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Abstract

We present a class of evolutionary games involving large populations
that have many pairwise interactions between randomly selected players.
The fitness of a player depends not only on the actions chosen in the inter-
action but also on the individual state of the players. Players have finite
life time and take during which they participate in several local interac-
tions. The actions taken by a player determine not only the immediate
fitness but also the transition probabilities to its next individual state.
We define and characterize the Evolutionary Stable Strategies (ESS) for
these games and propose a method to compute them. We illustrate the
model and results through a networking problem.

1 Introduction

Evolutionary games have been developed by J. Meynard Smith to model the
evolution of population sizes as a result of competition between them that oc-
curs through many local pairwise interactions, i.e. interactions between ran-
domly chosen pairs of individuals. Central in evolutionary games is the concept
of Evolutionary Stable Strategy, which is a distribution of (deterministic or
mixed) actions such that if used, the population is immune against penetration
of mutations. This notion is stronger than that of Nash equilibrium as ESS
is robust against a deviation of a whole fraction of the population where as
the Nash equilibrium is defined with respect to possible deviations of a single
player. A second foundation of evolutionary games is the replicator dynamics
that describes the dynamics of the sizes of the populations as a result of the
fitness they receive in interactions. Meynard Smith formally introduced both,
without needing an explicit modeling of stochastic features. We shall call this
the deterministic evolutionary game.

Randomness is implicitly hinted in the requirement of robustness against
mutations, and indeed the ESS is defined through robustness against any muta-
tion. Random aspects can be explicitly included in the modeling of evolutionary
games. We first note that since deterministic evolutionary games deal with large
populations, they may provide an interpretation of the deterministic game as a
limit smaller games that included randomness that has been averaged out by
some strong law of large numbers. Such an interpretation can be found in [9].
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Yet, other sources of randomness have been introduced into evolutionary
games. Some authors have added small noise to the replicator dynamics in order
to avoid the problem of having the dynamics stuck in some local minimum, see
[13, 10, 11] and references therein. The ESS can then be replaced by other
notions such as the the SSE [10].

In this paper we introduce another class of stochastic evolutionary games,
which we call ”Markov Decision Evolutionary Games” (MDEG). There are again
many local interactions among individuals belonging to large populations of
players. Each individual has a finite life time during which (i) it may move
among different individual states, and (ii) it interacts several times with other
users; the actions of the player along with those with which it interacts determine
not only the immediate fitness of the player but also the transition probabilities
to the next state it will have. An individual can be seen as trying to maximize
the expected sum of its immediate fitness during his life time.

A simple application of an MDEG to mobile communications has been intro-
duced in [4]. Mobile terminals transmit packets occasionally. Their destination
occasionally may receive simultaneously a transmission from another terminal
which results in a collision. It is assumed however that even when packets
collide, one of the packets can be received correctly if transmitted at a higher
power. The immediate fitness rewards successful transmissions and penalizes
energy consumption. Each mobile decides at each slot what its power level will
be. In [4], this decision is allowed to depend on the depletion level of the battery,
which serves as the ”individual state”. The battery is considered to be either
in the state ”Full” (F) in which case there are two power levels available, or
”Almost Empty” (AE) in which only the weak power level is available. Trans-
mission at high power at state F results in a larger probability of moving to
state AE. We present in Subsection 3.4 an extension of this problem.

In contrast to the above simple application, in which decisions can be taken
only at one individual state, we develop in this paper a general theory for
computing an ESS where decisions can be taken at all individual states, where
the fitness depends not only on the actions but also on the individual states of
the interacting individuals, and where the available actions may depend on the
individual state.

An interesting application of MDEG is the repeated game version of the
well known Hawk and Dove game in which some of the features of MDEG are
already present, [5, 6, 7].

The structure of the paper is as follows. After a brief description of standard
evolutionary games presented next, we introduce in Section 3 the model of
MDEG and define the main solution concept, the Weak ESS, in that context. We
provide a method for computing this ESS in Section 4 which provide ESS within
mixed strategies. Some alternative view point through dynamic programming is
introduced in Section 11 to provide a characterization of the ESS in stationary
policies. The definition and characterization of Strong ESS are provided in
Section 6. In Section 7 we compare the mixed and the stationary ESS in an
energy control problem. This is followed by a concluding section.
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2 Reminder on (standard) Evolutionary Games
(EG)

Consider a large population of players. Each individual needs occasionally to
take some action. We focus on some (arbitrary) tagged individual. Occasionally,
the action of some N (possibly random number of) other individuals interact
with the action of that individual. We define by J(p, q) the expected payoff for
our tagged individual if it uses a strategy (also called policy) p when meeting
another individual who adopts the strategy q. This payoff is called “fitness” and
strategies with larger fitness are expected to propagate faster in a population.
p and q belong to a set K of available strategies. In the standard framework for
evolutionary games there are a finite number of so called ”pure strategies”, and
a general strategy of an individual is a probability distribution over the pure
strategies. An equivalent interpretation of strategies is obtained by assuming
that individuals choose pure strategies and then the probability distribution
represents the fraction of individuals in the population that choose each strategy.
Note that J is linear in p and q.

Suppose that the whole population uses a strategy q and that a small frac-
tion ε (called “mutations”) adopts another strategy p. Evolutionary forces are
expected to select against p if

J(q, εp + (1− ε)q) > J(p, εp + (1− ε)q) (1)

Definition 2.1 A strategy q is said to be ESS if for every p 6= q there exists
some εy > 0 such that (1) holds for all ε ∈ (0, εy).

In fact, we expect that if

for all p 6= q, J(q, q) > J(p, q) (2)

then the mutations fraction in the population will tend to decrease (as it has a
lower reward, meaning a lower growth rate). q is then immune to mutations. If
it does not but if still the following holds,

for all p 6= q, J(q, q) = J(p, q) and J(q, p) > J(p, p) (3)

then a population using q are “weakly” immune against a mutation using p since
if the mutant’s population grows, then we shall frequently have individuals with
strategy q competing with mutants; in such cases, the condition J(q, p) > J(p, p)
ensures that the growth rate of the original population exceeds that of the
mutants. We shall need the following characterization:

Theorem 2.1 [1, Proposition 2.1] or [2, Theorem 6.4.1, page 63] A strategy q
is ESS if and only if it satisfies (2) or (3).

Corollary 2.1 (2) is a sufficient condition for q to be an ESS. A necessary
condition for it to be an ESS is

for all p 6= q, J(q, q) ≥ J(p, q) (4)
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The conditions on ESS can be related and interpreted in terms of a Nash
equilibrium in a matrix game. The situation in which an individual, say player
1, is faced with a member of a population in which a fraction p chooses strategy
A is then translated to playing the matrix game against a second player who
uses mixed strategies (randomizes) with probabilities p and 1− p, resp.

3 Model

We use a hierarchical description of the system composed of a model for the
individual player and a global model for aggregating individual’s behavior.

3.1 Model for Individual player

A player arrives at some random time t0. It has a clock that is responsible
to the times at which interactions with other players occur. It is involved in
interactions that occur according to a Poisson process with rate λ. After a
random number of clicks, the player leaves the system and is replaced be another
one. This will be made precise below. During the player’s life time, each time
the timer clicks, the player interacts with another randomly selected player.

We associate with each player a Markov Decision Process (MDP) embedded
at the instants of the clicks.

The parameters of the MDP are given by the tuple {S,A, Q} where

• S is the set of possible individual states of the player

• A is the set of available actions. For each state s, a subset As of actions
is available.

• Q is the set of transition probabilities; for each s, s′ ∈ S and a ∈ As,
Qs′(s, a) is the probability to move from state s to state s′ taking action
a.

∑
s′∈S Qs′(s, a) is allowed to be smaller than 1.

Define further

• The set of policies is U . A general policy u is a sequence u = (u1, u2, . . .)
where ui is a distribution over action space A at time i. The dependence
on time is a local one: it concerns only the individual’s clock; a player is
not assumed to use policies that make use of some global clocks.

• The subset of mixed (resp. pure or deterministic) policies is UM (resp.
UD). We define also the set of stationary policies US where such policy
does not depend on time.

Occupation measure Often we encounter the notion of individual states
in evolutionary games; but usually the population size at a particular state is
fixed. In our case the choices of actions of an individual determine the fraction of
time it would spend at each state. Hence the fraction of the whole population
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that will be at a given state may depend on the distribution of strategies in
the population. In order to model this dependence we first need to describe
the expected amount of time fη,u(s) that an individual spends at a given state
s when it follows a strategy u and its initial state at time 1 is distributed
according to a probability η over S. More generally, we define fη,u(s, a) the
expected number of time units during which it is at state s and it chooses
action a. fu := {fη,u(s, a)} is called the occupation measure corresponding to
a policy u.

Define pt(η, u; s, a) = IPη,u(Xt = s,As = a) the probability for a user to
be in state s, at time t, using action a under policy u when the initial state
has a probability distribution η. Further define pt(η, u; s) =

∑
a pt(η, u; s, a).

pt(η, u; s) is a sub-probability measure as
∑

s∈S pt(η, u; s) may be smaller than
one. The lifetime of an individual is identified as the time interval before Xt

leaves S. We have

fη,u(s, a) =
+∞∑
t=1

pt(η, u; s, a), fη,u(s) =
+∞∑
t=1

pt(η, u; s).

Define the expected lifetime of a player corresponding to a given η and u as
Tη,u =

∑
s fη,u(s). We shall assume throughout that for a given η, supu∈U Tη,u

is finite. We know from [12] that supu∈U Tη,u = maxu∈UD Tη,u so the assumption
is equivalent to requesting:

A1: Tη,u is finite for all u ∈ UD.

3.2 Interactions and System model

We have a large population of individuals. As in standard evolutionary games,
there are many pairwise interactions between randomly selected pairs.

Let r(s, a, s′, b) be the immediate reward that a player receives when it is at
state s and it uses action a while interacting with a player who is in state s′

that uses action b.
Denote by α(u) = {α(u; s, a)} the system state: α(u; s, a) is the fraction of

the population at individual state s and that use action a when all the population
uses strategy u. We shall add the index t to indicate a possible dependence on
some time.

Consider an arbitrary tagged player and let St and At be its state and action
at time t (as measured on its individual clock). Then his expected immediate
reward at that time is given by

Rt =
∑
s,a

αt(u; s, a)r(St, At, s, a)

Assume now that a player arrives at the system at time 1. The global
expected fitness when using a policy v is then

Fη(v, u) =
∞∑

t=1

Eη,v[Rt].
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When η is concentrated on state s we write with some abuse of notation Fs(v, u) =
Fη(v, u). We shall often omit the index η (in case it is taken to be fixed).

Unless stated differently, we shall make throughout the following assumption:
A2: When the whole population uses a policy u, then at any time t which is

either fixed or is an individual time of an arbitrary player, αt(u) is independent
of t and is given by

αt(u; s, a) =
fη,u(s, a)

Tη,u

for all s, a.
Under this assumption, the global expected fitness simplifies to

F (v, u) =
∞∑

t=1

Eη,vRt =
∑
s,a

fη,v(s, a)
1

Tη,u

∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′) (5)

Assumption A2 would not hold if the policy of a player could depend on
the absolute time or on the behavior (i.e. the actions) of other players. For
example, in the standard replicator dynamics, the policy of a player adapts to
the instantaneous fitness which depends also on the actions of the other players
in the population. Thus A2 does not hold there.

On the other hand, since players of a given class are undistinguishable, and
since the lifetime distribution of a mobile depends only on his local time, we
may expect Assumption A2 to hold. Checking A2 is beyond the scope of the
paper.

Definition 3.1 We shall say that two strategies u and u′ are equivalent if the
corresponding occupation measures are equal. We shall write u =e u′.

Note that if u and u′ are equivalent policies for a given player then for any
v used by the rest of the population, the fitness under u and under u′ are the
same.

3.3 Defining the Weak ESS

With the expression (5) for the fitness, we observe that we are again in the
framework of Section 2 and can use Definition of Theorem 2.1 for the weak ESS
in the MDEG:

Definition 3.2 A strategy u is a weak ESS, denoted by WESS, for the MDEG
if and only if it satisfies one of the following:

for all v 6=e u, F (u, u) > F (u, v) (6)

for all v 6=e u, F (u, u) = F (v, u) and F (u, v) > F (v, v) (7)

This notion of weakness stable strategy is related to the equivalent class in
terms of occupation measure.
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Lemma 3.1 A policy u is WESS for the MDEG if and only if it is an WESS
for the following modified global fitness function:

F̃ (v, u) =
∑
s,a

fη,v(s, a)
∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′) (8)

The advantage of the new form of the fitness function (8) is that it is bilinear
in the occupation measures of the players that interact with each other. The set
of occupation measures will be shown to be a polytope whose extreme points
correspond to strategies in UD. This will allow us to transform the MDEG to a
standard EG.

We could use the following as an equivalent Definition of WESS for MDEG.

Theorem 3.1 A strategy u is said to be WESS if for every v 6=e u there exists
some εv > 0 such that the following holds for all ε ∈ (0, εv):

F (u, εu + (1− ε)v) > F (u, εu + (1− ε)v) (9)

In (9) we use a convex combination of two policies. We delay the definition of
this to the next section (see Remark 4.1).

3.4 Application to Energy Control in Wireless Networks

We next illustrate the MDEG setting with a problem that arises in dynamic
power control in mobile networks. A special case of this framework (where a
choice between several control actions exists in one state only) has been studied
in [4].

Users participate in local competitions for the access to a shared medium in
order to transmit their packets. An individual state of each mobile represents
the energy level at the user’s battery which, for simplicity, we assume to take
finitely many values, denoted by S = {0, . . . , S}. In each state s ∈ S \{0}, each
mobile has two available actions h and l which correspond respectively to high
power pH and low power pL. We consider an Aloha-type game where a mobile
transmits a packet with success during a slot if:

• the mobile is the only one to transmit during this slot, with probability p

• the mobile transmits with high power and all others transmitting mobiles
use low power.

The reward function r depends only on the transmission powers, that is, the
action of the mobile and the one in competition with him. Then we have:

r(s, a, s′, a′) = p + (1− p)1l((a=h) and (a′=l)).
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For each state s ∈ S \ {0}, the transition probability Qs′(s, a) may be non-
zero (for both a ∈ {l, h}) only for s′ ∈ {s, s − 1}. Then, as the two possible
transitions are to remain at the same energy level or move to the next lower one,
we simplify the notation and use Q(s, a) to denote the probability of remaining
at energy level s using action a. We have the following assumptions on the
transition probabilities which are motivated by the application.

• For all state s ∈ S \ {0}, we have Q(s, h) < Q(s, l) because using less
power induces higher probability to remain in the same energy level.

• For all state s ∈ S \{0} and for both actions a ∈ {l, h}, we have Q(s, a) >
Q(s − 1, a) because less battery energy the mobile has, less is the proba-
bility to remain at the same energy level.

We consider the three states S = {0, 1, 2} and then the set UD of the deter-
ministic policies is composed of the following four couples : (l, l), (l, h), (h, l)
and (h, h); where the first element is the action taken in state 1 and the second
one is the action taken by a mobile in state 2. We denote these strategies by
u1, u2, u3 and u4. We recall that in state 0, there is no more actions available
as the mobile has no more energy.

We present the solution of this problem in Subsection 4.2.

4 Computing the WESS

Define the set of occupation measures achieved by all (individual) policies in
some subset U ′ ⊂ U as

Lη(U ′) =
⋃

u∈U ′
fη,u(s, a).

It will turn out that the expected fitness of an individual (defined in next sub-
section) will depend on the strategy u of that individual only through fη,u. We
are therefore interested in the following characteristic of Lη(U) (see [12, 8]):

Lemma 4.1 Lη(U) equals to the set Qη defined as the set of α = {α(s, a)}
satisfying

∑

s′∈S

∑

a∈A′s

α(s′, a)[δs′(s)−Qs′(s, a)] = η(s), ∀s, α(s, a) ≥ 0, ∀s, a. (10)

where δs′(s) is the dirac distribution in state s′.
(ii) We have: Lη(U) = Lη(US) = coLη(UD) where coLη(UD) is the convex hull
of Lη(UD).
(iii) For any α ∈ Lη(U), define the individual stationary policy u ∈ US by

us(a) =
α(s, a)∑

a∈As
α(s, a)

.

Then fη,u = α.
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4.1 Transforming the MDEG into a standard EG

Consider the following standard evolutionary game EG:

• the finite set of actions of a player is UD,

• the fitness of a player that uses v ∈ UD when the other use a policy u ∈ US

is given by (8).

• Enumerate the strategies in UD such that UD = (u1, ..., um).

• Define γ = (γ1, ..., γm) where γi is the fraction of the population that uses
ui. γ can be interpreted as a mixed strategy which we denote by γ̂.

Remark 4.1 Here the convex combination εγ̂+(1−ε)γ̂′ of the two mixed strate-
gies γ̂ and γ̂′ is simply the mixed strategy whose ith component is given by
εγi + (1− ε)γ′i, i = 1, ...,m.

Combining Lemma 4.1 with Lemma 3.1 we obtain:

Proposition 4.1 Let γ̂ be an ESS for the game EG. Then it is a WESS for
the original MDEG.

4.2 Application to Energy Control in Wireless Networks
(continued)

We pursue the example described in Section 3.4 applying the latest proposition
in order to obtain the WESS for this MDEG. Indeed, we will find the WESS for
the related EG game which will be written as a matrix game with dimension 4.
In order to find the equilibrium of this matric game, we have to compute the
fitness F̃ (u, v) for all policies u and v.

In a first step, we have to compute the occupation measure fu corresponding
to each policy u ∈ {u1, u2, u3, u4}; for that we need the probability for a user to
be in each state, at time t, using action a under policy u. At initial time t = 0,
a mobile always starts with a battery full of energy, that is η = (0, 0, 1). We
describe the matrix game with the two following matrices:

F̃1 =




(X1 + X3)2 (X1 + X3)(X1 + X4) (X1 + X3)(X2 + X3) (X1 + X3)(X2 + X4)
(X1 + X4)(X1 + X3) (X1 + X4)2 (X1 + X4)(X2 + X3) (X1 + X4)(X2 + X4)
(X2 + X3)(X1 + X3) (X2 + X3)(X1 + X4) (X2 + X3)2 (X2 + X3)(X2 + X4)
(X2 + X4)(X1 + X3) (X2 + X4)(X1 + X4) (X2 + X4)(X2 + X3) (X2 + X4)2




and

F̃2 =




0 0 0 0
X4(X1 + X3) X4X1 X4X3 0
X2(X1 + X3) X2X1 X2X3 0

(X2 + X4)(X1 + X3) (X2 + X4)X1 (X2 + X4)X3 0
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with

X1 =
1

1−Q(1, l)
, X2 =

1
1−Q(1, h)

, X3 =
1

1−Q(2, l)
, X4 =

1
1−Q(2, h)

.

The computation of this matrix is described in appendix A.
Then we obtain the following modified fitnesses depending on the policies in

the following matrix :
F̃ = pF̃1 + (1− p)F̃2.

The WESS of the MDEG which model energy control behaviors in wireless
networks is obtained in finding the WESS of the standard EG with the matrix
of fitnesses given by F̃ .

5 WESS and Dynamic Programming

In Section 4 we transformed the MDEG into a standard EG whose actions cor-
respond to the set of deterministic policies. Mixed policies are then interpreted
as selecting randomly one deterministic policy.

The set of such policies is huge. We are therefore interested in obtaining
WESS policies within other classes of policies.

We next consider the class of stationary policies. It follows from Lemma 4.1
(ii) that there is a stationary WESS policy if and only if there is an equivalent
mixed WESS policy. We shall restrict in the rest of the section to stationary
(possibly randomized) policies.

Theorem 5.1 (i) A necessary condition for a policy u to be WESS is that
F (u, u) ≥ F (v, u) for all stationary v.
(ii) Assume that the following set of dynamic programming equations holds: For
all state s ∈ S,

Fs(u, u) = max
a

[
r(u; s, a) +

∑

s′
Qs′(s, a)Fs′(u, u)

]
. (11)

Then F (u, u) ≥ F (v, u) for any v.
(iii) If η(s) > 0 for all s, then the converse also holds: and (11) is equivalent
to F (u, u) ≥ F (v, u) for all stationary v.

Proof: Part (i) follows directly from the Definition 3.2 of an WESS for
MDEG.
(ii) Now, Eq (11) can be interpreted as a one step of policy iteration performed
by a player which solves an MDP given that all other players use u. (11)
then states that this player cannot improve further the policy iteration, and
therefore F (u, u) ≥ F (v, u) for all v, see e.g. [14, p. 72]. Hence (11) implies
F (u, u) ≥ F (v, u) for all v.
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(iii) We show that the converse holds. Assume now that (11) does not hold.
Then there is some action a such that for each s there is an action a = a(s)
such that

Fs(u, u) ≤ r(u; s, a) +
∑

s′
Qs′(s, a)Fs′(u, u)

with strict inequality in at least one state s. Consider now the policy v that
agrees with u from time 2 onwards and that uses action a(s) at state s at time
1. Then it follows that Fs(u, u) ≤ Fs(v, u) for all s with strict inequality at
least for one s. Since Fη(v, u) =

∑
s η(s)Fs(v, u) and since η(s) are assumed to

be strictly positive for all s, this implies that Fη(u, u) < Fη(v, u). We conclude
that indeed (11) is equivalent to Fη(u, u) ≥ Fη(v, u) for all v. ¦

6 Strong ESS

Under our previous definition 3.2 of WESS, a WESS u could be invaded by
another policy v provided that u and v have the same occupation measure:
v =e u. We now propose a characterization of another version of ESS through
dynamic programming for which an ESS u cannot be invaded by any other
policy v.

Definition 6.1 A strategy u is Strong ESS (SESS) for the MDEG if and only
if it satisfies one of the following:

for all v 6= u, F (u, u) > F (v, u) (12)

for all v 6= u, F (u, u) = F (v, u) and F (u, v) > F (v, v) (13)

Theorem 6.1 Let η(s) > 0 for all s and assume that (11) holds. Then u is an
SESS if one of the following holds.
(i) For all states s there is a single a attaining the maximum.
(ii) For each policy v 6= u the following holds. For all s

Fs(u, v) ≤ max
a

[
r(v; s, a) +

∑

s′
Qs′(s, a)Fs′(v, v)

]
(14)

and for some s that may depend on v the inequality is strict.

Proof: Assume that (11) holds. Then Fs(v, u) ≤ Fs(u, u) for all s (by the
previous Theorem). If v 6= u then there exists some s such that Then

Fs(v, u) = r(u; s, v(s))+
∑

s′
Qs′(s, a)Fs′(v, u) ≤ r(u; s, v(s))+

∑

s′
Qs′(s, a)Fs′(u, u)

< r(u; s, u(s)) +
∑

s′
Qs′(s, a)Fs′(u, u) = Fs(u, u).
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The assumption on η implies that F (v, u) < F (u, u). Thus by Theorem 5.1, u
is an SESS.
(ii) As in the first part we get Fs(v, u) ≤ Fs(u, u). If the inequality is strict for
at least one state s then the proof is complete. If not then we have Fs(v, u) =
Fs(u, u). From (14) we get similarly Fs(u, v) ≥ Fs(v, v) for all s. Since the
inequality is strict for at least one state s then together with the condition on
η we get Fs(u, v) > Fs(v, v). Thus by (13), u is a SESS. ¦

In [4] we use adynamic programming approach in order to compute the
WESS but we limit our study to a stationary policy. In the next section, we
compare the result obtain in [4] with the WESS obtained by transforming the
MDEG into a standard EG.

7 Comparison

We compare our result obtained in [4] where we used dynamic programming
approach and the one described in section 4. The model considered in [4] as-
sumes that the mobile cannot transmit with high power in state 1. Then both
model are identical if we restrict the deterministic policies to u1 = (l, l) and
u2 = (l, h). The WESS of the MDEG is the ESS of a standard EG defined by
through the related matrix game (that describes the pairewize interactions):

G̃ =
(

p(X1 + X3)2 p(X1 + X3)(X1 + X4)
(X1 + X3)(p(X1 + X4) + (1− p)X4) p(X1 + X4)2 + (1− p)X1X4

)

which is the restriction of F̃ to policies u1 = (l, l) and u2 = (l, h). We now look
at the ESS γ̂ where γ is obtained as the equilibrium of this matrix game. We
have two pure ESS: γ = 0 and γ = 1. (We use for defining γ = (γ1, γ2) just the
first parameter γ1 and denote it with some abuse of notation as γ; we have then
γ2 = 1− γ.)

Proposition 7.1 We have the following pure SESS:

• γ = 1 if p < X4

X3+
X4
X1

(X3−X4)
and only if p ≤ X4

X3+
X4
X1

(X3−X4)
,

• γ = 0 if p > X4
X3

and only if p ≥ X4
X3

.

Proof: Some straight forward calculation show that the condition p <
X4

X3+
X4
X1

(X3−X4)
is equivalent to F (u2, u2) > F (u1, u2). Hence by Definition

(12), u2 is a SESS if this condition holds, which is equivalent to γ = 1, and it
is not an SESS if the condition with the non-strict inequality fails to hold. The
rest is established in the same way. ¦

We now look at the existence and uniqueness of a mixed WESS.
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Proposition 7.2 If X4
X3

< p < X4

X3+
X4
X1

(X3−X4)
, the game has the following

mixed WESS

γ =
−X1X4 + pX1X3 −X3X4 + pX2

3

−pX3X4 −X3X4 + pX2
3 + pX2

4

.

Proof: The mixed WESS of this game γ̂ is obtained, for X4

X3+
X4
X1

(X3−X4)
<

p < X4
X3

by resolving the equation:

F (u1, γ̂) = F (u2, γ̂),

with F (ui, γ̂) = (1 − γ)F (ui, u1) + γF (ui, u2) that is the expected fitness of a
player using strategy ui. This equation has the unique solution

γ =
−X1X4 + pX1X3 −X3X4 + pX2

3

−pX3X4 −X3X4 + pX2
3 + pX2

4

.

¦
We are able to compare the occupation measure in state 2, that is state

F in [4]. The ESS computed in [4] is obtained when restricting to stationary
policies: each time state F is visited, actions are chosen according to the same
probability measure denoted by a parameter β. We denote the policy by β∗.
This is different than the WESS obtained here in mixed policies, where there
is a single initial randomization between pure strategies, which means that a
mobile uses the same action each time state F is reached.

Proposition 7.3 Policies β∗ defined in [4] and γ̂ described in proposition 7.2
are in the same equivalent class,i.e.

β∗ =e γ̂.

Proof: First, we observe that the stationary WESS β∗ corresponds to the
pure strategy β = 1 if and only if

1−QF (h)
2−QA −QF (h)

(1− p)− QF (l)−QF (h)
1−QF (l)

p ≥ 0,

which, after some basic calculations is equivalent to

p ≤ X4

X3 + X4
X1

(X3 −X4)
.

We conclude that if p ≤ X4

X3+
X4
X1

(X3−X4)
then β = γ = 1.

Second, we have from [4] that the stationary WESS β∗ is the pure strategy
corresponding to β = 0 if and only if

p(1−QF (h))− (1−QF (l)) ≥ 0,

13



which is equivalent to

p ≥ X4

X3
.

Then if p ≥ X4
X3

we have that β = =̂0. Thus if p ≥ X4

X3+
X4
X1

(X3−X4)
or p ≥ X4

X3
we

have that β = γ then both policies have the same occupation measure.
We now look at the case when X4

X3+
X4
X1

(X3−X4)
< p < X4

X3
. The ESS obtained

in [4] is

β =
(2−QA −QF (l))[1−QF (l)− p(1−QF (h))]

(1−QA)(1− p)(1−QF (l))− (QF (l)−QF (h))((1−QF (l))− p(1−QF (h)))
,

which is equal to:

β =
(X1 + X3)(X4 − pX3)X4

(1− p)X3X2
4 −X1(X3 −X4)(X4 − pX3)

.

The occupation measure in state F is:

Tβ∗(F ) =
1

1− βQF (h)− (1− β)QF (h)
=

1
1− β X4−1

X4
− (1− β)X3−1

X3

.

After some basic algebras we obtain;

1− β =
−pX3X

2
4 −X1X2X3 + pX1X

2
3 + pX2

3X4

(1− p)X3X2
4 −X1X2X3 + pX1X2

3 + X1X2
4 − pX1X3X4

,

then:

Tβ∗(F ) =
(1− p)X3X

2
4 −X1X3X4 + pX1X

2
3 + X1X

2
4 − pX1X3X4

X3X4(1 + p)− p(X2
3 + X2

4 )
.

For the WESS γ̂, the mean occupation measure in state F is given by:

Tγ̂(F ) = γ̂fu2(2, h) + (1− γ)fu1(2, l) = γX4 + (1− γ)X3.

1− γ =
pX2

4 − pX3X4 − pX1X3 + X1X4

pX2
3 + pX2

4 −X3X4 − pX3X4
,

which leads:

Tγ̂(F ) =
X1X3X4(1 + p) + (p− 1)X3X

2
4 − pX1X

2
3 −X1X

2
4

p(X2
3 + X2

4 )−X3X4(1 + p)
,

= Tβ∗(F )

¦
We compare numerically the parameter β that defines the stationary WESS

β∗ (i.e. the probability of choosing high power at state 2) with the parameter γ
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that defines the mixed WESS γ̂ (i.e. the probability to use always high power
when at state 2) depending on the probability p in order to validate our results.

We observe on figure 7 that the parameters are equal when they are pure
but different otherwise in the mixed case. For example when p = 0.1, the
probability that a mobile has to be alone is very low, both WESS are equal to
one, the mobile uses high power level. When p = 0.25, we have β = 0.46 and
γ = 0.72. Finally, when the probability p is high, in a given scale, both WESS
are equal to zero, mobile uses low power level. We remark that the probability
γ is larger that the corresponding β whenever they do not correspond to pure
policies.

8 Conclusions

In this paper we have studied a new class of evolutionary games which we call
MDEG, where the decision of each player determine transition probabilities
between individual state. We have illustrated this class of game through an
energy control problem in wireless networks. We had introduced already in in [4]
a definition of ESS strategies in stationary policies in a particular simple MDEG
in which only in one state there are decisions to be taken. If we apply directly
that definition to general policies (we call this here a Strong ESS) it turns out
that when abandoning the restriction to stationary policies, even in this simple
model there are no ESS (except for some restricted choice of parameters that
results in some pure ESS). We solved this problem by defining a weaker notion of
ESS using occupation measures. We have then proposed methods to determine
weak and strong ESS.
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A Computation of the matrix of the related EG

In this appendix we show the computation of each elements of the standard EG
derived from the MDEG of energy control.
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For the initial state 2, we have the following probabilities:

∀t > 0, pt(η, u1; 2, l) = Q(2, l)t, and pt(η, u1; 2, h) = 0.

∀t > 0, pt(η, u2; 2, l) = 0, and pt(η, u2; 2, h) = Q(2, h)t.

∀t > 0, pt(η, u3; 2, l) = Q(2, l)t, and pt(η, u3; 2, h) = 0.

∀t > 0, pt(η, u4; 2, l) = 0, and pt(η, u4; 2, h) = Q(2, h)t.

For the intermediate state 1, we have the following probabilities:

∀t > 0, pt(η, u1; 1, l) = (1−Q(2, l))
t−1∑

j=0

Q(1, l)t−1−jQ(2, l)j , and pt(η, u1; 1, h) = 0.

∀t > 0, pt(η, u2; 1, l) = (1−Q(2, h))
t−1∑

j=0

Q(1, l)t−1−jQ(2, h)j , and pt(η, u2; 1, h) = 0.

∀t > 0, pt(η, u3; 1, l) = 0, and pt(η, u3; 1, h) = (1−Q(2, l))
t−1∑

j=0

Q(1, h)t−1−jQ(2, l)j .

∀t > 0, pt(η, u4; 1, l) = 0, and pt(η, u4; 1, h) = (1−Q(2, h))
t−1∑

j=0

Q(1, h)t−1−jQ(2, h)j .

For the absorbent state 0 the probability to take an action is null because
no actions are available is this state.

Now, we are able to compute the occupation measure through the expected
number of time units fη,u(s, a) during which a user is in state s and it chooses
action acorresponding to a policy u. For the policy u1 = (l, l), we have:

fη,u1(2, l) =
1

1−Q(2, l)
, fη,u1(2, h) = 0, fη,u1(1, h) = 0,

and

fη,u1(1, l) = (1−Q(2, l))
+∞∑
t=1

t−1∑

j=0

Q(1, l)t−1−jQ(2, l)j ,

= (1−Q(2, l))

[
+∞∑
t=0

Q(1, l)t
+∞∑
t=0

Q(2, l)t

]
,

=
1

1−Q(1, l)
.

In the same way, we have for the policy u2 = (l, h) :

fη,u2(2, l) = 0, fη,u2(2, h) =
1

1−Q(2, h)
, fη,u2(1, h) = 0,
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and

fη,u2(1, l) = (1−Q(2, h))
+∞∑
t=1

t−1∑

j=0

Q(1, l)t−1−jQ(2, h)j ,

= (1−Q(2, h))

[
+∞∑
t=0

Q(1, l)t
+∞∑
t=0

Q(2, h)t

]
,

=
1

1−Q(1, l)
.

We have similarly for the policy u3 = (h, l) :

fη,u3(2, l) =
1

1−Q(2, l)
, fη,u3(2, h) = 0, fη,u3(1, l) = 0,

and

fη,u3(1, h) = (1−Q(2, l))
+∞∑
t=1

t−1∑

j=0

Q(1, h)t−1−jQ(2, l)j ,

= (1−Q(2, l))

[
+∞∑
t=0

Q(1, h)t
+∞∑
t=0

Q(2, l)t

]
,

=
1

1−Q(1, h)
.

Finally, for the policy u4 = (h, h) :

fη,u4(2, l) = 0, fη,u4(2, h) =
1

1−Q(2, h)
, fη,u4(1, l) = 0,

and

fη,u4(1, h) = (1−Q(2, h))
+∞∑
t=1

t−1∑

j=0

Q(1, h)t−1−jQ(2, h)j ,

= (1−Q(2, h))

[
+∞∑
t=0

Q(1, h)t
+∞∑
t=0

Q(2, h)t

]
,

=
1

1−Q(1, h)
.
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The modified fitness function F̃ defined in equation 8 is expressed by:

F̃ (v, u) =
∑
s,a

fη,v(s, a)
∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′),

= p
∑
s,a

fη,v(s, a)
∑

s′,a′
fη,u(s′, a′) + (1− p)

∑
s

fη,v(s, h)
∑

s′
fη,u(s′, l),

= p
∑
s,a

fη,v(s, a)
∑

s′,a′
fη,u(s′, a′) + (1− p)H(v).L(u),

= p(H(v) + L(v))(H(u) + L(u)) + (1− p)H(v).L(u),

with

H(v) = fη,v(1, h) + fη,v(2, h) and L(u) = fη,u(1, l) + fη,u(2, l).

Note that H(u1) = L(u4) = 0.
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