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S-Modular Games and Power Control in Wireless Networks

Eitan Altman and Zwi Altman

Abstract—This note shows how centralized or distributed power control
algorithms in wireless communications can be viewed as S-modular games
coupled policy sets (coupling is due to the fact that the set of powers of a
mobile that satisfy the signal-to-interference ratio constraints depends on
powers used by other mobiles). This sheds a new light on convergence prop-
erties of existing synchronous and asynchronous algorithms, and allows us
to establish new convergence results of power control algorithms. Further-
more, known properties of power control algorithms allow us to extend the
theory of S-modular games and obtain conditions for the uniqueness of the
equilibrium and convergence of best response algorithms independently of
the initial state.

Index Terms—Power control, supermodular games.

I. INTRODUCTION

Noncooperative game theory deals with optimization problems in
which several users (players, or agents) have each its own individual
utility which it seeks to minimize in a selfish way. Thus, it is typically
used to describe competition situations in distributed decision making
environment. Power control in wireless network has recently been an-
alyzed within this framework; see [1]–[3], [6], and [7]; utilities are as-
signed to individual mobiles as a function of the power they consume
and the signal-to noise-ratio that they attain, and each mobile is as-
sumed to decide (dynamically) on his own transmission power level so
as to maximize his utility. This way to perform power control is an al-
ternative to the classical power control, where power control decisions
for mobiles are taken in a centralized way at the base stations. The
problem is then typically posed as a constrained minimization problem
or simply as a problem of meeting some constraints on the signal-to-in-
terference ratio (SIR) of each mobile.

The aim of this note is to show that even classical centralized power
control problems can be modeled as noncooperative games, which fur-
ther have the S-modular type structure introduced by Topkis in [8];
see also [9] and [12]. These types of noncooperative games have been
shown to possess properties that are important in applications: 1) a
Nash equilibrium exists; 2) it can be attained using greedy best-re-
sponse type algorithms; and 3) best response policies are monotone
in other players’ policies.

Thus, we can make use of the theory of S-games to directly ob-
tain the monotone convergence of distributed power control algorithms
[5], [11]. It further allows us to establish convergence for many dis-
tributed power control algorithms in the case of discrete available sets
of powers; for this setting only, little is known on convergence (see [5]
and [10]). Finally, we are able also to obtain new properties of S-mod-
ular games from results that have been obtained for power control prob-
lems [11]. The idea of using S-modular games in power control already
appears in [7], [6]. In [6] it is applied to a utility which is the ratio be-
tween the goodput and the power. In [7], it is used in a context related
to ours, in which each mobile seeks to minimize the distance between
its received SIR and his specified ratio. In both references, however,
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the role of constraints is not mentioned and the policy sets of the mo-
biles are taken to be independent of each other. We make use of tools
from [12] that allow us to consider a coupled policy set (in which a
mobile restricts to policies that make his SIR finite). Our contribution
with respect to [6] and [7], and is also in considering discrete available
transmission powers.

This note contains two sections, one on S-modular games containing
some novel properties, and one on its applications to power control.

II. S-MODULAR GAMES

General models are developed in [8] and [12] for games where the
strategy spaceSi of player i is a compact sublattice ofRm. (Note
that we do not require the entire policy set to be convex, we only re-
quire component-wise convexity; in power control problems, the global
strategy set is indeed not convex, see, e.g., [4]). By sublattice, we mean
that it has the property that for any two elementsa, b that are contained
in Si, alsomin(a; b) (denoted bya ^ b) andmax(a; b) (denoted by
a_b) are contained there (bymax(a; b) we mean the component-wise
max, and similarly with the min). We describe the main results for the
case thatm = 1. We considerN players, and the utility of playeri
corresponding to theN -dimensional vector of strategiesx is given by
fi(x). LetS denote the space of all strategies.

Definition 1: The utility fi for playeri is supermodular if and only
if for all x; y 2 S

fi(x ^ y) + fi(x _ y) � fi(x) + fi(y):

It is submodular if the opposite inequality holds. A game that is either
submodular or supermodular is called S-modular game.

If fi is twice differentiable, then supermodularity is equivalent to

@2fi(x)

@xi@xj
� 0

for all x 2 S andj 6= i. Submodularity holds if the opposite inequality
holds.

Next, we introduce constraints on the policies. Playeri aims to re-
strict his policy to a subset of policies withinSi that depends onx

�i

wherex
�i means the components ofx corresponding to all users other

thani. We denote this subclass bySi(x�i), i = 1; 2; . . . ; N .
Definition 2: A joint policy x� is a (constrained) Nash equilibrium

if for each playeri

x
�

i 2 argopt
x 2S x

fi (xi; x
�

�i) :

argopt stands for argmax when players maximize and for argmin
when they minimize.

Monotonicity of optimizers:The following important property
was shown to hold in [8], [12]. Letf be a supermodular function. Then
the maximizer with respect toxi is increasing inx�i, i.e. with respect
to eachxj , j 6= i. More precisely, define the best response

BR�

i (x�i) = max argmaxx 2S (x )f(xi; x�i) :

Then,x�i � x0�i impliesBR�
i (x�i) � BR�

i (x
0
�i) if Si(x�i) does

not depend onx�i (or if it satisfies the ascending property defined
later). The “max” before the brackets is taken in order to select the
largest maximizer, but the property also holds for the smallest maxi-
mizer. A corresponding property for the minimizers also holds for sub-
modular functions.

Definition 3 (Monotonicity of Sublattices):LetA andB be sublat-
tices. We say thatA � B if for any a 2 A andb 2 B, a ^ b 2 A and
a _ b 2 B.
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Next, we introduce some properties on the policy spaces.
Monotonicity of the constraint policy setsIf

x
�i � x

0
�i =) Si(x�i) � Si(x

0
�i):

then the setSi possess theascending property. We define similarly
thedescending propertywhen the relation is reversed.

Lower semicontinuity ofSi(�) We say that the point to set mapping
Si(�) (that maps elementsx�i to Si(x�i)) is lower semicontinuous
if for every xk�i ! x��i andx��i 2 Si(x

�
�i), there existfxki g s.t.

xki 2 Si(x
k
�1) for eachk, andxki ! x�i .

Existence of equilibria and convergence of greedy algo-
rithms: Consider ann-player game. References [12, Alg. 1] and [8,
Alg. I] consider a greedy round robin scheme where at some infinite
strictly increasing sequence of time instantsTk, players update their
strategies using each the best response to the strategies of the others.
Playerl updates at timesTk with k = mN + l; m = 1; 2; 3; . . ..

More generally, one can consider the following algorithm.
Definition 4 General Updating Algorithm (GUA):There areN infi-

nite increasing sequencesfT i
kg, i = 1; . . . ; N , k = 1; 2; 3; . . .. Player

i uses at timeT i
k the best response policy to the policies used by all

other players just beforeT i
k. This scheme includes in particular par-

allel updates (whenfT i
kg do not depend oni).

Remark 1: If at some time an actionx is used and useri then up-
dates applying the best response tox�i, all we require is that its best re-
sponse be feasible, i.e., inSi(x�i). Once this user updated his strategy,
the strategies of one or more of the other users need not be anymore fea-
sible.

Theorem 1: Assume that for alli = 1; . . . ; N; Si(�) are compact
for all values of their argument, and are lower semicontinuous in its
argument. Assume either of the following.

• The game is supermodular, players maximize, andSi(�) are as-
cending.

• The game is submodular, players minimize, andSi(�) are de-
scending.

Then, the following hold.

i) An equilibrium exists.
ii) If each playeri initially uses its lowest policy inSi, or if each

useri uses initially its largest policy inSi, then the GUA con-
verges monotonically to an equilibrium (that may depend on
the initial state). Monotonicity is in the same direction for all
players: the sequences of strategies either all increase or all de-
crease.

iii) If we start with a feasible policyx, then the sequence of best
responses monotonically converges to an equilibrium: it mono-
tonically decreases in all components in the case of minimizing
in a submodular game, and monotonically increases in the case
of maximizing in a supermodular game.

Proof: The proof of i) and ii) is a direct extension of the proof of
[12, Th. 2.3]. Item iii) directly follows from the monotonicity of the best
response. For example, in a submodular game, for anyi = 1; . . . ; N ,
BRi(x) � xi sincexi is already feasible. Due to the descending prop-
erty, if we replacexj by BRj(x) for some setj 2 J thenxk, k 62 J

remains feasible, so by induction we get a monotone nonincreasing se-
quence that converges to some limit. We could now apply part ii) of
the theorem by restricting the game to policies that are not greater than
the initial conditionx. For supermodular games we obtain the proof
similarly.

Remark 2: In general, in an S-modular game (as before) the setS�

of equilibria need not be a singleton. However, the following points
hold.

i) There exists a unique dominating element inS� (component-
wise). Indeed, consider a submodular game. Ifxj 2 S�, j =

1; 2, then alsox0 := x1 ^ x2 is feasible (due to the descending
property). Using theorem 1 iii), we conclude that there is an equi-
librium which is no larger thanx0.

ii) The unique minimum equilibriumxmin is attainable using GUA
(for any order of updates) starting at the minimal elements of
Si. Indeed, for a submodular game for example, at each iteration
of best responses, the new actions are no greater than the best
responses toxmin which is againxmin, so their limit, which is
an equilibrium according to Theorem 1 ii), is bounded byxmin.

Motivated by [11] (power control context), we define the scalability
property.

Definition 5: In case all players minimize their cost functions, the
best responses have the scalability property if for all� > 1 andi =
1; . . . ; N ,�BRi(x�i) > BRi(�x�i). In case they maximize, the def-
inition holds with the opposite inequality.

The following establishes conditions for uniqueness of Nash equi-
librium and general convergence properties of GUA.

Theorem 2: Assume the setsSi are convex (continuous action
spaces), that that the conditions of Theorem 1 and the scalability
property hold and that there exists some feasiblex (i.e., such that
xi 2 Si(x�i) for i = 1; . . . ; N ). Further assume that for each
i = 1; . . . ; N , BRi(x�i) > 0 for all xj 2 Sj , j 6= i. Then, i) the
Nash equilibrium is unique and ii) the convergence of GUA holds for
any initial policy.

Proof: The proof of the Theorem is based on the monotonicity
of the best response together with the scalability property, exactly as in
the proof of [11, Ths. 1 and 2].

III. CONVERGENCE OFPOWER CONTROL ALGORITHMS

Yates introduces five uplink power control problems with the fol-
lowing common structure. There areN users,M base stations and a
common radio channel. Userj transmits at a power levelpj . Let hkj

be the gain of userj to basek, so the received signal of usersj at base
k is pjhkj . The interference experienced by mobilej at that base is

i6=j
hkipi+�k, where�k is the receiver noise at basek. The SIR of

userj at basek when transmission powers are given by the vectorp is
given bypj�kj(p) where

�kj(p) =
hkj

i6=j
hkipi + �k

:

Userj requires a signal to noise interference of at leastj .
The five different power control problems introduced in [11] differ

according to which base station(s) each mobile connect. Yet all have
in common the fact that there is a given constraint on the power to
noise interference ratio, which implies that the transmission power of
each mobilej should be larger than or equal to some levelIj(p) that
depends on the transmission power of all mobilesp.

The schemes considered there are as follows.

1) Fixed assignment: mobilej is assigned to baseaj . The constraint
has the form

pj � I
FA(p) =

j

�a ;j(p)
:

2) Minimum power assignment: the mobile is connected to the base
for which the signal to interference is maximum. The constraint
is given by

pj � I
MPA(p) = min

k

j

�k;j(p)
:

3) Macro diversity: each mobile is connected to all base stations.
The constraint is

pj � I
MD(p) =

j

k
�k;j(p)

:
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4) Limited diversity: mobilej is connected a setKj of stations. The
constraint is

pj � IMD(p) =
j

k2K
�k;j(p)

:

5) Multiple connection reception: mobilej is required to maintain
an acceptable SIRj atdj distinct base stations. The constraint
IMCj (p) is given as thedj th smallest value of the setj=�k;j(p).

In all five schemes, it is shown in [11] thatI satisfies the following
properties.

• Positivity: I(p) > 0.
• Monotonicity: If p � p

0 thenI(p) � I(p0).
• Scalability: Fora > 1, aI(p) � I(ap).

In order to use tools from submodular game setting, we make the
following observations.

i) Although power control decisions are often taken centrally at
base stations, they are computed so as to minimize the power
of each mobile separately while satisfying all signal to interfer-
ence constraints. Thus, the centralized problem is indeed a game
one: there are several utilities (the powers) each corresponding
to another mobile, and minimization (subject to constraints) are
performed for each mobile (although centrally). Our framework
is, moreover, useful for the challenging distributed power control
setting in which the game setting is more evident.

ii) The goal of the power control is to obtainp� such that for all
i = 1; . . . ; N

p�i = min fpi 2 Si s:t: pi � Ii(p
�)g : (1)

This agrees with the definition of the constrained Nash equilibrium. In
the case of convex power sets (continuous sets of powers), this sim-
plifies (as in [5] and [11]) to finding a fixed point ofp = I(p). We
assume here thatSi is unbounded (there are no maximum power re-
strictions, although we shall show below that one can restrict indeed to
compact (bounded) setsSi. Unless otherwise stated, we takeSi to be
the real positive numbers.

Theorem 3: Assume that there is a feasible solutionp0 top � I(p).
Then

i) there exists a fixed point to the equationp = I(p);
ii) if the setsSi are discrete, then GUA converges for initial powers

of all users corresponding to the lowest or to the largest powers;
iii) if the setsSi are convex (continuous action spaces) then there is

a unique fixed point to the equationp = I(p). Moreover, GUA
converges for any initial policy.

Proof: We first note that the feasibility ofp0 implies also thatap0

is feasible for alla � 1. This follows from the scalability property ofI .
Consider an initial strategyp0, not necessarily feasible. Choose some
a > 1 such thatp0 < ap0. Consider now the following submodular
game:

• the actions of playerj is the powerxj = pj ;
• the utility of playerj is simplyf(pj) = pj ;
• the constraint policy set of playerj is given by

Sj(p�j) = pj : pj � Ij(p); 0 � pj � ap0j :

(The setSj(p�j) can thus be considered to be a subset of the compact
setSj = fpj : 0 � pj � ap0jg).

We check the conditions of Theorem 1 (and then use also Theorem
2). The cost of every playerj is (trivially) submodular (since it de-
pends only on the policy of playerj). What makes it then a nontrivial
submodular game is the dependence of the set of available transmission
powers for playerj on the powers of other player. The policy space of
each user is indeed a compact sublattice. The monotonicity ofI implies
the descending property of the policy sets.

We note that for anyp whose components satisfy0 � pj � ap0j ,
for all j, Sj(p�j) is nonempty for allj. This is due to the scalability
and monotonicity ofI .

Obviously, only in the case of continuous strategy spaces we need
to check that the point to set functionsSj are lower semicontinuous,
which we do next.

SinceSj(�) are nonempty convex sets, it suffices to show that its
minimal value,Ij(�), is continuous. Letp = p

1 _ p
2. Choose the

smallesta � 1 such thatp=a � p
i, i = 1; 2. Since the monotonicity

and scalability ofI imply

aI
p

a
� I(p) � I

p

a

we have

I(p)

a
� I

p

a
� I(pi) � I(p); i = 1; 2:

Hence,

I(p1)� I(p2) � I(p) 1�
1

a
:

If p2 tends top1 thena tends to 1, which shows the continuity ofI .
We conclude that the conditions of Theorem 1 holds which establishes
the proof.

Remark 3:

i) Another reference that pursued the direction of [11] is [5]. It
presents a “canonical” algorithm that converges to a feasible
desired power region rather than to a given global min as in
Yate’s paper. Within this framework, a special discrete valued
power control problem is also shown to yield convergence.

ii) A convergence of an algorithm of the type of GUA is established
in bert for the “fixed assignment” problem (the first mentioned
in this section) for the discrete case.

iii) We have not considered here the case of maximum power
constraints. In the presence of such constraints, the set of best
response policies might be empty and iterative power control
schemes may converge to a point that is not feasible for some
mobiles. To handle this case one could formulate an alternative
game with no power constraints, but in which the objective of
playeri is to minimizef(pj ; Ij(p)) wheref is some increasing
function of the absolute value of the difference between its
arguments. This approach also leads to S-modular games and to
convergence of iterative schemes, as was shown in [7, Sec. 13].
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Local Stabilization of Linear Systems Under Amplitude
and Rate Saturating Actuators

João Manoel Gomes da Silva, Jr., Sophie Tarbouriech, and
Germain Garcia

Abstract—This note addresses the problem of local stabilization of linear
systems subject to control amplitude and rate saturation. Considering the
actuator represented by a first-order system subject to input and state satu-
ration, a condition for the stabilization of an a priori given set of admissible
initial states is formulated from certain saturation nonlinearities represen-
tation and quadratic stability results. From this condition, an algorithm
based on the iterative solution of linear matrix inequalities-based problems
is proposed in order to compute the control law.

Index Terms—Constrained control, control saturation, linear matrix in-
equality (LMI), stabilization.

I. INTRODUCTION

Physical and technological constraints do not allow that control
actuators provide unlimited amplitude signals neither react unlimited
fast. The negligence of both amplitude and rate control bounds
can be source of limit cycles, parasitic equilibrium points and even
instability of the closed-loop system. In particular, the problem of
stabilization of linear systems only with amplitude saturation has been
exhaustively addressed in the literature (see, among others, [1]–[3]
and the references therein). On the other hand, the rate saturation
problem has first received a special interest in the aeronautic field,
where the tradeoff between high performance requirements and the
use of hydraulic servos presenting rate limitations is always present
(see, for instance, [4], [5], and the references therein).

Studies addressing the stabilization in the presence of both the am-
plitude and the rate saturation, as a more generic problem, have started
to appear in the last few years. In [6] and [7], the semiglobal stabi-
lization of linear systems with both amplitude and rate constraints is
addressed. Considering a low-gain approach (the actuator does not ef-
fectively saturate), in [6], solutions to the problem via both state feed-
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back and observer based output feedback are stated. In [7], the notion
of an operator for modeling the amplitude and the rate saturation is
introduced. Based on this modeling, a low and high gain approach is
used for addressing the problem of semiglobal output regulation via
both state and dynamic output feedback. In [8], the problem of external
Lp-stabilization with internal global stabilization via a scheduled low
gain (saturation is avoided) state feedback is addressed. It should be
pointed out that, since the objective is the semiglobal or global stabi-
lization, these results can be applied only when the open-loop system
is null-controllable (i.e., all the poles are in the closed left half plane).

On the other hand, we can identify some works dealing with local
stabilizing solutions (see, among others, [9]–[12]). In [9], a method for
designing dynamic output controllers based on aposition type feedback
modeling of the rate saturation and the use of the positive real lemma is
proposed. The main objective pursued in that paper is the minimization
of a linear quadratic Gaussian criterion. A region of stability (region of
attraction) is associated to the closed-loop system. However, it should
be pointed out that the size and the shape of this region are not taken into
account in the design procedure which can lead to very conservative
domains of stability. Furthermore, the controller is computed from the
solution of strong coupled equations which, in general, are not simple
to solve. A different modeling for the actuator, subject to both rate and
amplitude limitations, is considered in [10] and [12]. In these papers,
the actuator is modeled by a pure integrator: the control rate appears
as the system input and the original control signal becomes a state of
the system. The physical meaning of this kind of modeling is not clar-
ified in these papers. Parallel to these works, in [11], the problem of
disturbance attenuation in the presence of rate and amplitude actuator
saturation is addressed. In that paper, however, no explicitely consider-
ation is made about the region of attraction associated to the controller.

Since we also aim to consider strictly unstable systems, our note fig-
ures in the context of local stabilization of linear systems subject to
both actuator amplitude and rate saturation. In this case, two objectives
are quite natural: the control law should guarantee a certain time-do-
main performance for the closed-loop system and the associated region
of attraction should be as large as possible. Regarding these objectives,
a fundamental issue is whether the use of effective saturating control
laws can be advantageous or not. In a recent work considering only
amplitude saturation [13], it was shown that, at least in some cases, the
use of the saturating control laws does not help in obtaining larger re-
gions of stability. It is, however, very important to highlight that no con-
straints concerning neither the performance, nor the robustness, were
taken into account in this analysis. In this case, although the optimal
region of stability is obtained with a linear control law, the closed-loop
poles associated to this solution can be very close to the imaginary axis,
which implies a very slow behavior.

The objective of this note is then to propose a method for computing
state feedback saturating control laws, that ensure both asymptotic sta-
bility of the closed-loop system with respect to a given set of admissible
initial conditions, and a certain degree of time-domain performance in
a neighborhood of the origin. We also aim to emphasize the compro-
mise between performance and the size of the region of attraction. As
we will see, over performance constraints, the use of saturating control
laws can ensure larger regions of stability. As in [9], our approach is
based on the modeling of the actuator by a first-order system subject
to input and state saturation (position-feedback-type model with speed
limitation). Differently, however, from [9] and [11], the objective in the
synthesis is explicitely to enlarge the region of attraction. Moreover, the
stabilization conditions are based on a mixed polytopic/norm-bounded
differential inclusion for modeling the behavior of the closed-loop non-
linear system. Comparing to the polytopic approach used in [11] and
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