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ABSTRACT

We consider the problem of optimally controlling piecewise
deterministic (or equivalently jump parameter) linear sys-
tems, where the transition rate matrix of the underlying
Markov jump process is also controlled. We first develop
a general theory for the existence and characterization of op-
timal feedback controllers, and then apply the specific results
obtained for the scalar case to a problem that arises in high
speed telecommunication networks. This involves combined
admission and rate-based flow control, where the former cor-
responds to control of the jump Markov process, and the
latter to control of the continuous linear system.

1. A Motivating Example

To motivate the class of control problems studied in this pa-
per, consider the following communication network, which
can be viewed as a modified version of the models studied
recently in [1] and [2]?. It is assumed that the network has
linearized dynamics (for the control of queue length), and
all performance measures (such as throughput, delays, loss
probabilities, etc.) are determined essentially by a bottle-
neck node. Both these assumptions have theoretical as well
as experimental justifications; see, [1].

Let g: denote the queue length at a bottleneck link, and
r+ denote the effective service rate available for traffic of the
given source at that link at time ¢. We let r, be arbitrary,
but assume that the controllers have perfect measurements
of it. Let & denote the (controlled) source rate at time ¢, and
u% =& —1e (called flow control) its shifted version. Consider
the following linearized dynamics for the queue length:

dg _ o
dt

, (1)

which is called linearized because the end-point effects have
been ignored. The objectives of the flow controller are (i)
to ensure that the bottleneck queue size stays around some
desited level @, and (i) to achieve good tracking between
input and output rates. In particular, the choice of @ and the
variability around it have direct impact on loss probabilities
and throughput. We therefore define a shifted version of g¢:

Tt =gt —Q,
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in view of which (1) now becomes

dx_ 1

An appropriate local cost function that is compatible with
the objectives stated above would be the one that penalizes
variations in z; and u% around zero — a candidate for which
is the weighted quadratic cost function.

Suppose that there are several types (say s) of possible
traffic, with different kinds of requirements on the perfor-
mance measures. Associated with type ¢ traffic are the pos-
itive constants (¢) and R(i) appearing in the immediate
cost: L(z,1,u) = |75|2Q(i) + |u1|?%(i). Typically, traffic requir-
ing higher quality of service (QoS) might have a larger Q(z),
which reflects the fact that it might require lower loss proba-
bilities and higher throughput. It could be receiving a higher
priority from the network in the sense that larger variations
in ! will be tolerated so as to achieve the required QoS;
thus the corresponding R(i) might be smaller. The occur-
rence of these different types of traffic will be governed by a
continuous-time Markov jump process, with transitions con-
trolled by a second controller with a finite action set.

A typical admission control problem is the following: by
default the system always accepts traffic of some given type,
say 1. Traffic of type 1 is transmitted until a session con-
sisting of another type of traffic of higher priority, say type ¢
(1=2,3,...,s),1s accepted. When it is accepted, the session
cannot be interrupted until it ends. Thus at states § = ¢ > 1,
there are no (admission) control actions available.

The controller 2 is thus effective only at state 1, at which
the rate of arrival of sessions of high priority traffic is to
be determined. To each traffic type there corresponds two
admission decisions (that are part of the action to be chosen
by controller 2): 0 - corresponding to low admission rate
A(J), and 1- corresponding to a high admission rate A(j). The
control action at state 1 is thus of the form «® = (u3,..., u2),

u € {0,1}. The controlled transition rates have the form
)‘1,u2,] = A(])l{ufzo} +5‘(])1{u§:1}’

where 17 denotes the set indicator function. Note that, if
at state 1 the control action w? is fixed, then the next type
of session to be accepted will be j(j > 1) with probability

G a2y + A o))

s
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The problem then is to minimize the expected discounted
or average long term cost (with instantaneous cost being L



above) with respect to the multi-strategy pu := (u', u*), where
u! is the flow controller and x? the admission controller, both
having as arguments the current and past values of £, r; and

g.

2. General Model

A general model that captures the telecommunication net-
work problem formulated above as a special case is the fol-
lowing: Consider a system that evolves according to

dx

- = A(8)x + B(6)u',

(0) = w0 3)
where @ € IR", 2o is a fixed (known) initial state, «' is a
control, applied by controller 1, taking values in U; = IR",
and 4(¢) is a controlled, continuous time Markov jump pro-
cess, taking values in a finite state space S, with cardinality s.
Transitions from state ¢ to y occur at a rate controlled by con-
troller 2, who chooses at time ¢ an action «”(t) among a finite
set Uz(i) of actions available at state 1. Let Up := U;esUsz(2).
The controlled rate matrix (of transitions within §) is

A={Xias} i, € S,a € Us(i),
where henceforth we drop the “commas” in the subscripts
of A. The Aiq;’s are real numbers such that for any : # j,
and @ € Uz(3), Aiaj > 0, and for all 1 € S and ¢ € Uy,
Xiai = — Z];éi Aiay. Fix some initial state ¢9 of the controlled
Markov chain S, and the final time ¢; (which may be infinite).
Consider the class of policies u* € U, for controller & (k =
1,2), whose elements (taking values in Uy) are of the form

2 2

us(t) = 1" (t 20,05 00,07): t€[0,tf),

Here, u* is taken to be piecewise continuous in its first argu-
ment, and piecewise Lipschitz continuous in its second argu-
ment.

Define X = IR"™ x S to be the global state space of the
system and U := Uy x Uz to be the class of multi-strategies.
Define the immediate cost L : X' x Uy — IR, where Q(-) > 0
and R(-) > 0:

Lz, i,u') = |o]5 + u' [re -

To any fixed initial state (zo,70) and a multi-strategy
it € U, there corresponds a unique probability measure meio
on the canonical probability space €2 of the states and actions
of the players, equipped with the standard Borel o-algebra.
Denote by E# F the expectation operator corresponding to
Pf”o. Denote by (X(t),S(t)),U(t),t € [0,t5), the stochas-
tic processes corresponding to the states and actions, respec-

tively.

Consider a discount factor f > 0, and introduce the fol-
lowing discounted cost function corresponding to an initial
state (zo,1%0), a multi-strategy p € U, and a horizon of dura-
tion ¢ty (where Q¢ (-) > 0, and we take Qs = 0 when t; = c0):

2
E} . {|X(tf)|Qf(s(tf))

+ /tf e_’BtL(X(t),S(t),Ul(t))dt} .

Ja(ty, xo, 10, pt) 1=

The optimal control problem is then the minimization of Jg
over i € U, which is what we address in this paper.

3. Main Results

Introduce the backward controlled Markov operator .A” asso-
ciated with the system above as follows: for each ¥ (¢, -, 7) such

that ¢(-,-,i) € C* for all 4 € S, and for each v = (u,a) € U,

Avd](ta z, Z) = adj(ta’tx’ Z)
(@ w,d) - Datp(t,2,0) + Y Niaytb(t, 2, 5)

JES

where D, stands for the gradient operator, and f(z,u,1) :=
A(i)z + B()u. Further introduce, for each function ¢(z, i)
for which (-,7) € C* for all i € S, and for each v € U,

G (w,d) = = f(w,u,4) - Datp(,8) = > Niay¥(z, 1)

JES

Let

J,B(tf,fo,io) = inf Jﬁ(tf,fo,io,u), (4)
Heu

denote its counterpart when ¢y = oo by jﬁ(xo,io), and the
minimizing multi-strategy in each case by p* (assuming that
it exists). For finite ¢y, consider, subject to the boundary
condition ¥(ty, z,1) = |x|2Qf(i), the HIB equation:

0 = min [szb(t,x,i)+e_’(3tL(t,x,i,u)] . (5)
'UGU

For infinite ¢;, consider its infinite-horizon version:
Bo(a,i) = min [-G*d(z.i) + Lz, io)]. (6)

Associate with (5) and (6) the corresponding sets, D, of func-
tions ¢ having continuous first-order partial derivatives. We
first have:

Theorem 3.1 (i) Consider the case of finite ty, and assume
that (5) has a solution v in D. Then the value of (4) equals
. Moreover, any Markov policy that chooses at time t, for
all t € [0,t5], actions that achieve the argmin in (5), given
that the state at that time is (z,1), is optimal.

(i) Assume that (6) has a solution ¢ in D. Then,

(a) (x,1) < Ja(x,i, 1) for every p € U that satisfies

lim ¢ #1EY $(X (1), (1)) < 0. (7)

t1—o0

(b) Any stationary policy g that chooses at state (z,1), ac-

tions that achieve the argmin in (6) satisfies ¥ (x, 1) > Jg(z,1, 9),

provided that
lim e P E? (X (1), S(t1)) > 0. (8)

t1—o0

Equation (5) does not generally admit a closed-form so-
lution, but it does in some special cases. To investigate these
cases, let us first stipulate a structure for (¢, «,i) that is
quadratic in x:

Y(t,z,i) =2 Pi,t)e, t€[0,t]1€S, (9)

where P(i,t) is an n x n matrix for each i € S, t € [0,1¢].
Substituting this structural form into (5), we obtain:

0= prt(i, e + xTQ(i)xe_’Bt
+min [2(A()z + B(i)u')" P(i, t)z (10)

+ e o] +min Y a2 " PG
JES



The minimizing control «' in (10) is
Hopt(z,1,8) = =™ R™H () BT (1) P(i, t), (11)

whose substitution into (10) leads to:

T (Pu(i,t) = BP(i, 1) + Q(3) + 24T (i) P(i, 1)
— PY(i,t)B))R™ (1) BT (1) P(i, 1))
—|—mmZ)\m2]x P(j,t)x, (12)

JES

where P(¢,1) := P(i,t)eﬁt. Hence, the quadratic structure is
the right one provided that the minimization over u? is inde-
pendent of & — which is clearly the case for the scalar problem
(that is, when n = 1). Let P(i,t) be a nonnegative solution to
the following set of linearly coupled scalar Riccati equations,
subject to the boundary condition P(i,1;) = Q(i)e®s:

BP0 = PO+ Q) + 24007061 (13)

—P(i,t)?B(i)° R~ —I—mmZ)\m 2
JES

0 =

Then we have the following result:
Theorem 3.2 Assume that n = 1, t.e. x s one dimen-
stonal.

(i) Let ty be finite, and assume that there exists a nonnega-
tive function P(i,t),1 € 8, that satisfies (13) for alli € §,t €
[0,t¢]. Then jﬁ(tf, T,1) = ]3(1, t)2? is a solution of (5), where
P(i,t) = P(i,t) exp(—fB1). A Markov policy u®* that uses at
time t an action (depending on i and t, but not on x) that
achieves the minimum in (13) is optimal. The nonnegative
solution P of (13) determines an optimal Markov policy p**

= —[BG) PG, t)/R(i)] = (14)

ul*(x,i,t)

(i) Consider the infinite-horizon cost case, and assume that
there exist nonnegative functions P(1),1 € S satisfying the
linearly coupled Riccati equations

6P(') = 24(1) P(1) - P(i)2B(i)2R_1(i)

—|—mmZ)\m 2, P(j), 1 €S. (15)
JES

Then jﬁ(x,i) = P(i)z* is a solution of (6). A stationary pol-
icy u>* obtained as the argument that achieves the minimum
in (15) is optimal, and the solution P determines an optimal
stationary policy p** through (14).

Proof. (i) follows directly from Theorem 3.1 (i).
(ii) Let 9(z,4) := T P(i)x which is in D (see the definition
below (6)). We now make use of Theorem 3.1 (ii); since ¢ is
nonnegative, (8) holds for u* = (u'*, u**). Let u € U be an
arbitrary policy, and suppose that it does not satisfy (7). It
then follows that there exists some & > 0 such that
th_m eTPHEL X (1) 550 > € (16)
1—00
Since Q(i) are positive, this implies that Jg(z, i, ) = oo, so
that
Ja(z, i, 1™) < Js(z,1, ). (17)
Finally, if p satisfies (7), then (17
(i) m
Next we show that (15) admits a unique nonnegative so-

lution, which can further be obtained as the value of a (finite)
quadratic program. First we introduce a useful definition:

) follows from Theorem 3.1

Definition 3.1 The set of superharmonic functions I' is
the class of functions ¢ : X — IR that satisfy for all 1 € S
and p € U:

+ 5 Aaydle,d) + Liaiion)  (18)

JES

and that grow at most polynomially fast in |z|.

Theorem 3.3 The value function jﬁ 18 the largest superhar-
monic function (componentwise).

Proof. Consider an arbitrary superharmonic function ¢, and
let ©* be the optimal (stationary) policy. Then, by applying
the Dynkin formula (see [4], p. 146, eq.(9.7) ) we get

o(ei) < EY, /“e—ﬁtL(X(t),S(t),U(t))dt
+e PR 6(X (1), S(11)).

Since system (3) is scalar and g is optimal, it stabilizes the
stochastic system (as there exists a common Lyapunov func-
tion), and therefore by taking the limit as ¢; goes to infinity
we obtain

o) B, [P0, 50,0 (0)dt = e

Since, by Theorem 3.2, jﬁ(x, i) is a super-harmonic function,
this completes the proof. g

Theorem 3.3 enables us to formalize a mathematical pro-
gram to compute the solution P(-) of (15):

Theorem 3.4 For any arbitrarily fired k € S, the solution

P(k) of (15) is given by the following quadratic program:

QP1(k): Find P(i), 1 €S, to maximize P(k) subject to

—BPu)+ Q>i) + 2A3) P(4)

—[POPIBOIR™ ()

+Y Xy P(), Vi€ S, v eUs(i)  (19)
JES

0 <

Proof. Direct consequence of Theorem 3.3, obtained by spe-
cializing it to functions ¢ of the form ¢(z,1) = z°Q(:). g

It is appropriate here to list some useful properties of the
mathematical program QP1(k). First note that the feasible
region satisfying the constraints (19) is nonempty; indeed,
P(i) = 0 is feasible. Moreover it is a closed region; if the
B(i)’s are strictly positive then the feasible region is bounded,
and an optimal solution for QP1(k) exists. Let P*(7) be the
optimal solution of QP1(7), for i € S. Then P*(i),i € S, are
feasible for QP1(k) for any k € S (this follows from Theorem
3.3). Consequently, if optimal solutions P*(z) have already
been computed for : € S’ C 8, then one can substitute these
for P(i) in (19), when computing P*(j) for j ¢ S'.

4. An iterative solution

We now present an iterative solution procedure for (15), which
is an alternative to the one discussed in the previous section.
Consider the following value iteration algorithm:



(A1) Set Po(§) :=0, j €S. Choose some constants A;,1 €
S, that satisfy:

X >maxZ)\m 2, _max|)\m i
J#e

(A2) Compute Pn(j),5 € S,n > 1, iteratively by solving
the Riccati-type equation:

0 = ~(X+p)P

Q(1) + 2A(1) Paya (1)

nt1(8) +
w41 (1) B(1)" R (1)
+n112nZAm2JP (7) + X Pu(id). (20)

Theorem 4.1 The solution P(j5),j € S, of (15) is obtained
as the limit of the nondecreasing sequences {Pn(j)}n>0-

Proof. To see that the P,(j)’s are nondecreasing, write (20)

as
0 = —(X+B)Pus1(d) + Qu(1) + 24(1) Py (1)
—Pat1 (1) B()*R™ (1) (21)
where
Qn(i) = —|—mmZ)\m] )+ NPa(). (22)
JES
Set Qo(z) = Q(i). It follows from (22) that for any ¢, n > 0,

V5 €S Pnya(s) 2 Pn(y), then Qnya(i) > Qn(i). (23)
This is because under (A1) coefficients of the Py(j)’s in

=D Ay Pl

JES

7) + X Po(d) (24)

are each nonnegative, for every u® € Uz(2). Hence, under

the hypothesis of (23),

m(u2; Pri1) > m(u2; P,) for each uw? e Ua(1), (25)
from which (23) follows. Now, (21) is a standard Riccati
equation that corresponds to a system that always remains
in state ¢, and where the weighting on the quadratic cost for
the state is @, (z). Therefore, its solution Pry1(é) will be
increasing in @y (7). It then follows that

if Qni1(1) 2 Qn(1), then Ppya(i) = Ppya(i).  (26)

In view of the fact Pi(i) > Po(i) = 0, (23)-(26) establish by
induction the desired result that the sequences {P,(1)} and
{@n (1)} are nondecreasing for each ¢ € 8, and therefore have
respective limits, with the former satisfying (15). g

5. The Admission-Flow Control
Example

The results presented in the two previous sections now read-
ily apply to the admission-flow control problem formulated
in Section 1. We simply let A(z) = 0 and B(:) = 1, for
all + € §. To obtain some explicit results in this context,
we took # = 0 and s = 3 (i.e,, § = {1,2,3}). We further
took Uz(1) = {00,01,11,10}, Ux(2) = {0}, Us(3) = {0};
A1002 = Ar012 = 1, Adrgoa = A1103 = 2, Ar102 = A1112 = 10,

)\1013 = )\1113 = 20; Q(l) = 1, Q(Z) = 10, Q(3) = 20;

R(1) =10, R(2) = 2, R(3) = 1. For each possible choice of
w”, we computed the corresponding optimal policy for con-
troller 1 (i.e., ul), and the associated optimal cost function.
By comparing the optimal value functions obtained for all
possible (four) admission policies, we found the unique opti-
mal controller 2 to be p?*(1) = 00, and the solution to (13)
to be: P*(1) = 4.141, P*(2) = 4.439, P*(3) = 4.352. The
unique optimal flow controller is then

—0.4141q i=1
(g, 1) =4 —2.220¢ i=2
—4.352¢q i=3

Typical system responses under all four admission control
policies are depicted in Figures 1-4. In each of the figures,
we have plotted the time history of the queue size, traffic
type, the flow control and the integral cost incurred. For il-
lustration purposes, we have taken the initial queue size to
be 30 units, which is 10 units larger than the desired queue
length of 20 units. Since the high priority traffic types (2 and
3) have stringent QoS specifications, the corresponding flow
control is more aggressive to maintain the queue size around
its desired value. On the other hand, for the low priority type
(1), the control is smoother in order to minimize the jitter
(i.e., variability) in the network. These observations are con-
sistent with what we would have expected from the design.
We further observe that by admitting the high priority traffic
at a higher rate, the queue size reaches its desired value more
quickly, at the expense of a larger control jitter. Although
they only represent one sample path of the stochastic system
in each of the four cases, the simulations corroborate the the-
ory very well. The smallest integral cost is achieved under
#?(1) = 00, which is actually the optimal admission rule for
the average (expected) value of the cost function.

We next considered the case when R(1) was increased to
R(1) = 100, with all parameter values remaining the same as
above. In this case, the optimal admission controller turned
out to be p?*(1) = 11, and the solution to (13) was: P*(1) =
4.508, P*(2) = 4.476, P*(3) = 4.485. The unique optimal
flow controller was then

—0.0451¢ i=1
p g, 1) =4 —2.238¢q i=2
—4.485¢ i=3

Typical system responses for this case are depicted in Figures
5-8. Qualitative behaviors similar to those in the previous
case are also observed here. Because of the increased weight-
ing of R(1), the flow control magnitude for the type 1 traffic
is reduced significantly. The integral costs incurred under the
four admission control laws are ranked differently from the
previous case. Coincidentally, the cost incurred under the
optimal admission control p?*(1) = 11 is the smallest among
the four particular sample paths simulated.

Finally, while holding R(1) at 100, we increased Q(3),
from 20 to Q(3) = 30. With this change, the optimal con-
troller 2 turned out to be p?*(1) = 10, and the solution to
(13) was: P*(1) = 4.680, P*(2) = 4.493, P*(3) = 5.223. The
unique optimal flow controller was then

—0.0468¢ i=1

—2.246¢q i=2
—5.223¢ i=3

1 (g, i) =

Due to space limitations, we have included here only the fig-
ure corresponding to the optimal u? (see Figure 9). In all
four simulations we have observed qualitative behavior sim-
ilar to the previous two cases. We have seen a significant



increase in the flow control magnitude for type 3 traffic; this
is due to the increased weighting of Q(3), which corresponds
to a more stringent QoS for type 3 traffic than in the previ-
ous cases. Again coincidentally, the cost incurred under the
optimal admission control p®*(1) = 10 turned out to be the
smallest among the four particular sample paths simulated.

6. Conclusions

Several extensions of the results of this paper can be envi-
sioned, both for the general theoretical model and for the
special telecommunication network application. For the for-
mer, one question that this paper has left unanswered is
the structure of the solution to the HIB equation (5), or its
infinite-horizon version (6), when the minimization over u?
in (10) depends on the state z. There is also the issue of de-
veloping computational tools for the solutions of (5) and (6)
when general structural information is lacking. One exten-
sion of the general model of this paper would be the inclusion
of an additional additive term in (3), which would represent
an unknown disturbance — modeled either as a stochastic
process with known statistics (such as a Brownian motion
process) or as a completely unknown deterministic process
(as in H* control [3]). In the latter case, one chooses as
performance index the ratio of Jg introduced here, to the en-
ergy of the unknown deterministic process, whose maximum
over the unknown input will now have to be minimized over
the multi-strategy u. For discussions on the solution to this
problem for the special case when the transition rate matrix is
not controlled, but under various types of measurements for
the controller (including the noise-perturbed measurement
scheme not covered in this paper), see [5].

As far as the specific telecommunication network model
of Section 1 is concerned, there is the potential to extend it
to the more general case where the effective service rate ry is
not known, but is measured in some additive noise. Further-
more, ¢ could be generated by a stochastic ARMA process,
or by a deterministic linear model driven by an unknown de-
terministic process with finite energy. Such models have been
considered before in [2], but for a single type traffic (i.e., with
s = 1), and the extensions to the cases where there are multi-
ple types of traffic (as in this paper) with fixed or controlled
transition rates remain today as interesting but challenging
research topics to pursue.
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Figure 7: Case 2: Performance under p'* w.r.t. p?* = 11.
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Figure 8: Case 2: Performance under p'* w.r.t. p?* = 10.
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Figure 9: Case 3: Performance under p'* w.r.t. p?* = 10.



