IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003 839

S-Modular Games and Power Control in Wireless Networks the role of constraints is not mentioned and the policy sets of the mo-
biles are taken to be independent of each other. We make use of tools
Eitan Altman and Zwi Altman from [12] that allow us to consider a coupled policy set (in which a
mobile restricts to policies that make his SIR finite). Our contribution

with respect to [6] and [7], and is also in considering discrete available
Abstract—This note shows how centralized or distributed power control P [6] 7] g

algorithms in wireless communications can be viewed as S-modular gamestrans_mlssmn pow_ers. . o
coupled policy sets (coupling is due to the fact that the set of powers of a T hiS note contains two sections, one on S-modular games containing

mobile that satisfy the signal-to-interference ratio constraints depends on some novel properties, and one on its applications to power control.
powers used by other mobiles). This sheds a new light on convergence prop-
erties of existing synchronous and asynchronous algorithms, and allows us
to establish new convergence results of power control algorithms. Further-

more, known properties of powercontrol alg(_)!'ithms allow usto extend the General models are developed in [8] and [12] for games where the
theory of S-modular games and obtain conditions for the uniqueness of the & of ol . blattice gB™ . (N
equilibrium and convergence of best response algorithms independently of strategy spacei o _paye” 's_a CompaCt sublattice - (Note

the initial state. that we do not require the entire policy set to be convex, we only re-
quire component-wise convexity; in power control problems, the global
strategy set is indeed not convex, see, e.g., [4]). By sublattice, we mean
that it has the property that for any two elements that are contained

|. INTRODUCTION in S;, alsomin(a, b) (denoted by: A b) andmax(a,b) (denoted by

N i th deals with optimizati bl a V b) are contained there (hyax(«a, b) we mean the component-wise
oncooperative game theory deais with optimization problems X, and similarly with the min). We describe the main results for the

which several users (players, or agents) have each its own individggie thain = 1. We considetV' players, and the utility of player
utility which it seeks to minimize in a selfish way. Thus, it is typically ’

. . N A e 'corresponding to th&/ -dimensional vector of strategiesis given by
use_d to describe competmon sntl_Jatlons in distributed decision mak:)?gm). LetS denote the space of all strategies.
enwronmgqt. Pgwer control in wireless network has rec.e.r.}tly been "Definition 1: The utility f; for player: is supermodular if and only
alyzed within this framework; see [1]-[3], [6], and [7]; utilities are as-, o

. o . . ifforall z,y € S

signed to individual mobiles as a function of the power they consume
and the signal-to noise-ratio that they attain, and each mobile is as- file Ny) + fileVy) > fi(x) + fi(y).
sumed to decide (dynamically) on his own transmission power level so
as to maximize his utility. This way to perform power control is an allt is submodular if the opposite inequality holds. A game that is either
ternative to the classical power control, where power control decisiogigomodular or supermodular is called S-modular game.
for mobiles are taken in a centralized way at the base stations. Théf f: is twice differentiable, then supermodularity is equivalent to
problem is then typically posed as a constrained minimization problem 92 f.(x)
or simply as a problem of meeting some constraints on the signal-to-in- >0
terference ratio (SIR) of each mobile. Oxidx;

The aim of this note is to show that even classical centralized powgF all = € S andj # i. Submodularity holds if the opposite inequality
control problems can be modeled as noncooperative games, which fitsids.
ther have the S-modular type structure introduced by Topkis in [8]; Next, we introduce constraints on the policies. Playaims to re-
see also [9] and [12]. These types of noncooperative games have bggigt his policy to a subset of policies withi§i that depends om_;
shown to possess properties that are important in applications: lyideres_; means the componentsotorresponding to all users other

Il. S-MODULAR GAMES

Index Terms—Power control, supermodular games.

Nash equilibrium exists; 2) it can be attained using greedy best-taani. We denote this subclass By(e_:),i=1,2,....N.
sponse type algorithms; and 3) best response policies are monotorBefinition 2: A joint policy =* is a (constrained) Nash equilibrium
in other players’ policies. if for each player
Thus, we can make use of the theory of S-games to directly ob-
tain the monotone convergence of distributed power control algorithms x € argopt, .. (v2,) filwi,aly).

[5], [11]. It further allows us to establish convergence for many dis-
tributed power control algorithms in the case of discrete available setgyopt stands for argmax when players maximize and for argmin
of powers; for this setting only, little is known on convergence (see [Bjhen they minimize.

and [10]). Finally, we are able also to obtain new properties of S-mod- Monotonicity of optimizers:The following important property
ular games from results that have been obtained for power control prgtts shown to hold in [8], [12]. Lef be a supermodular function. Then
lems [11]. The idea of using S-modular games in power control alreatfye maximizer with respect te; is increasing ine—;, i.e. with respect
appears in [7], [6]. In [6] it is applied to a utility which is the ratio be-to eachz;, j # i. More precisely, define the best response

tween the goodput and the power. In [7], it is used in a context related
to ours, in which each mobile seeks to minimize the distance between

its received SIR and his specified ratio. In both references, howevepo, .. =~ ./ implies BR? (v_;) < BRI («+';) if Si(x—;) does

not depend on:_; (or if it satisfies the ascending property defined
later). The “max” before the brackets is taken in order to select the
Manuscript received June 20, 2002; revised January 4, 2003. Recommeni@gest maximizer, but the property also holds for the smallest maxi-
by Associate Editor C. D. Charalambous. mizer. A corresponding property for the minimizers also holds for sub-
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Next, we introduce some properties on the policy spaces. 1,2, then alsar’ := 2! A 2? is feasible (due to the descending
Monotonicity of the constraint policy seffs property). Using theorem 1 iii), we conclude that there is an equi-
, , librium which is no larger than'. ‘
i <w_p = Si(r—i) < Si(z_;). i) The unique minimum equilibrium™™ is attainable using GUA

(for any order of updates) starting at the minimal elements of

S;. Indeed, for a submodular game for example, at each iteration

of best responses, the new actions are no greater than the best

responses te™" which is againe™™", so their limit, which is

an equilibrium according to Theorem 1 ii), is bounded:5y" .
Motivated by [11] (power control context), we define the scalability

then the sel5; possess thascending property. We define similarly
thedescending propertywhen the relation is reversed.

Lower semicontinuity af;(-) We say that the point to set mapping
Si(+) (that maps elements_; to S;(x—;)) is lower semicontinuous
if for every ¥, — 2, andz*; € S;(z*,), there exist{z¥} s.t.
x¥ € §;(«*,) for eachk, andz* — 2.

: P Qroperty.

Existence of equilibria and convergence of greedy algo- T A . .

. ] . Definition 5: In case all players minimize their cost functions, the
rithms: Consider am-player game. References [12, Alg. 1] and [8 ¢ h th abili w if foralh 1 andi —
Alg. 1] consider a greedy round robin scheme where at some infini?ees re;por};sg; 7a\./e eBIs{§a a} : |t)y lproper ¥h| onalk antr: :j ;
strictly increasing sequence of time instaiiis players update their =7 """ - .‘(l_’) > f(&.l_’ - 1N case they maximize, the det-

. . h H’lltlon holds with the opposite inequality.
strategies using each the best response to the strategies of the ot ejﬁi followi tablish diti ; . f Nash .
Player! updates at time¥;, with k = mN +1,m =1,2,3,.... libri efo gwmg esla IShes conditions t(')r unlltqéjsr;\ess ot Nash equi

More generally, one can consider the following algorithm. orium and generaj convergence properties o '

Definition 4 General Updating Algorithm (GUA)There areV infi- Theorertrr]] f:tﬁsfutrr?e thed'st_et§i a][eTﬁonvex (iontlgut(;]us actllog_l_
nite increasing sequenc€®; },i =1,..., N,k =1,2,3,.... Player spaces), that that the conditions of Theorem 1 and the scalability

i uses at tim&l} the best response policy to the policies used by amroperty hold and that there exists some feasibl@.e., such that

other players just befor&; . This scheme includes in particular par-"* € Si(x_;) fori = 1,...,N). Further assume that for each
allel updates (whefiT; } do not depend o). i=1,...,N,BR;(x—;) > Oforall ; € S;,j # i. Then, i) the

Remark 1: If at some time an actio is used and userthen up- Nash equilibrium is unique and ii) the convergence of GUA holds for
dates applying the best response 19, all we require is that its best re- any initial policy.

sponse be feasible, i.e.,f(z_;). Once this user updated his strategy, fih PLOOE rThe ﬁrootf of mer-l\—/\r/]ifhotrr?m IS F%Siﬁtd OP thertmor:(ot(;lnlmtyin
the strategies of one or more of the other users need not be anymore?eé—e estresponse fogethe € scalability property, exactly as

sible. the proof of [11, Ths. 1 and 2]. [ |
Theorem 1: Assume that for alf = 1,..., N, S;(-) are compact
for all values of their argument, and are lower semicontinuous in its Il CONVERGENCE OFPOWER CONTROL ALGORITHMS
argument. Assume either of the following. Yates introduces five uplink power control problems with the fol-
« The game is supermodular, players maximize, &nd) are as- lowing common structure. There aré users,M base stations and a
cending. common radio channel. Usgrtransmits at a power level;. Let hy;
» The game is submodular, players minimize, &hd-) are de- be the gain of usej to basek, so the received signal of usgrat base
scending. k is p;hi;. The interference experienced by mobhjlat that base is
Then, the following hold. Zi# hripi + o, Whereo is the receiver noise at bageThe SIR of

userj at base: when transmission powers are given by the veptar

i) An equilibrium exists. ;
given byp;uw;(p) where

i) If each player: initially uses its lowest policy irb;, or if each
useri uses initially its largest policy i%;, then the GUA con- « Ik
verges monotonically to an equilibrium (that may depend on i (P) = m
the initial state). Monotonicity is in the same direction for all i

players: the sequences of strategies either all increase or all HS€1J requires a signal to noise interference of at legst _
crease. The five different power control problems introduced in [11] differ

iii) If we start with a feasible policy, then the sequence of best_according to which base statiop(s) egch mobile connect. Yet all have
responses monotonically converges to an equilibrium: it mon#! common the fact that there is a given constraint on the power to
tonically decreases in all components in the case of minimiziﬁﬁ)ise interference ratio, which implies that the transmission power of
in a submodular game, and monotonically increases in the c&&h mobilej should be larger than or equal to some lelj¢bp) that
of maximizing in a supermodular game. depends on the transmission power of all mobgles

Proof: The proof of i) and ii) is a direct extension of the proof of The schemes considered there are as follows.
[12, Th. 2.3]. Itemiii) directly follows from the monotonicity of the best 1) Fixed assignment: mobijeis assigned to base . The constraint
response. For example, in a submodular game, forianyl, ..., N, has the form
BR;(x) < x; since; is already feasible. Due to the descending prop- 0> IFA(p) -
erty, if we replacer; by BR;(z) for some sef € J thenzy, k € J = fla; i (P)
remains feasible, so by induction \_Ne_get amonotone nonincreasi_r_wg Seé) Minimum power assignment: the mobile is connected to the base
quence that converges to some limit. We could now apply part ii) of

- - for which the signal to interference is maximum. The constraint
the theorem by restricting the game to policies that are not greater than

the initial conditionz. For supermodular games we obtain the proof Is given by
similarly. u p; > I (p) = min %N
Remark 2: In general, in an S-modular game (as before) theSset kg (P)
of equilibria need not be a singleton. However, the following points 3) Macro diversity: each mobile is connected to all base stations.
hold. The constraint is
i) There exists a unique dominating elementSih (component- MD i
pjzI"(p)==—""—"—

wise). Indeed, consider a submodular game:;lfe S, j =

S bk, (P)
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4) Limited diversity: mobilgj is connected a séf; of stations. The ~ We note that for anp whose components satisty< p; < ap},

constraint is for all j, S;(p—,) is nonempty for allj. This is due to the scalability
S MD _ V5 and monotonicity of.
bi = (p) = Yower, ki (P) Obviously, only in the case of continuous strategy spaces we need
\]' 3.

to check that the point to set functio§s are lower semicontinuous,
5) Multiple connection reception: mobileis required to maintain which we do next.
aﬁgcceptaple SIR; atd; distinct base stations. The constraint since 5;(-) are nonempty convex sets, it suffices to show that its
I;""(p)is given as the;th smallest value of the sef/ i+ ;(P).  minimal value,I;(-), is continuous. Lep = p' V p>. Choose the
In all five schemes, it is shown in [11] thétsatisfies the following  smallest: > 1 such thap/a < p’,i = 1., 2. Since the monotonicity

properties. and scalability off imply
* Positivity. I(p) > 0. p p
« Monotonicity If p > p’ thenI(p) > I(p'). al (g) >1I(p) =1 (5)

* Scalability Fora > 1, aI(p) > I(ap). we have
In order to use tools from submodular game setting, we make the I(p) p _
following observations. - <I (Z) < I(p") <I(p), i=1,2.
i) Although power control decisions are often taken centrally aience, '
base stations, they are computed so as to minimize the power ) 1
i i isfyi i : Ip"H) —I(p*)| <I(p) (1
of each mobile separately while satisfying all signal to interfer- | (p")—I(p )’ <I(p “a )
ence constraints. Thus, the centralized problem is indeed a game

2 1 ; -
one: there are several utilities (the powers) each correspondthd” tends top” thena tends to 1, which shows the continuity bf
to another mobile, and minimization (subject to constraints) al¥e conclude that the conditions of Theorem 1 holds which establishes

performed for each mobile (although centrally). Our framewori€ Proof. u
is, moreover, useful for the challenging distributed power control Remark 3:
setting in which the game setting is more evident. i) Another reference that pursued the direction of [11] is [5]. It
ii) The goal of the power control is to obtaj” such that for all presents a “canonical” algorithm that converges to a feasible
i=1,...,N desired power region rather than to a given global min as in
. ) . Yate's paper. Within this framework, a special discrete valued
p; = min{p; € S; s.t.p; > Li(p")}. @) power control problem is also shown to yield convergence.

if) A convergence of an algorithm of the type of GUA is established

in bert for the “fixed assignment” problem (the first mentioned

in this section) for the discrete case.
iii) We have not considered here the case of maximum power
constraints. In the presence of such constraints, the set of best
response policies might be empty and iterative power control
schemes may converge to a point that is not feasible for some
mobiles. To handle this case one could formulate an alternative
game with no power constraints, but in which the objective of
playeri is to minimizef(p;, I;(p)) wheref is some increasing
function of the absolute value of the difference between its
arguments. This approach also leads to S-modular games and to
convergence of iterative schemes, as was shown in [7, Sec. 13].

This agrees with the definition of the constrained Nash equilibrium. In
the case of convex power sets (continuous sets of powers), this sim-
plifies (as in [5] and [11]) to finding a fixed point @b = I(p). We
assume here tha; is unbounded (there are no maximum power re-
strictions, although we shall show below that one can restrict indeed to
compact (bounded) sefs. Unless otherwise stated, we taketo be
the real positive numbers.
Theorem 3: Assume that there is a feasible solutigrtop > I(p).
Then
i) there exists a fixed point to the equatipn= I(p);
i) if the setsS; are discrete, then GUA converges for initial powers
of all users corresponding to the lowest or to the largest powers;
iii) if the setsS; are convex (continuous action spaces) then there is
a unique fixed point to the equatign= I(p). Moreover, GUA
converges for any initial policy.
Proof: We first note that the feasibility qf' implies also thatp’
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actuator represented by afirst-order system subject to inputand state satu- 5, )i de fimitations, is considered in [10] and [12]. In these papers,
ration, a condition for the stabilization of an a priori given set of admissible

initial states is formulated from certain saturation nonlinearities represen-  the actuator is modeled by a pure integrator: the control rate appears
tation and quadratic stability results. From this condition, an algorithm  as the system input and the original control signal becomes a state of
based on the iterative solution of linear matrix inequalities-based problems  the system. The physical meaning of this kind of modeling is not clar-

is proposed in order to compute the control law. ified in these papers. Parallel to these works, in [11], the problem of
Index Terms—Constrained control, control saturation, linear matrix in-  disturbance attenuation in the presence of rate and amplitude actuator
equality (LMI), stabilization. saturation is addressed. In that paper, however, no explicitely consider-

ation is made about the region of attraction associated to the controller.
Since we also aim to consider strictly unstable systems, our note fig-
ures in the context of local stabilization of linear systems subject to
Physical and technological constraints do not allow that contrbbth actuator amplitude and rate saturation. In this case, two objectives
actuators provide unlimited amplitude signals neither react unlimitede quite natural: the control law should guarantee a certain time-do-
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and the references therein). On the other hand, the rate saturatiea of the saturating control laws does not help in obtaining larger re-
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plitude and the rate saturation, as a more generic problem, have stawaith implies a very slow behavior.
to appear in the last few years. In [6] and [7], the semiglobal stabi- The objective of this note is then to propose a method for computing
lization of linear systems with both amplitude and rate constraints state feedback saturating control laws, that ensure both asymptotic sta-
addressed. Considering a low-gain approach (the actuator does nob#ity of the closed-loop system with respect to a given set of admissible
fectively saturate), in [6], solutions to the problem via both state feenhitial conditions, and a certain degree of time-domain performance in
a neighborhood of the origin. We also aim to emphasize the compro-
mise between performance and the size of the region of attraction. As
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