”) adopts another strateggtandnard one and study its convergence.

p. Evolutionary forces are expected to select agginist The structure of the paper is as follows. In the next section
we present the model and provide some notation and defini-
J(gep+ (1 —¢€)q) > J(p,ep + (1 = €)q) (1) tions. We then compute in Section Il the ESS as a function

Definition 1: A strategyq is said to be ESS if for every of th.e system’s parqmeters, and then study its properties in
p # q there exists some, > 0 such that (1) holds for all Section IV. In Section V we compare the performance at

c€(0,%,). ESS which characterizes the non-coopoerative behavitiato t
In fécl{ we expect that if obtained by a cooperative approach. We then propose and
study in Section VI the replicator dynamics and end with a
forallp#gq, J(g,q9) > J(p,q) (2) section on numerical examples.
then the mutations fraction in the population will tend to Il. MODEL

decrease (as it has a lower reward, meaning a lower growthiye consider a large population of mobile terminals. We
rate).q is then immune to mutations. If it does not but if still;syme that the density of the network is low, so that if a
the following holds, terminal attempts transmission one can neglect the priityabi
_ of interference from more than one other mobile (called

forallp#q, J(g.q)=J(p.q) andJ(g.p) > J(p.p) (3) "neighbor”). Interference occurs as in the Aloha protodbl:
then a population using are “weakly” immune against a more than one neighbors transmit a packet at the same time
mutation usingp since if the mutant’s population grows, therthen there is a collision. To avoid loosing both packets at a
we shall frequently have individuals with strateggompeting collision, we assume that a mobile whose battery energy leve
with mutants; in such cases, the conditidty, p) > J(p,p) is high can transmit at a high power. This allows to recover
ensures that the growth rate of the original population edse the transmission whenever a collision occurs with a packet
that of the mutants. We shall need the following characteriztransmitted at a low energy level.
tion: More precisely, we consider non-cooperative game among

Theorem 1:[9, Proposition 2.1] or [2, Theorem 6.4.1, page large population of users of mobile terminals. A terminal
63] A strategyq is ESS if and only if it satisfies (2) or (3). attempts transmissions during some sequefifé of times,

Corollary 1: (2) is a sufficient condition fog to be an ESS. called time opportunities or time slots. At each attempigis

A necessary condition for it to be an ESS is to take a decision on the transmission power based on his
battery energy state. To simplify, we assume that the state ¢
forallp #q,  J(g,9) = J(p.q) (4)  take three valuesF, A, E} for Full, Almost empty or Empty.

nThe transmission signal power of a terminal can be High

terms of Nash equilibrium in a matrix game The situation iff) or Low (). W_e c_aII thes_e the "actlpns" th‘f"t a terminal

which an individual, say player 1, is faced with a member &0 take. Transmission at high power is possible only when

a population in which a fractiop chooses strategyl is then 1€ mobile is in staté”. At state A only actior! is available,

translated to playing the matrix game against a second pla?@d at E tr§n§m|SS|_on is not possible any more. The I|fet|'me

who uses mixed strategies (randomizes) with probabil'ybies_Of the mob_lle is defined as the number of slots during which

and 1 — p, resp. The central model that we shall use tbS Pattery is nonempty.

investigate protocol and service evolution is introduaedhie . . .

next Subsection along with its matrix game representation. Ve consider an Aloha-type game where a mobile transmits
We can learn and adopt notions from biology not onlf Packet with success during a slot if:

through the concept of evolutionary game, but also in applic * the mobile is the only one to transmit during this slot

tions related to energy issues that have a central role Ipoth i « the mobile transmits with high power and all others

biology as well as in mobile networking. The long term animal  transmitting nodes use low power

survival is directly related to its energy strategies (cetitfpn A. Some notation

over food etc), and a population of animals that have good . ] ]

strategies for avoiding starvation is more fit and is expcte We introduce the following notations:

to survive [11], [12], [13]. By analogy, we may expect mobile « p is the probability for a mobile to be the only transmitter

The conditions on ESS can be related to an interpreted |

terminals which adopt efficient energy strategies to livegler. during a slot
Networks with more efficient nodes then have more chancess Qi(a) is the probability of remaining at energy level
to survive longer [14]. i when using actiorz. Since stated only action! is

Another element of evolutionary games is the replicator available, we writeQ) 4 instead ofQ (1)
dynamics. It has been used for describing the evolution ofe « is the fraction of the population who use the action
road traffic congestion in which the fitness is determined by at any given time. Note that for a given the proportion
the strategies chosen by all drivers [7]. It has also beatiedu of the population that choose actidrat stateF" is higher
in the context of the association problem in wireless nektaor thana, since at statel a mobile cannot choosk.



B. Policies state and a stationary poli¢gy. We note however that only at

In standard evolutionary games, a player takes only ofigite ' there will be a dependence gh
action. The result of the action is represented using a matgtate E o o
R whose entry(i, j) represent the fitness of the individual if"vhen the level of energy is in state, the valuation is equal
it plays actioni when it meets an individual that plays actiorf© V(E) = 0.
j. Then, if a fractione; of the population plays action,

then the expected fitness of and individual playing aciigm State A

Zj ;Rij. When the state isl, the valuation is
The game we face here is different since an individual _
can take several actions during its lifetime. Hence the d&ne V(A) =p+QaV(4),

cannot be directly represented as an entry of a matrix whaoggich gives that

rows corresponds to the players’ actions only. Insteadnény e V(A) = P

would correspond to the total expected fitness that the playe 1-Qa

gets in his lifetime as a function of its policy. The expected time during which a mobile spends in state
A general policyu is a sequence, = (uy,us,...) Where g given by

u,; is the probability of choosing if at time i the state isF. T(A) =1+ QuT(A)

A stationary policy is a policy for which at any time that the
individual is at stateF’, the probabilityu; of choosingh is which implies that
the same. We shall use a single real numBeto denote a 1
stationary policy of an individual stands for the probability T(A) = 1 .
that a mobile useé when at state?. —@a
A stationary policy is called pure if it does not use random-
ization (in our case there exist two pure stationary pdicibe State F
one that always choode at state/” and the one that always Define the dynamic programming operaf@Kv, a,«) to be
choosel). Other stationary policies are calle@ndomized the total expected fitness of an individual starting at state
stationary policies. (They play the role of mixed policies iif
standard evolutionary games.)

« It takes actioru at time 1,
« If at time 2 the state i’ then the total sum of expected
o . fitness from time 2 onwards is.

Choose some individual terminal and I&; denote the , A¢each time the mobile attempts transmission, the proba-
number of packets (zero or one) successfully transmitted at pjjity that another interfering mobile uses actibngiven
time slot ¢ by this terminal. We define théitnessof the that there is a simultaneous transmission with another
terminal to be given by) ,~, R;, i.e. the total number of mobile, interferes with another transmissionpis

packets successfully transmitted during its lifetime. . . .
- L Below, o is omitted for the case = [ since the dependence
Assume thatx is fixed and does not change in time (we : )
n « appears only with the actiom = h.

shall consider later the case in which it may vary in timef).

C. Fitness

Then the expected optimal fithess of an individual starting a We have
given initial state can be computed using the standard yhafor Y,0) = p+Qr()o+(1—Qr)V(A), (5
total-cost dynamic programming, that states in partictiat 1= Qr()

there exist optimal stationary policy (i.e. a policy for whi p+Qr(v+p
at any time that the individual is at staté, the probability
u; of choosingh is the same). We shall thereforestrict to and
stationary policiesunless stated otherwise. B
Some more definitions: Y(v,h, ) a(p+Qr(h)v + (1]1 QF(h))V(AL) A(G)
o Vs(i,a) is the total expected fitness (i.e. reward or +H1= o)1+ Qr(h)v+ (1 - Qr( )21‘/( )
valuation) of a user given that it uses poli¢y that it = ap+(1—a)+ QF(h)U—FpiF().
is in statei and given the parameter. 1-Qa
« We define with some abuse of notatidj(i, o) (respec-
tively Vi (i,)) to be the total expected fitness of a user aAssume that a mobile usdsw.p. 3 at stateF. Then the
given that it is in state, that it uses actiorh when at eypected time it spends at stdieis
state I’ (action(, respectively) and given the parameter

1-Qa

a. T3(F) =1+ BQr(h)Is(F) + (1 — B)Qr()Ts(F)
[1l. COMPUTING FITNESS AND EXPECTED SOJOURN TIMES Which gives
We proceed by computing the individual's expected total 1
Ts(F)

utility and remaining lifetime that correspond to a giveitial

T 1-6Qr(h) — (1 - BQr()



The fraction of time that the mobile uses actibns then Corollary 2: A necessary condition fgi* to be an ESS is

8B) = B ) forall @ # 3%, Vi (F,a(3") = Var(Fa(5")  (11)
(F)+ T )1 —Q A sufficient condition fors* to be an ESS is that (11) holds
= p A (7)  with strict inequality for all3’ # 3*.

2—Qa—BQr(h) — (1 -B)Qr()
Denote byVs(F,«) the total expected utility the mobile We present next a structural property of ESS. It is an adap-
gains starting from statd’. Then V3(F,«) is the unique tation to our setting of the fact that in standard evolutigna

solution of games, only pure policies can be ESS satisfying (2); where as
a non-pure stationary policy can be an ESS only if it satisfies
=1 =B)Y(v,)) + BY (v, h, ). (3), that is
This gives B )
» Theorem 2: A necessary condition for a non-pure station-
Vs(F,a) = (1762A)[(1 — A1 =Qr() + 51 = Qr(h)))] ary policy 5* to be an ESS is that
’ 1—-(1-8)Qr(l) - BQFr(h) ' PO s
for all o Vi (F, = Vi (F, . (12
+(1*5)P+5((*1)+1) B # B ﬁ( a(ﬁ)) [3( O‘(ﬂ)) ( )
1—=(1-p8)Qr(l) - BQF(h) . . :
Equivalently, assume that for some stationary poligiésand
_ P + (1-PB)p+Balp—1)+1) 3+ 5" we have
1-Qa —(1-83)Qr(l) — BQF(h)
_ p+B1—-p)(1—a) V- (F,a(B7)) # Var (F,a(57))
= VA4 z 1 h
—Qr()+(Qr() — Qr(h)) Then a necessary condition fgi* to be an ESS is that it is
In the special case of the aggressive policy: 1, we obtain a pure policy.
1 — 0((1 — p) P f ~ * ~ * * 3
V. Vi(F.a)=V(A 8 roof: If Vg« (F,a(6*)) < Vs (F,a(0*)) theng* is not
. Vi(Fa) (4)+ 1—=Qr(h)’ ® ESS due to Corollary 2. Assume that is not pure (it is

neither 0 nor 1) and thatsz- (F,a(5*)) > Vg (F, a(6*)) for
some 3’ # (3*. Applying Remark 1 witha = @(5*) and
©) 8 = 3 we conclude that
L=Qr() VA(E, a(8)) > Vi (F,a(8")) o Vo(F,a(5")) > Va- (F, a(6"))
Remark 1:Differentiating (8) with respect t@, we obtain

dVﬂ(F, Oz)

and for3 = 0, we obtain

Vo, Vo(F,a) =V (A)+

Hence the necessary condition f6 to be an ESS (see
Corollary 2) does not hold, which establishes the proofm
dg We shall call an ESS policy* that satisfies (12yveakly
immuned ESSand one satisfying (4) with strict inequality for
(1=p)1 = )1 = Qr(l)) —p(Qr(D) - ?F(h)) all 8/ # 3* astrongly immuned ES®emark 1 implies that an
(1=Qr() +B(Qr() — Qr(h))) ESS is either strongly immuned or weakly immuned. In other
This is either strictly positive for alb € [0, 1] or strictly neg- words, there does not exist an E8Sor which (4) holds with
ative for all 8 € [0, 1] or equals zero over all the interval. Weequality for somes’ # 8 and with strict inequality for some
conclude thal/s(F, «) is either constant or strictly monotoneother 3'.
in 8 over the whole intervalo0, 1]. We proceed by identifying range of parameters for which
various ESS structures are obtained.

= (10)

IV. PROPERTIES ANDCHARACTERIZATION OF THEESS
B. Pure equilibrium: high power af’

We define an aggressive multi-policy to be the one in which
mobiles use high power each slot at state
A mobile that always uses high power at statespends an
pected amount of time of

A. Preliminaries

As already mentioned, our game is different and has
more complex structure than a standard evolutionary ga
In particular, the fitness that is maximized is not the outeom
of a single interaction but of the sum of fithesses obtainé&d
during all the opportunities in the mobile’s lifetime. Initp T(F) = 1
of this difference, we shall still use the definition 1 or the 1—-Qr(h)
equivalent conditions (2) or (3) for the ESS but with th@ stater. The fraction of time it spends at stakeis thus
following changes: T(P) 10

« (3 replaces the strategyin the initial definition, a(l) = T(F ( T4 =3 A .

« /3 replaces the strategyin the initial definition, (F) +T(A) —Qa—Qr(h)

« We use forJ(q,p) the total expected fitnesgs(F,a), ~ Theorem 3: Define

wherea = a(g’) is given in (7). 1—Qp(h)
We obtain the following characterizations of ESS. Ap = 2—-Qa—Qr(h)

(13)

Qr(l) — QF(h)p

1=p)= 1-Qr()



Let u be the pure aggressive strategy that uses alwayat

state F'.

(i) Ay, > 0 is a sufficient condition for, to be an ESS.

(i) Ap > 0is a necessary condition far to be an ESS.
Proof: We substitute the value ef from eq. (13) in (8)

to obtain

Vi(F, a(1)) V(A)

1
TOr <1 - (1-p)

To prove (i), we have to check that i&; > 0 then for all

+

Let v be the pure strategy that uses alwdyat state F'.

(i) A; > 0 is a sufficient condition fop to be an ESS.

(i) A; > 0 is a necessary condition far to be an ESS.
Proof: Note thata(0) = 0. We have

A
(1-Qr(H))(1-Qr)
HenceA; > 0 implies thatV, (£, 0) > Va(F,0) for 8 = 1. As
in the proof of Theorem 3, we can use Remark 1 to show that
this implies thatVy (F,0) > V(F,0) for all 5 # 0. Applying
Corollary 2, we conclude thak; > 0 is a sufficient condition

Vo(F,0) — V4(F,0) =

8 # 1 we have

Vi(F, (1)) > Va(F, a(1)). (15)

For the cased = 0, we obtain when taking the difference
between (9) and (8) that .

Ap
1-Qr(h)

so (15) indeed holds fog = 0 if A, > 0. We show next
that this holds for all othef € (0, 1) as well. It follows from
Remark 1 thatV;(F,a(1)) > V3(F,«a(1)) either holds for
every € [0,1) or for no g in this interval. Since we showed
that if A, > 0 then it holds for3 = 0 then we conclude that

Ay > 0 is a sufficient condition for (15) to hold for af.

The necessary condition is proved by showing that > 0
implies thatV; (F, (1)) — Va(F, (1)) > 0 for all g # 1.

This is done in the same way as the sufficient condition ise
established, and then we apply Corollary 2. [ ]

Vi(F,a(1)) = Vo(F,a(1)) =

for the policywv (i.e. for 5 = 0) to be ESS.

Conclusions. We can draw many qualitative conclusions
from the Theorem; here are some of them.

Assume thaQ)r(l) < 1 orthatp < 1. If Qr(h)
thenA; < 0 sow is not ESS.

Define
. 1=-Qr()

b = 1— QF(h)
Then it is seen that for alb < p}, the policyv is an
ESS, and for alp > py it is not an ESS.
Note that the conditions for the poliay (in Theorem 3)
to be ESS depended ap,4 where as the conditions for
the policyv (Theorem 4) to be ESS does not. The reason
is that the condition for ESS of a poligy involves «(3)
which depends o) 4 for all 5's excepts = 0.
A; > 0 is a sufficient and necessary condition foto
be a strongly immune ESS.

=Qr()

D. Weakly Immune ESS and Mixed Equilibrium

Conclusions. We can draw many qualitative conclusions
from the Theorem; here are some of them.

In the previous Subsections we characterized all strongly

immune ESS. In view of Theorem 2, a necessary condition

« Note that we have)r(l) > Qr(h) because using less¢,.
power, the mobile has more probability to stay in s’[atﬁe

full than using high power. If, for any reason, thos‘?hat av

probabilities are the same, i.€.r (1) = Qr(h), then the
strategy high power is obviously an ESS.

o If p =0 (i.e. the probability of having another simulta-
neous transmission is null) then there is no benefit from
transmission with high power. Indeed we see that in this

£B* to be a weakly immune ESS is th&f(F, a(5%))
independent off. Equivalently, we need3* to be such
3(F,a)/dB = 0 wherea = a(6*). Using (10) this

condition provides:

caseA < 0. In fact, we can conclude that there is avhich yields

thresholdp;, given by

(1 —=Qr(h)(A - Qr(l))
(1=Qr(h)(1—-Qr()+(2-Qa—Qr(h)(Qr() — Qr(h))
so thatu is an ESS forp > p; and is not ESS for
P < P,
o Ay > 0 is a sufficient and necessary condition foito
be a strongly immune ESS.

C. Pure equilibrium: low power aF'. b)
We investigate conditions for which in the full state, eac

user decides to transmit always with low power.
Theorem 4: Define

Ap:=p(l = Qr(h) = (1= Qr())

] — o= p(@r(l) — Qr(h))
(1-p)A—-Qr())
_ (1=Qr()—p( - QF(h))'

10— p)(1—Qrll)) (16)

For a real numbe¢ we denote below := 1 — (.

Theorem 5: (a) Each one of the following conditions is
necessary for there to exist a Weakly Immune ESS:

« Condition (i): A; <0,

« Condition (ii): A, <0,

Assume that Condition (i) and (ii) hold. Then there exist

unique weakly immune ESS given by
. (Qa+ QF(Z))[QF( ) — pQr (h)]

7

QapQr(l) — (Qr(l) — Qr(h)(Qr (1) — pQr(h))



Proof: A necessary condition fafi in (16) to correspond Proof: The expression of the ESS of the stochastic
to an ESS is that < a < a(1). First, we observe that the evolutionary game depends on the sign/gfand Ay,.

enumerator of (16) is-A;. This provides that\; < 0 implies  , |f both are negative, we have the weakly immune ESS

a > 0. Second, the condition < a(1) is 3* defined in theorem 5 (a) and is unique.
(1-Qr() —p(1 — Qr(h)) 1-Qa o If A; or Ay is positive, we have a strongly immune ESS
< . G*=0orp*=1.
1-pA-Qr) 2-Qa—-Qr(h) « We prove now that we cannot have bothy and A,
This condition is equivalent to positive.QV\{tla) assume thaf; strictly positive, that is
1-9r() " Now , we haveA, strictl itive if
— 1-Qa (1 =Qr(1) —p(1 —Qr(h) > 0. an Olnly If(h) ow , we havea, strictly posiive |
2-Qa—Qr(h) (1-p)(1=Qr() 0nt) Or(l)— Qe (h)
1—Qr(h F(l) — Qr(h
But we have: = (l—-p) > “—"————p,
—Qa-Qr(n —Qr(
PN (S (L NONES 10 e ort) o)
P T s Qa—e) T (1-Qr® TPT=Qe0)  min st e on) > g
L 0p) 1= Qr(h) 401l @ e ‘
Pt — : _ Qr(D) = Qr(h)

= —bOn A < 0.

We can deduce that i, < 0 thena < a(1).
(a).

Next we establish (b). Assume conditions (i) and (ii) hoId
Inverting (7) and substituting there (16), we conclude that
0 is a Weakly Immune ESS then it is given by expression
(17). This provides the uniqueness of a Weakly Immune ES®. THE GLOBALLY OPTIMAL SOLUTION AND THE PRICE OF
It remains to show thati*, as defined in (17), is indeed a ANARCHY

Weakly Immune ESS. We first observe that

This proves We then have proved that there is always one weakly immune
SSp5* or one of the two strongly immune ESS (exclusively).
| |

We next compute the cooperative optimal strategy for users

for all 3’ Ve F.a(B8%) = Va (F.a(3* and compare it with the ESS3 is globally optimal if it
orall 5°# 5%, Vs (F,6(87)) = V(1. 8(57)) maximizesV (F, a(3)). Substituting (7) into (8) this amounts
so to conclude it suffices to show that to maximize
VB # 6%, Ve (Fa(9) > Va(F.ag).  (18) 2(8) = V(A) 4 —PTOPU=G(B)
Define H(B3) = V- (F,a(B)) — Va(F,a(B)) and after some Qr() +5Qr(l) = Qr(h)

algebras we have the following expression: with a(8) = 8Qa . We have
Qa+Qr()+B8(Qr(1)—Qr(h)’
(B =B)(Qr()(L —p)(1 —a(p)) —xp)

H(p) =

anid A , / _ [@r() +8(Qr() — Qr(h))][P (1 —a(B)) — Bpa’ (B)]
(@r(l)+r2)(Qr (1) + fr) 7o = @ (D) + B@r(1) — Qr(k)?
with z = Qr(l) — Qr(h). Thus (18) is satisfied if the C[p+ 81— aB)(Qr (1) — Qr(h))]
following two conditions are satisfied: Qr () + B(Qr() — Qr(h)))?
1) VB> B, a(p) > W, In order to find the optimum point, we have to soldg ) =
2) VB < 0%, @(B) < . 0, that is
After some calculous, we observe that QF( Bl — a(s))
a(p) < W & B<p —Bp (B)[Qr (1) + BQr (1) — Qr(h))]

-p(Qr(l) = Qr(h)) = 0.
Then we deduce thats # g* we haveH () > 0 so that (18)
holds. We conclude that* is indeed a weakly immune ESS,YVe introduce the following notations:

which establishes (b). ] z=Qr(l) — Qr(h).
We finally mention the following useful property whose
proof is immediate: Moreover, after some calculus we obtain
Vs(F,a(y)) is strictly monotone decreasing in  (19) &(8) = Qa(Qa+Qr()) >0,

O _ 2
We next present a last result about existence and unicity of (Qa+Qr() +AQr() - Qr(h))
the ESS. The equationZ’ () = 0 is equivalent to
Theorem 6:For all Q 4, Qr (1), Qr(h) andp, the ESS5* e — T o3y P
of the stochastic evolutionary game exists and is unique. (1 —a(P)Qr(l) = pa’(B)Qr(l) + 7z’ (B) + 7%



and given the derivative ot we obtain after some algebras Proof: The derivative of the global objective functich

the following second order equation: is a second order polynomial function dependingZinAfter
S L - some algebra, we obtajfi~ and 3t as the two roots of this
3 (QF(Z)ZC(I’ —Qa) —2Qa(Qa+Qr(l) — §$3> function. Then, depending on those values are in the interva
[0,1] and the sign ofZ’, the optimal global strategy is either
+28 (Qp(l)(QA—i—QF(l))(w ~Qa) — pr(QA+QF(l))> 0, 1 or one of the roots of the function. ]
p Next, we obtain some relations between the ESS and the
+@Qr(D) - 2)@a + Qr()* = 0. globally optimal solution.
L _ . b ) Theorem 9:ESS strategy is more aggressive than the social
The discriminant of this equation is optimum strategy, i.e.
A=4Qa+Qr))2Qa (Qr) +2Qr(l) — %:ﬁ). 5> B.
We observe that depending @h-(1), Q (k) andp, the sign Proof: If 5* = 0 a strong immune ESS, then we have for
of the discriminant is changing. We shall use the followinﬁII p>0
eauivalence: Vo(F,(0)) > Va(F,a(0) > Vi(F,a(5),
Qr()Qr(h)

u
A>0«p<-——, whereu= . (20) becaus&(p) is strictly increasing in3. Then we have proved
1 l)— h))? : . S ~
tu (_QF_( ) _QF( ) that 3 = 0 is the global optimum,i.e3 = 0 and 3* = (.
Theorem 7:If p > 1, whereu is given in (20), then the |f 3* s weakly immune thers* €]o,1[ and
global optimal strategy is

~ Vo(F,a(0)) = Vo(F,a(8%)) = V5 (F,a(8%))

8 =0.
Proof: If p > - then after some calculus we obtain: =Vi(F,a(B)) > Vi(F,a(1))
2 (the last inequality follows from (19)). From theorem 7, we
LS Qr(D) + (QF(Z)> have:
P X X
D 1) — l) — h -A
Also the discriminant is strictly negative, then the signttud Z'(0) = PQr(l) p(QF<2) Qrh) _ 12.
derivative is the same for alf € [0, 1] and we have Qr(l) Qr(l)
pQr() — p(Qr(l) — Qp(h As (* is weakly immuneA; < 0 and thusZ’(0) > 0. More-
Z'(0) = =) é)?l()g) r(h) over, asVy(F,a(0)) = V5 (F,a(3%)), there exists3, €0, 5*
F

which maximizesV over |0, 5*[. Assuming that3 €8, 1],
Observing that2 > Qi(l) + (Qi(l))z implies 2 > Qr0) then there are necessary three local optima, which is not

x

leads toZ’(0) < 0. Then we conclude that the Slobal optimaPOSSible becaus¥ is a quadratic function i and has two

strategy is obtain witl# = 0 because the functiod is strictly 10Cal optima. Thusjs = 5, < 5. u
decreasing whep > . ] VI D
Whenp < 11, the solutionsg* and 3~ of the second - DYNAMICS
order equation are given by We extend the definition of the well known replicator
VN N P2 A AT dynamics [9] to the context of stochastic evolutionary game
= _QF(Z)(i_ QQ—F pt QA\/KE, aﬁd study [iti convergence to the various ESS obtain)éc? in the
—QrE-Qa)t+7e? - * last section.
QFr()+Qa 4 In the biological context, a replicator dynamics is a differ
and - ential equation that describes the way strategies charijjaén
L —Qr()(x —2) + B+ QavVA as a function of the fitness. Roughly speaking they are based
AT = —Qr()(@—Qa)+L2> z’ on the idea that the average growth rate per individual that
Qr()+Qa T A uses a given action is proportional to the excess of fitness of
2 that action with respect to the average fitness. In engingeri
with A" = Qr(l) + 2Qr(l) — Lz*. The global optimal the replicator dynamics could be viewed as a rule for updatin
strategy in the cooperative case is then given by the fotigwi holicies by individuals. It is a decentralized rule sincerity
theorem. requires knowing the average utility of the population eath
Theorem 8:Let 3~ and 3" be defined as above. Then thehan the action of each individual.
global optimal strategys is Although each individual terminal attempts transmission
~ at some distinct timeg?,, these times are assumed to be
8 = arg Z(0). sufficiently variable from one terminal to another so that

max
Be{0,8-,6%,1} the update rule of the whole population can be written as



the following continuous time differential equation. Defin Notice thatV(F,a(8)) = Vo(F,a(3)) = V(A) + #;(l),
B=(8,1—p) and set fora = h anda = I: which does not depend ofi and so is constant. Then only
. Wn(F,a(B)) = Vi(F,a(B)) depends ong and we have
d8@) k) |Va(Fa(8) — S Bbve(ra) | . @y already proved that(g) is strictly increasing ing, thus
dt byt Vi(F,a(pB)) is strictly decreasing ir. Then we have just to
= W) compareV: (F,a(0)) — (V(A) + =5 y) andVi(F,a(1)) -
(V(A) + =4 1)) in order to know the sign of the difference
Note that when summing the above ovewe get simply  for all 5 €]0, 16
dﬁ(h) ) dﬁ(l) . First, we have after some calculous:
dt dt Vi(F,a(0)) < V(A)+ ﬁ,
- - —WF
and hences(h)+5(1) = 1 at any time, as expected. In order to 1

prove the convergence and relation between equilibriasd re ~ V(4) + T=0r0) < V(4 + %,

points of the dynamics, we consider the propertypokitive o . ]
correlation Following [16], we define the property of positiveWhich is equivalent tay; > 0. Then, we prove that if* = 0,
correlation or net monotonicity [8] of our dynamic equatio®'Sing theorem 4 we hava,; > 0, which implies that for all

%f_' _ W(B') as ﬂ 6}0, 1[1
~ ~ p
S V(B aE)Wi(F) >0 whenever W(5) # 0. NEaE) < Mk aO) < VD + 75 4y
b=h,l

dB(h) - i
By a straightforward adaptation of the argument in [16] Wth*at_leads ar < U and the replicator dynamics converge to

conclude that the positive correlation insures that alildayia =0 -
) . : Second, after some analog calculus we obtain:
of our game are the stationary points of the replicator dynam

ics. Thus a non-stationary point of the dynamics cannot be an Vi(F,a(1)) > V(A)+ p 7
equilibrium. We therefore prove the following: ) 1-Qr(l)
Proposition 1: The replicator dynamics given b)?g = A 1-(1 —P)MZ%% VA P
W(B) described in (21) satisfies the property pbsitive (4) + 1—Qr(h) = (A4) + 1-Qp()’
correllaa;ggP: We have which is equivalent ta\;, > 0, which is a hecessary condition
B to have* = 1. Then, from the same arguments that in the
Z Vi (F, &(8))Ws (5) = Z Vb(F,a(ﬁ))%ﬂ — previous case, the replicator dynamics converge here to the
b=h Py g ESS,5* = 1, because’2™) ~ ¢ for all 8 €]0, 1].

Finally, if we have a mixed ESS, from theorem 5 we have
o~ - o~ - ~ Ay <0andA, <0, thenVi(F,a(0) > V(A) + —A2—,
Vi (F’a(ﬂ)) Kﬁ(b) Vi (F7 O‘(/B)) - B(b)v (an(ﬁ)) ’ ~ R 1 QF(l)
b;l ’ ( [ ’ 2 Fov D Vi(F,a(1) < V(A) + =& and Vi (F,a(8%)) = V(A) +
, —&z@- Thus, for all g €]0,3%[, we haveVi(F,a(8)) >
K Z B)Vi(F,a(8)? — K <Z BV (F, a(ﬂ))> . Vo(F,a(p)), i.e. dﬁd(th) > 0. And for all 3 €]57[, 1, we have
bt Vi(F,a(B)) < Vo(F,a(p)), i.e. L9 < 0. Thus, we have

dt
Using Jensen's inequality, we have that this expression qliso convergence of the replicator dynamics to the unigue ES

b=h,l

b=h,l

strictly positive and thus the replicator dynamics, in thi€" .
stochastic context, has the propertypafsitive correlation m VIl. NUMERICAL |LLUSTRATIONS

We show next that the replicator dynamics converges almost . . . .
globally. In this section we present several numerical results il-

Theorem 10:For all interior starting pointsi, €]0, 1], the lustrating theorems of previous sections. For all numeérica

i ; i E ion (21 pplications we use the foIIowing variable§ 4 = _0.5,
rEeSpslc;:‘tor dynamics defined be Equation (21) convergeseo +() = 0.9 and Qp(h) = 0.7. First, we plot on figures

h1(a) and 1(b) the valuation functiovi(/3) depending on the
strategyg for different value of the probability. We observe
that the global optimal strategy is equal o= 0.4081 and
becomess = 0 as the probabilityp grows from0.1 to 0.4.
dt On figures 2(a) and 2(b) we show both equilibria: non-
Hence the sign of the derivative of the evolution of the cooperative ongs™ and t_he global optimum cooperative one
strategy is defined by the sign of s. We observe on bo'_[h figures that the result_of the theorem 9
saying that the ESS is always more aggressive than the social
Vi(F,a(B)) — Vi(F,a(f)). optimum, is verified. Also, we describe numerically both

Proof: We rewrite the replicator dynamics for the hig
power level as:

W) _ kB (1~ Bih)) VA(F.&(8) — Vi(F.&(8))]



VIIl. CONCLUSIONS ANDPERSPECTIVES

Biological models and tools have inspired a growing number
of studies and of designs of decentralized wireless ad-hoc
networks. In various ways, this paper falls in this category
of biology-inspired research. First, the problem we hauelst
ied, concerning competitive energy management in wireless
terminals, is inherent to biological models as well where
animals compete over food. A second biology-inspired featu
of this work is the evolutionary game paradigm that we have

equilibria depending on the probabilityon figure 2(a) and we adopted and extended. Our convergence results concerng t
observe that when the probability for a mobile to be the onfgPlicator dynamics renders the ESS equilibrium concepemo
transmitter is small, the ESS j& = 1. That is the strategy relevant and meaningful than the standard Nash equilibrium
is every one uses high power because the probability to hai® the ESS is shown to be actually achieved as a limit of
competition with other mobiles is high. We observe also tt replicator dynamics, and if achieved, this equilibriuninpo
different equilibria depending on the battery quality, ttig turns out to be more stable than the Nash equilibrium. We have
the differenceQr (1) — Qr(h), on figure 2(b). Hence, this Presented a problem that extends the standard evolutionary
difference gives difference in probability to stay in thatst 9ames by (i) modeling the possibility of individuals to take
F using high or low power. We observe that both equilibri§éveral actions during their lifetime, (ii) allowing theasetions

are less aggressive as the difference increases becauseldfi@ve animpact not only on the instantaneous fitness kit als

of an individual gave an indication on its expected time to
live and on its available set of actions. We plan to extraet th
generic features present in our problem in order to develop a
generic theory of stochastic evolutionary game.

o5 06 o7 o8 o8 o1 0z 03 04 05
s i

(@p=0.1 (b)) p=04

Fig. 1. Cooperative valuation function.
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