
Analysis of Scalable TCP�

Eitan Altman, Konstantin Avrachenkov, Chadi Barakat,
Arzad Alam Kherani, and B.J. Prabhu

INRIA Sophia-Antipolis, France
{altman,k.avrachenkov,cbarakat,alam,bprabhu}@sophia.inria.fr

Abstract. Scalable TCP [2] is a proposition for a new TCP where both
the increase and the decrease rate of the window size are multiplica-
tive. It has been recently proposed in order to improve performance in
high speed networks. In this paper, we present a mathematical analysis
of such multiplicative increase multiplicative decrease protocols in the
presence of random losses. These are typical to wireless networks but
can also model losses in wireline networks with very high bandwidth de-
lay product. Our approach is based on showing that the logarithm of
the window size evolution has the same behaviour as the workload pro-
cess in a standard G/G/1 queue. The Laplace-Stieltjes transform of the
equivalent queue is shown to provide directly the throughput of Scalable
TCP as well as the higher moments of the window size. We validate our
findings using ns-2 simulations.

1 Introduction

In very high speed networks, the congestion avoidance phase of TCP takes a very
long time to increase the window size and fully utilize the available bandwidth.
Floyd writes in [1]: “for a Standard TCP connection with 1500-byte packets and
a 100 ms round-trip time, achieving a steady-state throughput of 10 Gbps would
require an average congestion window of 83,333 segments, and a packet drop rate
of at most one congestion event every 5,000,000,000 packets (or equivalently, at
most one congestion event every 1 2

3 hours). The average packet drop rate of at
most 2 × 10−10 needed for full link utilization in this environment corresponds
to a bit error rate of at most 2×10−14, and this is an unrealistic requirement for
current networks.” Thus, in the context of high speed networks, it is essential
to study the effect of random packet losses on TCP, which may limit the TCP
throughput more than the congestion losses do and may lead to a poor utilization
of the large available capacity. The modeling of random losses is also essential
in the study of wireless channels. In order to better utilize the network capacity
available in high speed networks, one should use new TCP protocols that are
characterized by a faster rate of increase of the window size.
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In [2], Kelly has proposed a new TCP wherein upon each ACK it receives,
the sender increases its congestion window (cwnd) by 0.01. When a loss event is
detected, the sender decreases cwnd by a factor of 0.125. Hence, if the window
size is W (t) at some time t (meaning that there are W unacknowledged packets
in the network) then, in the absence of losses, the window size after an RTT
(round-trip time), W (t+RTT ), would be 1.01×W (t), whereas if there are losses
during (t, t + RTT ), W (t + RTT ) will be around 0.875×W (t) (here we assume
that, as in New Reno and SACK, the window is reduced only once during a
round trip time even if there are several losses). This proposal is called Scalable
TCP because, starting from a window size of some fraction of the bandwidth-
delay product (BDP), the number of RTTs required to reach BDP becomes
independent of the link bandwidth.

Consider the class of Multiplicative Increase and Multiplicative Decrease
(MIMD) congestion control algorithms where each ACK results in a window
increment of α − 1 > 0 and a loss event is responded with a reduction of win-
dow size by a fraction 1 − β < 1. The Scalable TCP can then be viewed as a
special instance from this class with α = 1.01 and β = 0.875. This motivates us
to study the window behaviour of MIMD congestion control algorithms. In this
paper, we focus on the analytical performance study of these algorithms, and,
hence, of Scalable TCP, in the presence of random losses and congestion losses.

Our approach is based on showing that an invertible transformation applied
to the window size process results in a process that has the same evolution as the
total workload process in a standard G/G/1 queue. The Laplace-Stieltjes trans-
form of the equivalent queueing process thus obtained provides the throughput
of the connection as well as the moments of the window size of the given MIMD
protocol (Section 3). We study both the case in which there are only random
losses (Section 4) as well as the case where in addition to random losses, there are
either congestion losses or the window size is limitted (Section 5). We validate
our findings using ns-2 simulations (Section 6).

2 Discrete Time Models

We consider the scenario where a single FTP application transfers data using
an MIMD flow control protocol with parameters α and β as mentioned in the
Introduction. We assume that the file is sufficiently large to ensure the conver-
gence to a stationary regime. In this section, we introduce different models of
MIMD schemes for different network conditions.

Let τ denote the round-trip propagation delay of the high speed link (in
literature this is also referred to as the fixed part of the round-trip time). Let
the link capacity be c packets per second. Let {W (t), t ≥ 0} denote the window
process evolving over time. Use W0

∆= W (0) and let τ1
∆= τ+(W0

c −τ)+ denote the

first round-trip time. Let W1
∆= W (τ1) and define τ2 = τ +(W1

c −τ)+. Proceeding
in this manner, we get a sequence {τn, n ≥ 1} of round-trip times and a sequence
{Wn, n ≥ 1} of window sizes. Consider a sequence of time instants {tn, n ≥ 1}
where tn is the end of nth round-trip time, i.e., t1 = τ1 and tn = tn−1+τn. Under
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our definition Wn is the window size at time instant tn. The window evolution
can now be written as

Wn+1 =
{

αWn, if there was no loss in interval [tn, tn+1],
βWn, if there were one or more losses in [tn, tn+1].

We shall consider the following models for the evolution of {Wn} under ran-
dom losses:

(i) There is no upper bound on the window size.
(ii) There is an upper bound B on the window size which corresponds to an

explicit limitation of the window size. When this value is reached then the
window stops growing.

(iii) There is an upper bound B on the window size. However, when this value
is reached, the connection suffers a congestion loss (this is in addition to
the random losses) and the multiplicative decrease of window is invoked.

The first model here approximates the case where the link BDP is very
high and there is a significant probability of loss in a round-trip time so that
the practical upper bound of BDP is reached with negligible probability. The
second model above corresponds to the case where the window is bounded by
the receiver’s advertised window. The last model corresponds to the case where
the window reaches the value of round-trip pipe size (BDP+Buffer) and suffers
a loss owing to buffer overflows.

2.1 Window Evolution for the Proposed Models

Let An, n ≥ 1, be a random variable such that An = α if there was no loss in the
interval [tn, tn+1], and An = β otherwise. Throughout this section, {An, n ≥ 1}
will be assumed to be a general stationary ergodic sequence. Now we describe
the evolution of {Wn} in terms of {An} recursively for the models described
above.

Model (i) Taking into account the fact that the window size of TCP is bounded
below by a value of one packet1, the window size evolution for this model can
be written as

Wn+1 = max(AnWn, 1). (1)

As mentioned earlier, this model can be expected to be useful in the presence of
a very large maximum value B of the receiver advertised window size or of the
bandwidth (that would result in a congestion loss if it were attained) provided
that losses are sufficiently frequent so that the window level B is rarely reached.
This will be made precise later.

Model (ii) If on the contrary, losses are infrequent and B is often reached and
is sufficiently large then we can ignore the lower bound of one packet on the
1 There is no loss of generality, as one can consider any value of the minimal window

size and then rescale the model.
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window size (which would rarely be attained). This is the case for the second
model described before. The window evolution for this model can thus be written
as

Wn+1 = min(AnWn, B). (2)

Model (iii) The window evolution in this model is similar to that of model (ii).
However, there is an instantaneous drop in the window upon reaching B.

In the next section we relate the window process under the different models
introduced in this section to the workload evolution in a discrete time G/G/1
queue.

3 Preliminary Analysis

Taking the logarithm of equation (1) and defining ξ = 1
log[α] , Yn = ξ log[Wn],

k = −ξ log[β] > 0 and Dn = ξ log[An] + k ≥ 0, we obtain

Yn+1 = max(Dn − k + Yn, 0). (3)

We now make the following important observation: The recursive equation (3)
has the same form as the equation describing the workload process in a G/G/1
queue (see, for example, [5]) with Dn denoting the work arriving in nth slot and
k denoting the amount of service that can take place in one time slot. Since the
introduced transformation ξ log(·) is invertible, there is a one to one correspon-
dence between the processes {Yn, n ≥ 1} and {Wn, n ≥ 1}. This observation
allows us to study the stability of the window process {Wn, n ≥ 1} via that
of {Yn, n ≥ 1}. Furthermore, the analogy with queueing theory of the process
{Yn, n ≥ 1} will allow us to obtain the steady state moments of the window size
and of the throughput of TCP under some further statistical assumptions.

Theorem 1. Assume that E[log A0] < 0. Then there exists a unique stationary
ergodic process W ∗

n that satisfies the recursion (1) defined on the same probability
space as Wn; moreover, for any initial value W0 = w, there is a random time
Tw, which is finite with probability 1, such that Wn = W ∗

n for all n ≥ Tw. If
E[log A0] > 0 then Wn tends to infinity w.p.1 for any initial value W0 = w.

Proof. According to Theorem 2A [3], if E[log A0] < 0 then the stochastic process
{Yn} converges to a stationary ergodic process {Y ∗

n } which is defined on the same
probability space as {Yn} and is the unique stationary regime that satisfies (3).
This implies the statement for Wn = exp(Yn log[α]). The last part of theorem
similarly follows from [4, p. 36]. ��
Remark 1. Due to Jensen inequality and the concavity of the logarithmic func-
tion, E[log A0] ≤ log E[A0]. Hence log E[A0] < 0, or equivalently E[A0] < 1
is a sufficient condition for the stability of the window process {Wn} (for the
existence of and convergence to a unique stationary ergodic regime). However
this condition is in general not a necessary one.
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Remark 2. We stress the importance of the minimum window size in model (1).
Indeed, if we eliminate it and write simply Wn+1 = AnWn then when taking the
log, we get in (3) instead Yn+1 = log[An]/ log[α] + Yn. Its solution is

Yn = Y0 +
n−1∑
i=0

log[Ai]/ log[α].

Since {An} is stationary ergodic, the strong law of large numbers implies that
if E log[Ai] < 0 then Yn converges to −∞ and thus Wn converges to 0 which
is clearly a bad estimation for the window size process. (If E log[Ai] > 0 then
Yn, and thus Wn converges to ∞ which was also predicted by the model that
took the the minimum window into account.) Note that in the limiting case of
E log[Ai] = 0, if Ai’s are independent and identically distributed (i.i.d.) then Yn

is a null recurrent Markov chain and thus unstable.

Next, we compute the moments of the window size distribution in the station-
ary regime. First define the Laplace-Stieltjes transform of Yn at the stationary
regime (i.e. of Y ∗

n ) as follows: G(s) = E
(
esY ∗

n

)
. Then we have, for any integer

k ≥ 1,
E[(W ∗

n )k] = E[exp(k log[α]Y ∗
n )] = G(k log[α]).

Thus, since log[α] > 0, all moments of W ∗
n are obtained from the Laplace-Stieltjes

transform of Y ∗
n , which we compute in the following sections. We note that the

z-transform, which is defined for integer valued random variables, is a special
case of the Laplace-Stieltjes transform.

With the analogy to the queueing system, we can now recommend using (1)
if E(log[An]) is much smaller than 0, and using (2) if E(log[An]) is much larger
than 0. In the next section we study model (i).

We note, however, that models (ii) and (iii) can also be solved using a trans-
formation to an equivalent queueing problem with infinite buffer by considering
the variable Zn = log[B]/ log[α] − Yn instead of working directly with Yn. The
throughput of the connection and the moments of the window size will then be
obtained as in model (i).

In the next section, we derive explicit expression of the stationary distribution
of the transformed process {Yn} for the case where {An} is a sequence of i.i.d.
random variables. As we argued in this section, such an analysis provides the
stationary distribution for the window size process {Wn} for the three models.

4 MIMD Protocols with Only Random Losses

Assume that the sequence An is i.i.d. with the following distribution

An =
{

α w.p. 1 − p,
β w.p. p,

where p is the loss rate observed by the connection (the probability that a random
loss occurs in a round-trip time). Recall the notation k (= − log(β)

log(α) ) for the service
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in one time slot for the equivalent discrete time queueing model of equation (3).
For this model to be stable, the necessary and sufficient condition is (k+1)p > 1.
We assume that k is an integer. This assumption allows us to use a discrete state
space, S = {0, log(α), ..., n · log(α), ..}. Then the recursive equation for process
{Yn} is given by (from equation (3))

Yn+1 =
{

Yn + 1 w.p. 1 − p,
(Yn − k)+ w.p. p.

Let Pn(j) ∆= P (Yn = j). Then

Pn+1(j) = (1 − p)Pn(j − 1) + pPn(j + k), j ≥ 1
= p

∑k
i=0 Pn(i), j = 0.

(4)

Denote the z-transform of Yn by Yn(z), then

Yn+1(z) − Pn+1(0) =
∞∑

j=1

Pn+1(j)zj

= (1 − p)
∞∑

j=1

Pn(j − 1)zj + p

∞∑
j=1

Pn(j + k)zj .

Assuming that Yn converges to Y and that Pn(·) converges to P (·),

Y(z) − P (0) = (1 − p)zY(z) + pz−k
∞∑

j=0

Pn(j + 1 + k)zj+1+k

Y(z)(1 − (1 − p)z) = P (0) + pz−k
∞∑

j=0

Pn(j + 1 + k)zj+1+k

= P (0) + pz−k(Y(z) −
k∑

i=0

P (i)zi)

and hence

Y(z)((1 − (1 − p)z)zk − p) = zkP (0) − p

k∑
i=0

P (i)zi.

Since P (0) = p
∑k

i=0 Pn(i), Y(z) can be expressed as

Y(z) =
∑k−1

i=0 P (i)(zk − zi)

− (1−p)
p zk+1 + 1

pzk − 1
. (5)

If the z-transform, Y(z), exists, it is analytic in the open disc {z : |z| < 1}.
The numerator of equation (5) has at most k − 1 zeros inside the unit circle
and one zero on the unit circle. Hence, there can be at most k − 1 zeros of the
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denominator of equation (5) within the unit circle as any more zeros will make
Y(z) non-analytic. Using Rouche’s theorem [7] we can show that there are at
least k zeros of the denominator inside and on the unit circle. As z = 1 is a zero
of the denominator, there are at least k−1 zeros inside the unit circle. From the
two previous arguments, there are exactly k−1 zeros of the denominator within
the unit circle and they must be the same as those of the numerator for Y(z) to
be analytic [5]. Hence, Y (z) reduces to

Y(z) =
1 − 1/z0

1 − z/z0
, (6)

where z0 is the root of

(1 − p)
p

zk+1 − 1
p
zk + 1 = 0 (7)

that lies outside the closed unit disc. The distribution of Y is then obtained as,

P (Y = j) = (1 − 1/z0)(1/z0)j , j ≥ 0. (8)

Since W = exp(Y log[α]), it follows from the above that for w ≥ 1,

P (W > w) = P (Y > log[w]/ log[α]) = (1/z0)log[w]/ log[α] = w− log[z0]/ log[α].

Thus, we obtain the distribution of the stationary window size process. In order
to compute the moments of W, we note that W = αY . Hence,

E[Wn] = E[αY n] = Y(αn)

The z-transform Y(z) is analytic for z < 2z0. Hence, the nth moment of W is
finite if n < log[z0]

log[α] . Let a = log[z0]
log[α] . The window size distribution can be seen to

become heavy tailed for a ≤ 2. Thus, for a given loss rate, p, either α or β can
be suitably chosen in order to reduce the variance of the window size.

5 MIMD Protocols with Limit on the Window Size
or with Congestion Losses

In this section we consider the discrete model where the window at the sender is
limited by the receiver window size, B. We make the following transformation

Yn =
log[B] − log[Wn]

log[α]
. (9)

We assume that L = log[B]
log[α] is an integer.
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5.1 Model (ii)

The evolution of log[Wn]
log[α] and of Yn is shown in Fig. 1. The balance equations for

Yn can be written as

P (0) =
(1 − p)

p
P (1),

P (i) = (1 − p)P (i + 1), i = 1, ..., k − 1.

P (i) = pP (i − k) + (1 − p)P (i + 1), i ≥ k.

This is similar to a bulk arrival queue. Hence, following similar arguments from
Kleinrock [5], we can write the z-transform as,

∞∑
i=1

P (i)zi =
∞∑

i=1

pP (i − k)zi +
∞∑

i=1

(1 − p)P (i + 1)zi,

where P (i − k) = 0 for i < k.

Y(z) − P (0) = pzk
∞∑

i=1

P (i − k)zi−k + z−1
∞∑

i=1

(1 − p)P (i + 1)zi+1

= pzkY(z) + z−1(1 − p)(Y(z) − zP (1)− P (0)),

which gives

Y(z)(z − pzk+1 − (1 − p)) = P (0)(z − (1 − p) − zp)).
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Using Y(1) = 1 and the L’Hôpital’s rule we get P (0) = [1 − (k + 1)p]/[1 − p].
Hence, we obtain Y(z) as,

Y(z) = (1 − (k + 1)p)
1 − z

pzk+1 − z + (1 − p)
. (10)

For this model to be stable, the necessary and sufficient condition is (k+1)p < 1.
The distribution of Y can be found by inverting the Y(z) using partial fraction
expansion. The distribution can be seen to be a weighted sum of geometric
distributions. The moments of W = Bα−Y can be found as

E[Wn] = E[(Bα−Y )n)] = BnE[α−nY ] = BnY(α−n).

0 1 2 K K+1

]α

1−p 1−p 1−p 1−p

pp

1−p

(log[B] − log[W])/log[

1

Congestion limited with random losses

Fig. 2. Evolution, at the end nth RTT, of Yn.

5.2 Model (iii)

In this model along with random losses, a loss is detected when the window size
reaches B. The evolution of Yn is shown in Fig. 2. The evolution at Y = 0 is
different from the previous model. Here, there is a jump with probability 1 to
state k. The modified balance equations can be written as,

P (i) = (1 − p)P (i + 1), i = 0, ..., k − 1.

P (i) = pP (i − k) + (1 − p)P (i + 1) + (1 − p)P (0)δi−k, i ≥ k.

As before we can write the z-transform, Y(z), as

∞∑
i=1

P (i)zi = pzk
∞∑

i=1

P (i − k)zi−k +
1
z

∞∑
i=1

(1 − p)P (i + 1)zi+1 + zk(1 − p)P (0),

which implies

Y(z) − P (0) = pzkY(z) + z−1(1 − p)(Y(z) − zP (1) − P (0)) + zk(1 − p)P (0),

and gives the relation
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Y(z)(z − pzk+1 − (1 − p)) = P (0)(1 − p)(zk+1 − 1).

Using Y(1) = 1 and L’Hôpital’s rule we get P (0) = [1 − (k + 1)p]/[(k + 1)(1
− p)], and hence, we obtain Y(z) as

Y(z) =
(

1 − (k + 1)p
(k + 1)

)
1 − zk+1

pzk+1 − z + (1 − p)
. (11)

As before, we can obtain the of distribution of Y , and hence W , by inverting the
z-transform. We can also obtain the moments of W directly from Y(z).

6 Simulation Results

We perform simulations using ns-2[8] to validate our model. The simulation setup
has a source and a destination node. The source node has infinite amount of data
to send and uses Scalable TCP with New Reno flavor. The link bandwidth is
150Mbps and the RTT is 120ms. The window at the source is limited to 500
packets to emulate the receiver advertised window. The BDP for this system is
approximately 2250 packets (packet size is 1040 bytes). In the Scalable TCP we
have implemented, the following assumptions are made:

– The minimum window size, MINW , is 8. The growth rate of Scalable TCP
is very small for small window sizes. It has been recommended in [2] to use
the Scalable algorithm after a certain threshold.

– There is no separate slow start phase since slow start can be viewed as a
multiplicative increase algorithm with α = 2.

– For each positive ACK received, the window is increased by α − 1 packets.
When a loss is detected, the window is reduced by a factor of β. α is taken as
1.01 and β is taken as 0.86. This value of β is taken so that k = − log[β]]

log[α] ≈ 15.
These values are chosen so as to be close to the values recommended in [2]
(α = 1.01, β = 0.875).

The expression for the density function of W, f(W ), modified for the minimum
window at 8 is given by

f(w) =
a

8

(w

8

)−(a+1)

, (12)

where a = log[z0]
log[α] . In the simulations, the density function of W is obtained by

sampling the window at an interval of RTT = 0.12s. We would like to note that
in the present setting RTT is very close to the propagation delay, and hence,
does not vary much.

Figures 3 and 4 show the PDF of W for two different values of loss rate,
p. Simulation results are observed to match well with the analysis (Eqn.(12)).
Depending on the value of the root, z0, of Eqn.(7), the distribution can be seen
to become heavy tailed. For example, for p = 0.07, the tail decreases at rate
1.55 indicating the heavy tailed nature of the window size. In the models which
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we considered, the window size was assumed to take rational values. In prac-
tice, however, the window size takes only integer values. For example, when the
window size is 8.5, the sender sends 8 packets. The density for the window size
through simulations is, therefore, defined only at integer values whereas the the-
oretical plot is shown for real values. This results in a small discrepancy between
the simulations and the theoretical function. Figure 5 shows the throughput in
(TCP packets)/RTT as a function of the loss rate, p. The error bars are the 99%
confidence intervals.

Figure 6 shows the throughput in (TCP packets)/RTT as a function of the
loss rate, p, for the model in which the maximum window at the sender is limited
by the receiver’s advertised window. The receiver buffer is assumed to be limited
to 500 packets. The error bars are the 99% confidence intervals. A good match
is observed between the simulations and the analysis.

7 Conclusions

We presented a mathematical model and analysis for computing the moments of
the window size and, in particular, the throughput of a single connection using
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Scalable TCP in the presence of random losses. In the first model, we analyzed
the scenario where the loss rate is high so that the window size would return
to minimum window infinitely often. In the second model, we considered the
scenario wherein the sender’s window was bounded by the receiver buffer and
the connection was subject to random losses with a low rate. In the third model,
congestion losses were considered in addition to the random losses. The moments
of the window size were shown to be equivalent to evaluating the Laplace-Stieltjes
transform of the log of the window evolution process. The log of the window size
was observed to be equivalent to the number of customers in a discrete time
queue. The simulations were seen to match well with the analysis.
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