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Abstract—A major contribution of biology to competitive
decision making is the area of evolutionary games. It describes
the evolution of sizes of large populations as a result of many local
interactions, each involving a small number of randomly selected
individuals. An individual plays only once; it plays in a one shot
game against another randomly selected player with the goal of
maximizing its utility (fitness) in that game. We introduce here
a new more general type of games: a Stochastic Evolutionary
Game where each player may be in different states; the player
may be involved in several local interactions during his life time
and his actions determine not only the utilities but also the
transition probabilities and his life duration. This is used to study
a large population of mobiles forming a sparse ad-hoc network,
where mobiles compete with their neighbors on the access to a
radio channel. We study the impact of the level of energy in
the battery on the aggressiveness of the access policy of mobiles
at equilibrium. We obtain properties of the ESS (Evolutionary
Stable Strategy) equilibrium which, Unlike the Nash equilibrium
concept, is robust against deviations of a whole positive fraction
of the population. We further study dynamical properties of the
system when it is not in equilibrium.

I. I NTRODUCTION

The evolutionary games formalism is a central mathematical
tools developed by biologists for predicting population dynam-
ics in the context ofinteractions between populations. This
formalism identifies and studies two concepts: The ESS (for
Evolutionary Stable Strategy), and theReplicator Dynamics
[10].

The ESS is characterized by a property of robustness against
invaders (mutations). More specifically,

• (i) if an ESS is reached, then the proportions of each
population do not change in time.

• (ii) at ESS, the populations are immune from being in-
vaded by other small populations. This notion is stronger
than Nash equilibrium in which it is only requested that
a single user would not benefit by a change (mutation)
of its behavior.

ESS has first been defined in 1972 by M. Smith [3], who
further developed it in his seminal textEvolution and the
Theory of Games[4], followed shortly by Axelrod’s famous
work [1].

Although ESS has been defined in the context of biological
systems, it is highly relevant to engineering as well (see [5]). In
the biological context, the replicator dynamics is a model for
the change of the size of the population(s) as biologist observe,
where as in engineering, we can go beyond characterizing and
modelling existing evolution. The evolution of protocols can
be engineered by providing guidelines or regulations for the
way to upgrade existing ones and in determining parameters
related to deployment of new protocols and services. In
doing so we may wish to achieve adaptability to changing
environments (growth of traffic in networks, increase of speeds
or of congestion) and yet to avoid instabilities that could
otherwise prevent the system to reach an ESS.
Evolutionary Stable StrategiesConsider a large population
of players. Each individual needs occasionally to take someac-
tion (such as power control decisions, or forwarding decision).
We focus on some (arbitrary) tagged individual. Occasionally,
the action of someN (possibly random number of) other
individuals interact with the action of that individual (e.g. other
neighboring nodes transmit at the same time). In order to make
use of the wealth of tools and theory developed in the biology
literature, we shall often restrict, as they do, to interactions that
are limited to pairwise, i.e. toN = 1. This will correspond
to networks operating at light loads, such as sensor networks
that need to track some rare events such as the arrival at the
vicinity of a sensor of some tagged animal.

We define byJ(p, q) the expected payoff for our tagged
individual if it uses a strategy (also called policy)p when
meeting another individual who adopts the strategyq. This
payoff is called “fitness” and strategies with larger fitnessare
expected to propagate faster in a population.

p and q belong to a setK of available strategies. In
the standard framework for evolutionary games there are a
finite number of so called ”pure strategies”, and a general
strategy of an individual is a probability distribution over the
pure strategies. An equivalent interpretation of strategies is
obtained by assuming that individuals choose pure strategies
and then the probability distribution represents the fraction of
individuals in the population that choose each strategy. Note
that J is linear inp andq.



Suppose that the whole population uses a strategyq and that
a small fractionǫ (called “mutations”) adopts another strategy
p. Evolutionary forces are expected to select againstp if

J(q, ǫp + (1 − ǫ)q) > J(p, ǫp + (1 − ǫ)q) (1)

Definition 1: A strategyq is said to be ESS if for every
p 6= q there exists someǫy > 0 such that (1) holds for all
ǫ ∈ (0, ǫy).

In fact, we expect that if

for all p 6= q, J(q, q) > J(p, q) (2)

then the mutations fraction in the population will tend to
decrease (as it has a lower reward, meaning a lower growth
rate).q is then immune to mutations. If it does not but if still
the following holds,

for all p 6= q, J(q, q) = J(p, q) andJ(q, p) > J(p, p) (3)

then a population usingq are “weakly” immune against a
mutation usingp since if the mutant’s population grows, then
we shall frequently have individuals with strategyq competing
with mutants; in such cases, the conditionJ(q, p) > J(p, p)
ensures that the growth rate of the original population exceeds
that of the mutants. We shall need the following characteriza-
tion:

Theorem 1:[9, Proposition 2.1] or [2, Theorem 6.4.1, page
63] A strategyq is ESS if and only if it satisfies (2) or (3).

Corollary 1: (2) is a sufficient condition forq to be an ESS.
A necessary condition for it to be an ESS is

for all p 6= q, J(q, q) ≥ J(p, q) (4)

The conditions on ESS can be related to an interpreted in
terms of Nash equilibrium in a matrix game The situation in
which an individual, say player 1, is faced with a member of
a population in which a fractionp chooses strategyA is then
translated to playing the matrix game against a second player
who uses mixed strategies (randomizes) with probabilitiesp
and 1 − p, resp. The central model that we shall use to
investigate protocol and service evolution is introduced in the
next Subsection along with its matrix game representation.

We can learn and adopt notions from biology not only
through the concept of evolutionary game, but also in applica-
tions related to energy issues that have a central role both in
biology as well as in mobile networking. The long term animal
survival is directly related to its energy strategies (competition
over food etc), and a population of animals that have good
strategies for avoiding starvation is more fit and is expected
to survive [11], [12], [13]. By analogy, we may expect mobile
terminals which adopt efficient energy strategies to live longer.
Networks with more efficient nodes then have more chances
to survive longer [14].

Another element of evolutionary games is the replicator
dynamics. It has been used for describing the evolution of
road traffic congestion in which the fitness is determined by
the strategies chosen by all drivers [7]. It has also been studied
in the context of the association problem in wireless networks

in [8]. We shall propose a replicator dynamics that extends the
standnard one and study its convergence.

The structure of the paper is as follows. In the next section
we present the model and provide some notation and defini-
tions. We then compute in Section III the ESS as a function
of the system’s parameters, and then study its properties in
Section IV. In Section V we compare the performance at
ESS which characterizes the non-coopoerative behavior to that
obtained by a cooperative approach. We then propose and
study in Section VI the replicator dynamics and end with a
section on numerical examples.

II. M ODEL

We consider a large population of mobile terminals. We
assume that the density of the network is low, so that if a
terminal attempts transmission one can neglect the probability
of interference from more than one other mobile (called
”neighbor”). Interference occurs as in the Aloha protocol:if
more than one neighbors transmit a packet at the same time
then there is a collision. To avoid loosing both packets at a
collision, we assume that a mobile whose battery energy level
is high can transmit at a high power. This allows to recover
the transmission whenever a collision occurs with a packet
transmitted at a low energy level.

More precisely, we consider non-cooperative game among
a large population of users of mobile terminals. A terminali
attempts transmissions during some sequence{tin} of times,
called time opportunities or time slots. At each attempt, ithas
to take a decision on the transmission power based on his
battery energy state. To simplify, we assume that the state can
take three values:{F,A,E} for Full, Almost empty or Empty.

The transmission signal power of a terminal can be High
(h) or Low (l). We call these the ”actions” that a terminal
can take. Transmission at high power is possible only when
the mobile is in stateF . At state A only actionl is available,
and at E transmission is not possible any more. The lifetime
of the mobile is defined as the number of slots during which
its battery is nonempty.

We consider an Aloha-type game where a mobile transmits
a packet with success during a slot if:

• the mobile is the only one to transmit during this slot
• the mobile transmits with high power and all others

transmitting nodes use low power

A. Some notation

We introduce the following notations:

• p is the probability for a mobile to be the only transmitter
during a slot

• Qi(a) is the probability of remaining at energy level
i when using actiona. Since stateA only action l is
available, we writeQA instead ofQA(l)

• α is the fraction of the population who use the actionh
at any given time. Note that for a givenα, the proportion
of the population that choose actionh at stateF is higher
thanα, since at stateA a mobile cannot chooseh.



B. Policies

In standard evolutionary games, a player takes only one
action. The result of the action is represented using a matrix
R whose entry(i, j) represent the fitness of the individual if
it plays actioni when it meets an individual that plays action
j. Then, if a fractionαj of the population plays actionj,
then the expected fitness of and individual playing actioni is∑

j αjRij .
The game we face here is different since an individual

can take several actions during its lifetime. Hence the fitness
cannot be directly represented as an entry of a matrix whose
rows corresponds to the players’ actions only. Instead, an entry
would correspond to the total expected fitness that the player
gets in his lifetime as a function of its policy.

A general policyu is a sequenceu = (u1, u2, ...) where
ui is the probability of choosingh if at time i the state isF .
A stationary policy is a policy for which at any time that the
individual is at stateF , the probabilityui of choosingh is
the same. We shall use a single real numberβ to denote a
stationary policy of an individual.β stands for the probability
that a mobile usesh when at stateF .

A stationary policy is called pure if it does not use random-
ization (in our case there exist two pure stationary policies: the
one that always chooseh at stateF and the one that always
choose l). Other stationary policies are calledrandomized
stationary policies. (They play the role of mixed policies in
standard evolutionary games.)

C. Fitness

Choose some individual terminal and letRt denote the
number of packets (zero or one) successfully transmitted at
time slot t by this terminal. We define thefitness of the
terminal to be given by

∑∞
t=1 Rt, i.e. the total number of

packets successfully transmitted during its lifetime.
Assume thatα is fixed and does not change in time (we

shall consider later the case in which it may vary in time).
Then the expected optimal fitness of an individual starting at a
given initial state can be computed using the standard theory of
total-cost dynamic programming, that states in particularthat
there exist optimal stationary policy (i.e. a policy for which
at any time that the individual is at stateF , the probability
ui of choosingh is the same). We shall thereforerestrict to
stationary policiesunless stated otherwise.

Some more definitions:

• Vβ(i, α) is the total expected fitness (i.e. reward or
valuation) of a user given that it uses policyβ, that it
is in statei and given the parameterα.

• We define with some abuse of notationVh(i, α) (respec-
tively Vl(i, α)) to be the total expected fitness of a user
given that it is in statei, that it uses actionh when at
stateF (action l, respectively) and given the parameter
α.

III. C OMPUTING FITNESS AND EXPECTED SOJOURN TIMES

We proceed by computing the individual’s expected total
utility and remaining lifetime that correspond to a given initial

state and a stationary policyβ. We note however that only at
stateF there will be a dependence onβ.
State E
When the level of energy is in stateE, the valuation is equal
to V (E) = 0.

State A
When the state isA, the valuation is

V (A) = p + QAV (A),

which gives that

V (A) =
p

1 − QA

.

The expected time during which a mobile spends in stateA
is given by

T (A) = 1 + QAT (A)

which implies that

T (A) =
1

1 − QA

.

State F
Define the dynamic programming operatorY (v, a, α) to be
the total expected fitness of an individual starting at stateF ,
if

• It takes actiona at time 1,
• If at time 2 the state isF then the total sum of expected

fitness from time 2 onwards isv.
• At each time the mobile attempts transmission, the proba-

bility that another interfering mobile uses actionh, given
that there is a simultaneous transmission with another
mobile, interferes with another transmission, isα.

Below, α is omitted for the casea = l since the dependence
on α appears only with the actiona = h.

We have

Y (v, l) = p + QF (l)v + (1 − QF (l))V (A), (5)

= p + QF (l)v + p
1 − QF (l)

1 − QA

.

and

Y (v, h, α) = α(p + QF (h)v + (1 − QF (h))V (A)) (6)

+(1 − α)(1 + QF (h)v + (1 − QF (h))V (A)),

= αp + (1 − α) + QF (h)v + p
1 − QF (h)

1 − QA

.

Assume that a mobile usesh w.p. β at stateF . Then the
expected time it spends at stateF is

Tβ(F ) = 1 + βQF (h)Tβ(F ) + (1 − β)QF (l)Tβ(F )

which gives

Tβ(F ) =
1

1 − βQF (h) − (1 − β)QF (l)



The fraction of time that the mobile uses actionh is then

α̂(β) = β
T (F )

T (F ) + T (A)

= β
1 − QA

2 − QA − βQF (h) − (1 − β)QF (l)
(7)

Denote byVβ(F, α) the total expected utility the mobile
gains starting from stateF . Then Vβ(F, α) is the unique
solution of

v = (1 − β)Y (v, l) + βY (v, h, α).

This gives

Vβ(F, α) =
( p
1−QA

)[(1 − β)(1 − QF (l) + β(1 − QF (h)))]

1 − (1 − β)QF (l) − βQF (h)

+
(1 − β)p + β(α(p − 1) + 1)

1 − (1 − β)QF (l) − βQF (h)

=
p

1 − QA

+
(1 − β)p + β(α(p − 1) + 1)

1 − (1 − β)QF (l) − βQF (h)

= V (A) +
p + β(1 − p)(1 − α)

1 − QF (l) + β(QF (l) − QF (h))

In the special case of the aggressive policyβ = 1, we obtain

∀α, V1(F, α) = V (A) +
1 − α(1 − p)

1 − QF (h)
, (8)

and forβ = 0, we obtain

∀α, V0(F, α) = V (A) +
p

1 − QF (l)
. (9)

Remark 1:Differentiating (8) with respect toβ, we obtain

dVβ(F, α)

dβ
= (10)

(1 − p)(1 − α)(1 − QF (l)) − p(QF (l) − QF (h))

(1 − QF (l) + β(QF (l) − QF (h)))2

This is either strictly positive for allβ ∈ [0, 1] or strictly neg-
ative for all β ∈ [0, 1] or equals zero over all the interval. We
conclude thatVβ(F, α) is either constant or strictly monotone
in β over the whole interval[0, 1].

IV. PROPERTIES ANDCHARACTERIZATION OF THE ESS

A. Preliminaries

As already mentioned, our game is different and has a
more complex structure than a standard evolutionary game.
In particular, the fitness that is maximized is not the outcome
of a single interaction but of the sum of fitnesses obtained
during all the opportunities in the mobile’s lifetime. In spite
of this difference, we shall still use the definition 1 or the
equivalent conditions (2) or (3) for the ESS but with the
following changes:

• β replaces the strategyq in the initial definition,
• β′ replaces the strategyp in the initial definition,
• We use forJ(q, p) the total expected fitnessVβ(F, α),

whereα = α̂(β′) is given in (7).

We obtain the following characterizations of ESS.

Corollary 2: A necessary condition forβ∗ to be an ESS is

for all β′ 6= β∗, Vβ∗(F, α̂(β∗)) ≥ Vβ′(F, α̂(β∗)) (11)

A sufficient condition forβ∗ to be an ESS is that (11) holds
with strict inequality for allβ′ 6= β∗.

We present next a structural property of ESS. It is an adap-
tation to our setting of the fact that in standard evolutionary
games, only pure policies can be ESS satisfying (2); where as
a non-pure stationary policy can be an ESS only if it satisfies
(3), that is

Theorem 2: A necessary condition for a non-pure station-
ary policy β∗ to be an ESS is that

for all β′ 6= β∗, Vβ∗(F, α̂(β∗)) = Vβ′(F, α̂(β∗)). (12)

Equivalently, assume that for some stationary policiesβ∗ and
β′ 6= β∗ we have

Vβ∗(F, α̂(β∗)) 6= Vβ′(F, α̂(β∗))

Then a necessary condition forβ∗ to be an ESS is that it is
a pure policy.

Proof: If Vβ∗(F, α̂(β∗)) < Vβ′(F, α̂(β∗)) thenβ∗ is not
ESS due to Corollary 2. Assume thatβ∗ is not pure (it is
neither 0 nor 1) and thatVβ∗(F, α̂(β∗)) > Vβ′(F, α̂(β∗)) for
someβ′ 6= β∗. Applying Remark 1 withα = α̂(β∗) and
β = β′ we conclude that

V1(F, α(β∗)) > Vβ∗(F, α(β∗)) or V0(F, α(β∗)) > Vβ∗(F, α(β∗))

Hence the necessary condition forβ∗ to be an ESS (see
Corollary 2) does not hold, which establishes the proof.

We shall call an ESS policyβ∗ that satisfies (12)weakly
immuned ESS, and one satisfying (4) with strict inequality for
all β′ 6= β∗ a strongly immuned ESS. Remark 1 implies that an
ESS is either strongly immuned or weakly immuned. In other
words, there does not exist an ESSβ for which (4) holds with
equality for someβ′ 6= β and with strict inequality for some
otherβ′.

We proceed by identifying range of parameters for which
various ESS structures are obtained.

B. Pure equilibrium: high power atF

We define an aggressive multi-policy to be the one in which
all mobiles use high power each slot at stateF .

A mobile that always uses high power at stateF spends an
expected amount of time of

T (F ) =
1

1 − QF (h)

at stateF . The fraction of time it spends at stateF is thus

α(1) =
T (F )

T (F ) + T (A)
=

1 − QA

2 − QA − QF (h)
(13)

Theorem 3: Define

∆h :=
1 − QF (h)

2 − QA − QF (h)
(1 − p) − QF (l) − QF (h)

1 − QF (l)
p



Let u be the pure aggressive strategy that uses alwaysh at
stateF .
(i) ∆h > 0 is a sufficient condition foru to be an ESS.
(ii) ∆h ≥ 0 is a necessary condition foru to be an ESS.

Proof: We substitute the value ofα from eq. (13) in (8)
to obtain

V1(F, α(1)) = V (A) (14)

+
1

1 − QF (h)

(
1 − (1 − p)

1 − QA

2 − QA − QF (h)

)

To prove (i), we have to check that if∆h > 0 then for all
β 6= 1 we have

V1(F, α(1)) > Vβ(F, α(1)). (15)

For the caseβ = 0, we obtain when taking the difference
between (9) and (8) that

V1(F, α(1)) − V0(F, α(1)) =
∆h

1 − QF (h)

so (15) indeed holds forβ = 0 if ∆h > 0. We show next
that this holds for all otherβ ∈ (0, 1) as well. It follows from
Remark 1 thatV1(F, α(1)) > Vβ(F, α(1)) either holds for
everyβ ∈ [0, 1) or for noβ in this interval. Since we showed
that if ∆h > 0 then it holds forβ = 0 then we conclude that
∆h > 0 is a sufficient condition for (15) to hold for allβ.
The necessary condition is proved by showing that∆h ≥ 0
implies thatV1(F, α(1)) − Vβ(F, α(1)) ≥ 0 for all β 6= 1.
This is done in the same way as the sufficient condition is
established, and then we apply Corollary 2.

Conclusions. We can draw many qualitative conclusions
from the Theorem; here are some of them.

• Note that we haveQF (l) > QF (h) because using less
power, the mobile has more probability to stay in state
full than using high power. If, for any reason, those
probabilities are the same, i.e.QF (l) = QF (h), then the
strategy high power is obviously an ESS.

• If p = 0 (i.e. the probability of having another simulta-
neous transmission is null) then there is no benefit from
transmission with high power. Indeed we see that in this
case∆ < 0. In fact, we can conclude that there is a
thresholdp∗h given by

(1 − QF (h))(1 − QF (l))

(1 − QF (h))(1 − QF (l)) + (2 − QA − QF (h))(QF (l) − QF (h))

so thatu is an ESS forp > p∗h and is not ESS for
p < p∗h.

• ∆h > 0 is a sufficient and necessary condition foru to
be a strongly immune ESS.

C. Pure equilibrium: low power atF .

We investigate conditions for which in the full state, each
user decides to transmit always with low power.

Theorem 4: Define

∆l := p(1 − QF (h)) − (1 − QF (l))

Let v be the pure strategy that uses alwaysl at stateF .
(i) ∆l > 0 is a sufficient condition forv to be an ESS.
(ii) ∆l ≥ 0 is a necessary condition forv to be an ESS.

Proof: Note thatα(0) = 0. We have

V0(F, 0) − V1(F, 0) =
∆l

(1 − QF (H))(1 − QF (l))
.

Hence∆l > 0 implies thatV0(F, 0) > Vβ(F, 0) for β = 1. As
in the proof of Theorem 3, we can use Remark 1 to show that
this implies thatV0(F, 0) > Vβ(F, 0) for all β 6= 0. Applying
Corollary 2, we conclude that∆l > 0 is a sufficient condition
for the policyv (i.e. for β = 0) to be ESS.

Conclusions. We can draw many qualitative conclusions
from the Theorem; here are some of them.

• Assume thatQF (l) < 1 or thatp < 1. If QF (h) = QF (l)
then∆l < 0 so v is not ESS.

• Define

p∗l =
1 − QF (l)

1 − QF (h)
.

Then it is seen that for allp < p∗l , the policy v is an
ESS, and for allp > p∗l it is not an ESS.

• Note that the conditions for the policyu (in Theorem 3)
to be ESS depended onQA where as the conditions for
the policyv (Theorem 4) to be ESS does not. The reason
is that the condition for ESS of a policyβ involvesα(β)
which depends onQA for all β’s exceptβ = 0.

• ∆l > 0 is a sufficient and necessary condition forv to
be a strongly immune ESS.

D. Weakly Immune ESS and Mixed Equilibrium

In the previous Subsections we characterized all strongly
immune ESS. In view of Theorem 2, a necessary condition
for β∗ to be a weakly immune ESS is thatVβ(F, α̂(β∗))
be independent ofβ. Equivalently, we needβ∗ to be such
that dVβ(F, α)/dβ = 0 where α = α̂(β∗). Using (10) this
condition provides:

1 − α =
p(QF (l) − QF (h))

(1 − p)(1 − QF (l))

which yields

α =
(1 − QF (l)) − p(1 − QF (h))

(1 − p)(1 − QF (l))
. (16)

For a real numberζ we denote belowζ := 1 − ζ.
Theorem 5: (a) Each one of the following conditions is

necessary for there to exist a Weakly Immune ESS:

• Condition (i): ∆l ≤ 0,
• Condition (ii): ∆h ≤ 0,

(b) Assume that Condition (i) and (ii) hold. Then there exists
a unique weakly immune ESS given by

β
∗ =

(QA + QF (l))[QF (l) − pQF (h)]

QApQF (l) − (QF (l) − QF (h))(QF (l) − pQF (h))
(17)



Proof: A necessary condition forα in (16) to correspond
to an ESS is that0 ≤ α ≤ α̂(1). First, we observe that the
enumerator of (16) is−∆l. This provides that∆l ≤ 0 implies
α ≥ 0. Second, the conditionα ≤ α̂(1) is

(1 − QF (l)) − p(1 − QF (h))

(1 − p)(1 − QF (l))
≤ 1 − QA

2 − QA − QF (h)
.

This condition is equivalent to

∆m :=
1 − QA

2 − QA − QF (h)
−

(1 − QF (l)) − p(1 − QF (h))

(1 − p)(1 − QF (l))
≥ 0.

But we have:

(1 − p)∆m =
(1 − p)(1 − QA)

2 − QA − QF (h)
−

(1 − QF (l)

(1 − QF (l)
+ p

1 − QF (h)

1 − QF (l)
,

= p
1 − QF (h)

1 − QF (l)
−

1 − QF (h) + p(1 − QA)

2 − QA − QF (h)
,

= −∆h.

We can deduce that if∆h ≤ 0 then α ≤ α̂(1). This proves
(a).
Next we establish (b). Assume conditions (i) and (ii) hold.
Inverting (7) and substituting there (16), we conclude thatif
β is a Weakly Immune ESS then it is given by expression
(17). This provides the uniqueness of a Weakly Immune ESS.
It remains to show thatβ∗, as defined in (17), is indeed a
Weakly Immune ESS. We first observe that

for all β′ 6= β∗, Vβ∗(F, α̂(β∗)) = Vβ′(F, α̂(β∗))

so to conclude it suffices to show that

∀β 6= β∗, Vβ∗(F, α̂(β)) > Vβ(F, α̂(β)). (18)

Define H(β) = Vβ∗(F, α̂(β)) − Vβ(F, α̂(β)) and after some
algebras we have the following expression:

H(β) =
(β∗ − β)(QF (l)(1 − p)(1 − α̂(β)) − xp)

(QF (l) + β∗x)(QF (l) + βx)
,

with x = QF (l) − QF (h). Thus (18) is satisfied if the
following two conditions are satisfied:

1) ∀β > β∗, α̂(β) > x(1−p)−yp

x(1−p) ,

2) ∀β < β∗, α̂(β) < x(1−p)−yp

x(1−p) .

After some calculous, we observe that

α̂(β) <
x(1 − p) − yp

x(1 − p)
⇔ β < β∗.

Then we deduce that∀β 6= β∗ we haveH(β) > 0 so that (18)
holds. We conclude thatβ∗ is indeed a weakly immune ESS,
which establishes (b).

We finally mention the following useful property whose
proof is immediate:

Vβ(F, α̂(γ)) is strictly monotone decreasing inγ. (19)

We next present a last result about existence and unicity of
the ESS.

Theorem 6:For all QA, QF (l), QF (h) andp, the ESSβ∗

of the stochastic evolutionary game exists and is unique.

Proof: The expression of the ESS of the stochastic
evolutionary game depends on the sign of∆l and∆h.

• If both are negative, we have the weakly immune ESS
β∗ defined in theorem 5 (a) and is unique.

• If ∆l or ∆h is positive, we have a strongly immune ESS
β∗ = 0 or β∗ = 1.

• We prove now that we cannot have both∆l and ∆h

positive. We assume that∆l strictly positive, that is
p > 1−QF (l)

1−QF (h) . Now , we have∆h strictly positive if
and only if

1 − QF (h)

2 − QA − QF (h)
(1 − p) >

QF (l) − QF (h)

1 − QF (l)
p,

min
QA∈[0,1]

1 − QF (h)

2 − QA − QF (h)
(1 − p) >

QF (l) − QF (h)

1 − QF (l)
p,

1 − p >
QF (l) − QF (h)

1 − QF (l)
p,

∆l < 0.

We then have proved that there is always one weakly immune
ESSβ∗ or one of the two strongly immune ESS (exclusively).

V. THE GLOBALLY OPTIMAL SOLUTION AND THE PRICE OF

ANARCHY

We next compute the cooperative optimal strategy for users
and compare it with the ESS.̃β is globally optimal if it
maximizesVβ(F, α̂(β)). Substituting (7) into (8) this amounts
to maximize

Z(β) = V (A) +
p + βp(1 − α̂(β))

QF (l) + β(QF (l) − QF (h))
,

with α̂(β) = βQA

QA+QF (l)+β(QF (l)−QF (h))
. We have

Z
′(β) =

[QF (l) + β(QF (l) − QF (h))][p(1 − α̂(β)) − βpα̂′(β)]

(QF (l) + β(QF (l) − QF (h)))2

−
[p + βp(1 − α̂(β))][(QF (l) − QF (h))]

(QF (l) + β(QF (l) − QF (h)))2

In order to find the optimum point, we have to solveZ ′(β) =
0, that is

QF (l)p(1 − α̂(β))

−βpα̂′(β)[QF (l) + β(QF (l) − QF (h))]

−p(QF (l) − QF (h)) = 0.

We introduce the following notations:

x = QF (l) − QF (h).

Moreover, after some calculus we obtain

α̂′(β) =
QA(QA + QF (l))

(QA + QF (l) + β(QF (l) − QF (h)))2
> 0.

The equationZ ′(β) = 0 is equivalent to

(1 − α̂(β))QF (l) = βα̂′(β)QF (l) + β2xα̂′(β) +
p

p
x,



and given the derivative of̂α we obtain after some algebras
the following second order equation:

β
2

(
QF (l)x(x − QA) − xQA(QA + QF (l)) −

p

p
x

3

)

+2β

(
QF (l)(QA + QF (l))(x − QA) −

p

p
x

2(QA + QF (l))

)

+(QF (l) −
p

p
x)(QA + QF (l))2 = 0.

The discriminant of this equation is

∆ = 4(QA + QF (l))2QA
2
(QF (l)

2
+ xQF (l) − p

p
x2).

We observe that depending onQF (l), QF (h) andp, the sign
of the discriminant is changing. We shall use the following
equivalence:

∆ > 0 ⇔ p <
u

1 + u
, whereu =

QF (l)QF (h)

(QF (l) − QF (h))2
. (20)

Theorem 7:If p > u
1+u

, whereu is given in (20), then the
global optimal strategy is

β̃ = 0.

Proof: If p > u
1+u

then after some calculus we obtain:

p

p
>

QF (l)

x
+

(
QF (l)

x

)2

.

Also the discriminant is strictly negative, then the sign ofthe
derivative is the same for allβ ∈ [0, 1] and we have

Z ′(0) =
pQF (l) − p(QF (l) − QF (h))

QF (l)
2 .

Observing thatp
p

> QF (l)
x

+ (QF (l)
x

)2 implies p
p

> QF (l)
x

leads toZ ′(0) < 0. Then we conclude that the global optimal
strategy is obtain with̃β = 0 because the functionZ is strictly
decreasing whenp > u

1+u
.

When p < u
1+u

, the solutionsβ+ and β− of the second
order equation are given by

β− =
−QF (l)(x − QA) + p

p
x2 − QA

√
∆′

−QF (l)(x−QA)+ p

p
x2

QF (l)+QA

− QA

1

x
,

and

β+ =
−QF (l)(x − z) + p

p
x2 + QA

√
∆′

−QF (l)(x−QA)+ p

p
x2

QF (l)+QA

− QA

1

x
,

with ∆′ = QF (l)
2

+ xQF (l) − p
p
x2. The global optimal

strategy in the cooperative case is then given by the following
theorem.

Theorem 8:Let β− andβ+ be defined as above. Then the
global optimal strategỹβ is

β̃ = arg max
β∈{0,β−,β+,1}

Z(β).

Proof: The derivative of the global objective functionZ
is a second order polynomial function depending inβ. After
some algebra, we obtainβ− andβ+ as the two roots of this
function. Then, depending on those values are in the interval
[0, 1] and the sign ofZ ′, the optimal global strategy is either
0, 1 or one of the roots of the function.

Next, we obtain some relations between the ESS and the
globally optimal solution.

Theorem 9:ESS strategy is more aggressive than the social
optimum strategy, i.e.

β∗ ≥ β̃.

Proof: If β∗ = 0 a strong immune ESS, then we have for
all β > 0:

V0(F, α̂(0)) > Vβ(F, α̂(0) ≥ Vβ(F, α̂(β),

becausêα(β) is strictly increasing inβ. Then we have proved
that β = 0 is the global optimum,i.e.̃β = 0 andβ∗ = β̃.
If β∗ is weakly immune thenβ∗ ∈]0, 1[ and

V0(F, α̂(0)) = V0(F, α̂(β∗)) = V ∗
β (F, α̂(β∗))

= V1(F, α̂(β∗)) > V1(F, α̂(1))

(the last inequality follows from (19)). From theorem 7, we
have:

Z ′(0) =
pQF (l) − p(QF (l) − QF (h))

QF (l)
2 =

−∆l

QF (l)
2 .

As β∗ is weakly immune,∆l ≤ 0 and thusZ ′(0) ≥ 0. More-
over, asV0(F, α̂(0)) = V ∗

β (F, α̂(β∗)), there existsβ1 ∈]0, β∗[

which maximizesV over ]0, β∗[. Assuming thatβ̃ ∈]β∗, 1[,
then there are necessary three local optima, which is not
possible becauseV is a quadratic function inβ and has two
local optima. Thus,̃β = β1 < β∗.

VI. DYNAMICS

We extend the definition of the well known replicator
dynamics [9] to the context of stochastic evolutionary game,
and study its convergence to the various ESS obtained in the
last section.

In the biological context, a replicator dynamics is a differ-
ential equation that describes the way strategies change intime
as a function of the fitness. Roughly speaking they are based
on the idea that the average growth rate per individual that
uses a given action is proportional to the excess of fitness of
that action with respect to the average fitness. In engineering,
the replicator dynamics could be viewed as a rule for updating
policies by individuals. It is a decentralized rule since itonly
requires knowing the average utility of the population rather
than the action of each individual.

Although each individual terminali attempts transmission
at some distinct timestin, these times are assumed to be
sufficiently variable from one terminal to another so that
the update rule of the whole population can be written as



the following continuous time differential equation. Define
~β = (β, 1 − β) and set fora = h anda = l:

d~β(a)

dt
= K~β(a)

[
Va(F, α̂(β)) −

∑

b=h,l

~β(b)Vb(F, α̂(β))

]
, (21)

:= W (~β).

Note that when summing the above overa we get simply

d~β(h)

dt
+

d~β(l)

dt
= 0

and hence~β(h)+~β(l) = 1 at any time, as expected. In order to
prove the convergence and relation between equilibria ad rest
points of the dynamics, we consider the property ofpositive
correlation. Following [16], we define the property of positive
correlation or net monotonicity [8] of our dynamic equation
d~β
dt

= W (~β) as
∑

b=h,l

Vb(F, α̂(β))Wb(~β) > 0 whenever W (~β) 6= 0.

By a straightforward adaptation of the argument in [16] we
conclude that the positive correlation insures that all equilibria
of our game are the stationary points of the replicator dynam-
ics. Thus a non-stationary point of the dynamics cannot be an
equilibrium. We therefore prove the following:

Proposition 1: The replicator dynamics given byd
~β

dt
=

W (~β) described in (21) satisfies the property ofpositive
correlation.

Proof: We have
∑

b=h,l

Vb(F, α̂(β))Wb(~β) =
∑

b=h,l

Vb(F, α̂(β))
d~β

dt
=

∑

b=h,l

Vb(F, α̂(β))

(
K~β(b)

[
Vb(F, α̂(β)) −

∑

b=h,l

~β(b)Vb(F, α̂(β))

])
,

= K
∑

b=h,l

~β(b)Vb(F, α̂(β))2 − K

(
∑

b=h,l

~β(b)Vb(F, α̂(β))

)2

.

Using Jensen’s inequality, we have that this expression is
strictly positive and thus the replicator dynamics, in this
stochastic context, has the property ofpositive correlation.

We show next that the replicator dynamics converges almost
globally.

Theorem 10:For all interior starting pointsβ0 ∈]0, 1[, the
replicator dynamics defined be Equation (21) converges to the
ESSβ∗.

Proof: We rewrite the replicator dynamics for the high
power level as:

d~β(h)

dt
= K~β(h)(1 − ~β(h)) [Vh(F, α̂(β)) − Vl(F, α̂(β))] .

Hence the sign of the derivative of the evolution of theh
strategy is defined by the sign of

Vh(F, α̂(β)) − Vl(F, α̂(β)).

Notice thatVl(F, α̂(β)) = V0(F, α̂(β)) = V (A) + p
1−QF (l) ,

which does not depend onβ and so is constant. Then only
Vh(F, α̂(β)) = V1(F, α̂(β)) depends onβ and we have
already proved that̂α(β) is strictly increasing inβ, thus
V1(F, α̂(β)) is strictly decreasing inβ. Then we have just to
compareV1(F, α̂(0))− (V (A) + p

1−QF (l) ) andV1(F, α̂(1))−
(V (A)+ p

1−QF (l) ) in order to know the sign of the difference
for all β ∈]0, 1[.
First, we have after some calculous:

V1(F, α̂(0)) ≤ V (A) +
p

1 − QF (l)
,

V (A) +
1

1 − QF (h)
≤ V (A) +

p

1 − QF (l)
,

which is equivalent to∆l ≥ 0. Then, we prove that ifβ∗ = 0,
using theorem 4 we have∆l ≥ 0, which implies that for all
β ∈]0, 1[,

V1(F, α̂(β)) < V1(F, α̂(0)) ≤ V (A) +
p

1 − QF (l)
,

that leadsd~β(h)
dt

< 0 and the replicator dynamics converge to
β∗ = 0.
Second, after some analog calculus we obtain:

V1(F, α̂(1)) ≥ V (A) +
p

1 − QF (l)
,

V (A) +
1 − (1 − p) 1−QA

2−QA−QF (h)

1 − QF (h)
≥ V (A) +

p

1 − QF (l)
,

which is equivalent to∆h ≥ 0, which is a necessary condition
to haveβ∗ = 1. Then, from the same arguments that in the
previous case, the replicator dynamics converge here to the
ESS,β∗ = 1, becaused

~β(h)
dt

> 0 for all β ∈]0, 1[.
Finally, if we have a mixed ESS, from theorem 5 we have
∆l ≤ 0 and ∆h ≤ 0, thenV1(F, α̂(0)) ≥ V (A) + p

1−QF (l) ,
V1(F, α̂(1)) ≤ V (A) + p

1−QF (l) andV1(F, α̂(β∗)) = V (A) +
p

1−QF (l) . Thus, for all β ∈]0, β∗[, we haveV1(F, α̂(β)) >

V0(F, α̂(β)), i.e. d~β(h)
dt

> 0. And for all β ∈]β∗[, 1, we have

V1(F, α̂(β)) < V0(F, α̂(β)), i.e. d~β(h)
dt

< 0. Thus, we have
also convergence of the replicator dynamics to the unique ESS
β∗.

VII. N UMERICAL ILLUSTRATIONS

In this section we present several numerical results il-
lustrating theorems of previous sections. For all numerical
applications we use the following variables:QA = 0.5,
QF (l) = 0.9 and QF (h) = 0.7. First, we plot on figures
1(a) and 1(b) the valuation functionV (β) depending on the
strategyβ for different value of the probabilityp. We observe
that the global optimal strategy is equal tõβ = 0.4081 and
becomes̃β = 0 as the probabilityp grows from0.1 to 0.4.

On figures 2(a) and 2(b) we show both equilibria: non-
cooperative oneβ∗ and the global optimum cooperative one
β̃. We observe on both figures that the result of the theorem 9,
saying that the ESS is always more aggressive than the social
optimum, is verified. Also, we describe numerically both
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Fig. 1. Cooperative valuation function.

equilibria depending on the probabilityp on figure 2(a) and we
observe that when the probability for a mobile to be the only
transmitter is small, the ESS isβ∗ = 1. That is the strategy
is every one uses high power because the probability to have
competition with other mobiles is high. We observe also the
different equilibria depending on the battery quality, that is
the differenceQF (l) − QF (h), on figure 2(b). Hence, this
difference gives difference in probability to stay in the state
F using high or low power. We observe that both equilibria
are less aggressive as the difference increases because the
probability to stay in stateF using low power becomes very
important compare to the one using high power.
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Fig. 2. ESS and global optimum.

Finally, on figures 3(a), 3(b) and 3(c), we show the con-
vergence of our replicator dynamics with two initial points
β0 = 0.9 and β0 = 0.1. We consider the three possible
ESS, the two pure and the mixed one; we takeK = 1. We
observe the convergence property defined in theorem 10 and
we can also have an idea of the speed of convergence (after
15 iterations, the system attains the equilibrium).
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Fig. 3. Convergence of the replicator dynamics.

VIII. C ONCLUSIONS ANDPERSPECTIVES

Biological models and tools have inspired a growing number
of studies and of designs of decentralized wireless ad-hoc
networks. In various ways, this paper falls in this category
of biology-inspired research. First, the problem we have stud-
ied, concerning competitive energy management in wireless
terminals, is inherent to biological models as well where
animals compete over food. A second biology-inspired feature
of this work is the evolutionary game paradigm that we have
adopted and extended. Our convergence results concerning the
replicator dynamics renders the ESS equilibrium concept more
relevant and meaningful than the standard Nash equilibrium,
as the ESS is shown to be actually achieved as a limit of
a replicator dynamics, and if achieved, this equilibrium point
turns out to be more stable than the Nash equilibrium. We have
presented a problem that extends the standard evolutionary
games by (i) modeling the possibility of individuals to take
several actions during their lifetime, (ii) allowing theseactions
to have an impact not only on the instantaneous fitness but also
on the future individual’s state. The state dependence allows in
turn to distinguish between individuals. In our case, the state
of an individual gave an indication on its expected time to
live and on its available set of actions. We plan to extract the
generic features present in our problem in order to develop a
generic theory of stochastic evolutionary game.
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