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ABSTRACT

We consider the problem of optimally controlling piecewise
deterministic �or equivalently jump parameter linear sys�
tems� where the transition rate matrix of the underlying
Markov jump process is also controlled� We �rst develop
a general theory for the existence and characterization of op�
timal feedback controllers� and then apply the speci�c results
obtained for the scalar case to a problem that arises in high
speed telecommunication networks� This involves combined
admission and rate�based �ow control� where the former cor�
responds to control of the jump Markov process� and the
latter to control of the continuous linear system�

�� A Motivating Example

To motivate the class of control problems studied in this pa�
per� consider the following communication network� which
can be viewed as a modi�ed version of the models studied
recently in �	� and ����� It is assumed that the network has
linearized dynamics �for the control of queue length� and
all performance measures �such as throughput� delays� loss
probabilities� etc� are determined essentially by a bottle�
neck node� Both these assumptions have theoretical as well
as experimental justi�cations� see� �	��

Let qt denote the queue length at a bottleneck link� and
rt denote the e�ective service rate available for tra�c of the
given source at that link at time t� We let rt be arbitrary�
but assume that the controllers have perfect measurements
of it� Let �t denote the �controlled source rate at time t� and
u�t �� �t�rt �called �ow control its shifted version� Consider
the following linearized dynamics for the queue length�

dq

dt
� u� � �	

which is called linearized because the end�point e�ects have
been ignored� The objectives of the �ow controller are �i�
to ensure that the bottleneck queue size stays around some
desired level �Q� and �ii� to achieve good tracking between
input and output rates� In particular� the choice of �Q and the
variability around it have direct impact on loss probabilities
and throughput� We therefore de�ne a shifted version of q�

xt �� qt � �Q�
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�These earlier papers dealt with the �ow control problem only

whereas the present paper addresses both admission and �ow con�
trol� on the other hand the models in the earlier papers were

more general accounting for the possibilities of imperfect delayed
measurements and partially unknown statistics for noise�

in view of which �	 now becomes

dx

dt
� u�� ��

An appropriate local cost function that is compatible with
the objectives stated above would be the one that penalizes
variations in xt and u�t around zero � a candidate for which
is the weighted quadratic cost function�

Suppose that there are several types �say s of possible
tra�c� with di�erent kinds of requirements on the perfor�
mance measures� Associated with type i tra�c are the pos�
itive constants Q�i and R�i appearing in the immediate
cost� L�x� i� u � jxj�Q�i� � ju�j�R�i�� Typically� tra�c requir�

ing higher quality of service �QoS might have a larger Q�i�
which re�ects the fact that it might require lower loss proba�
bilities and higher throughput� It could be receiving a higher
priority from the network in the sense that larger variations
in u� will be tolerated so as to achieve the required QoS�
thus the corresponding R�i might be smaller� The occur�
rence of these di�erent types of tra�c will be governed by a
continuous�time Markov jump process� with transitions con�
trolled by a second controller with a �nite action set�

A typical admission control problem is the following� by
default the system always accepts tra�c of some given type�
say 	� Tra�c of type 	 is transmitted until a session con�
sisting of another type of tra�c of higher priority� say type i
�i � �� �� � � � � s� is accepted� When it is accepted� the session
cannot be interrupted until it ends� Thus at states � � i � 	�
there are no �admission control actions available�

The controller � is thus e�ective only at state 	� at which
the rate of arrival of sessions of high priority tra�c is to
be determined� To each tra�c type there corresponds two
admission decisions �that are part of the action to be chosen
by controller �� � � corresponding to low admission rate
��j� and 	� corresponding to a high admission rate ���j� The
control action at state 	 is thus of the form u� � �u��� � � � � u

�
s�

u�j � f�� 	g� The controlled transition rates have the form

���u� �j � ��j	fu�
j
��g � ���j	fu�

j
��g �

where 	f�g denotes the set indicator function� Note that� if

at state 	 the control action u� is �xed� then the next type
of session to be accepted will be j�j � 	 with probability

���j	fu�
j
��g � ���j	fu�

j
��g��

�

sX
k��

�
��k	fu�

k
��g � ���k	fu�

k
��g

�
�

The problem then is to minimize the expected discounted
or average long term cost �with instantaneous cost being L



above with respect to the multi�strategy 	 �� �	�� 	�� where
	� is the �ow controller and 	� the admission controller� both
having as arguments the current and past values of �� r� and
��

�� General Model

A general model that captures the telecommunication net�
work problem formulated above as a special case is the fol�
lowing� Consider a system that evolves according to

dx

dt
� A��x� B��u�� x�� � x� ��

where x � IRn� x� is a �xed �known initial state� u� is a
control� applied by controller 	� taking values in U� � IRr �
and ��t is a controlled� continuous time Markov jump pro�
cess� taking values in a �nite state space S� with cardinality s�
Transitions from state i to j occur at a rate controlled by con�
troller �� who chooses at time t an action u��t among a �nite
setU��i of actions available at state i� LetU� �� �i�SU��i�
The controlled rate matrix �of transitions within S is

� � f�i�a�jg� i� j � S� a �U��i�

where henceforth we drop the �commas� in the subscripts
of �� The �iaj �s are real numbers such that for any i �� j�
and a � U��i� �iaj � �� and for all i � S and a � U��
�iai � �

P
j ��i

�iaj� Fix some initial state i� of the controlled

Markov chain S� and the �nal time tf �which may be in�nite�
Consider the class of policies 	k � Uk for controller k �k �
	� �� whose elements �taking values in Uk are of the form

uk�t � 	k�t� x���t�� ����t�� t � ��� tf �

Here� 	k is taken to be piecewise continuous in its �rst argu�
ment� and piecewise Lipschitz continuous in its second argu�
ment�

De�ne X � IRn � S to be the global state space of the
system and U �� U� � U� to be the class of multi�strategies�
De�ne the immediate cost L � X �U� � IR� where Q�� � �
and R�� � ��

L�x� i� u� � jxj�Q�i� � ju�j�R�i� �

To any �xed initial state �x�� i� and a multi�strategy
	 � U � there corresponds a unique probability measure P�

x��i�

on the canonical probability space � of the states and actions
of the players� equipped with the standard Borel 
�algebra�
Denote by E�

x� �i�
the expectation operator corresponding to

P�
x��i�

� Denote by �X�t�S�t� U�t� t � ��� tf � the stochas�
tic processes corresponding to the states and actions� respec�
tively�

Consider a discount factor � � �� and introduce the fol�
lowing discounted cost function corresponding to an initial
state �x�� i�� a multi�strategy 	 � U � and a horizon of dura�
tion tf �where Qf �� � �� and we take Qf 	 � when tf �
�

J��tf � x�� i�� 	 �� E�
x� �i�

�
jX�tfj

�
Qf �S�tf ��

�

Z tf

�

e��tL�X�t�S�t� U��tdt

�
�

The optimal control problem is then the minimization of J�
over 	 � U � which is what we address in this paper�

�� Main Results

Introduce the backward controlled Markov operator Av asso�
ciated with the system above as follows� for each ��t� �� i such
that ���� �� i � C� for all i � S� and for each v � �u� a �U�

Av��t� x� i ��
��t� x� i

t

�f�x�u� i �Dx��t� x� i �
X
j�S

�iaj��t� x� j

where Dx stands for the gradient operator� and f�x� u� i ��
A�ix� B�iu � Further introduce� for each function ��x� i
for which ���� i � C� for all i � S� and for each v �U�

Gv��x� i �� �f�x�u� i �Dx��x� i�
X
j�S

�iaj��x� j�

Let
 J��tf � x�� i� �� inf

��U
J��tf � x�� i�� 	 � ��

denote its counterpart when tf � 
 by  J��x�� i�� and the
minimizing multi�strategy in each case by 	� �assuming that
it exists� For �nite tf � consider� subject to the boundary
condition ��tf � x� i � jxj�Qf �i�

� the HJB equation�

� � min
v�U

�
Av��t� x� i � e��tL�t� x� i� u

�
� �!

For in�nite tf � consider its in�nite�horizon version�

���x� i � min
v�U

��Gv��x� i � L�x� i� v� � ��

Associate with �! and �� the corresponding sets� D� of func�
tions � having continuous �rst�order partial derivatives� We
�rst have�

Theorem ��� �i� Consider the case of �nite tf � and assume
that ��� has a solution � in D� Then the value of ��� equals
�� Moreover� any Markov policy that chooses at time t� for
all t � ��� tf �� actions that achieve the argmin in ���� given
that the state at that time is �x� i� is optimal�
�ii� Assume that �	� has a solution � in D� Then�

�a� ��x� i � J��x� i� 	 for every 	 � U that satis�es

lim
t���

e��t�E�
x�i��X�t�� S�t� � �� �"

�b� Any stationary policy g that chooses at state �x� i� ac

tions that achieve the argmin in �	� satis�es��x� i � J��x� i� g�
provided that

lim
t���

e��t�Eg
x�i��X�t�� S�t� � �� �


Equation �! does not generally admit a closed�form so�
lution� but it does in some special cases� To investigate these
cases� let us �rst stipulate a structure for ��t� x� i that is
quadratic in x�

��t� x� i �� xT #P �i� tx� t � ��� tf �� i � S� ��

where #P �i� t is an n � n matrix for each i � S� t � ��� tf ��
Substituting this structural form into �!� we obtain�

� � xT #Pt�i� tx� xTQ�ixe��t

�min
u�

�
��A�ix� B�iu�T #P �i� tx �	�

� e��tju�j�R�i�

�
�min

u�

X
j�S

�iu� jx
T #P �j� tx



The minimizing control u� in �	� is

	�opt�x� i� t � �e�tR���iBT �i #P �i� tx� �		

whose substitution into �	� leads to�

� � xT
�
Pt�i� t� �P �i� t � Q�i � �AT �iP �i� t

� PT �i� tB�iR���iBT �iP �i� t
�
x

�min
u�

X
j�S

�iu�jx
TP �j� tx � �	�

where P �i� t �� #P �i� te�t� Hence� the quadratic structure is
the right one provided that the minimization over u� is inde�
pendent of x $ which is clearly the case for the scalar problem
�that is� when n � 	� Let P �i� t be a nonnegative solution to
the following set of linearly coupled scalar Riccati equations�
subject to the boundary condition P �i� tf  � Qf �ie�tf �

�P �i� t � Pt�i� t �Q�i � �A�iP �i� t �	�

�P �i� t�B�i�R���i �min
u�

X
j�S

�iu�jP �j� t

Then we have the following result�

Theorem ��� Assume that n � 	� i�e� x is one dimen

sional�
�i� Let tf be �nite� and assume that there exists a nonnega

tive function P �i� t� i � S� that satis�es ���� for all i � S� t �

��� tf �� Then  J��tf � x� i � #P�i� tx� is a solution of ���� where
#P �i� t � P �i� t exp���t� A Markov policy 	�� that uses at
time t an action �depending on i and t� but not on x� that
achieves the minimum in ���� is optimal� The nonnegative
solution P of ���� determines an optimal Markov policy 	��

	���x� i� t � �
�
B�iP �i� t�R�i

�
x �	�

�ii� Consider the in�nite
horizon cost case� and assume that
there exist nonnegative functions P �i� i � S satisfying the
linearly coupled Riccati equations

�P �i � �A�iP �i� P �i�B�i�R���i

�Q�i �min
u�

X
j�S

�iu�jP �j� i � S� �	!

Then  J��x� i � P �ix� is a solution of �	�� A stationary pol

icy 	�� obtained as the argument that achieves the minimum
in ���� is optimal� and the solution P determines an optimal
stationary policy 	�� through �����

Proof� �i follows directly from Theorem ��	 �i�
�ii Let ��x� i �� xTP �ix which is in D �see the de�nition
below ��� We now make use of Theorem ��	 �ii� since � is
nonnegative� �
 holds for 	� � �	��� 	��� Let 	 � U be an
arbitrary policy� and suppose that it does not satisfy �"� It
then follows that there exists some � � � such that

lim
t���

e��t�E�
x�ijX�t�j

�
Q�S�t��� � �� �	�

Since Q�i are positive� this implies that J��x� i� 	 � 
� so
that

J��x� i� 	
� � J��x� i� 	� �	"

Finally� if 	 satis�es �"� then �	" follows from Theorem ��	
�ii�

Next we show that �	! admits a unique nonnegative so�
lution� which can further be obtained as the value of a ��nite
quadratic program� First we introduce a useful de�nition�

De�nition ��� The set of superharmonic functions % is
the class of functions � � X � IR that satisfy for all i � S
and 	 � U 

���x� i � f�x� i� 	 �Dx��x� i

�
X
j�S

�iaj��x� j � L�x� i� 	 �	


and that grow at most polynomially fast in jxj�

Theorem ��� The value function  J� is the largest superhar

monic function �componentwise��

Proof� Consider an arbitrary superharmonic function �� and
let 	� be the optimal �stationary policy� Then� by applying
the Dynkin formula �see ���� p� 	��� eq����"  we get

��x� i � E�
x�i

Z t�

�

e��tL�X�t�S�t� U�t dt

�e��t�E�
x�i��X�t�� S�t��

Since system �� is scalar and 	 is optimal� it stabilizes the
stochastic system �as there exists a common Lyapunov func�
tion� and therefore by taking the limit as t� goes to in�nity
we obtain

��x� i � E�
x�i

Z �

�

e��tL�X�t�S�t� U�tdt �  J��x� i�

Since� by Theorem ����  J��x� i is a super�harmonic function�
this completes the proof�

Theorem ��� enables us to formalize a mathematical pro�
gram to compute the solution P �� of �	!�

Theorem ��� For any arbitrarily �xed k � S� the solution
P �k of ���� is given by the following quadratic program
QP�	k
� Find P �i� i � S� to maximize P �k subject to

� � ��P �i �Q�i � �A�iP �i

��P �i���B�i��R���i

�
X
j�S

�ivjP �j� �i � S� v �U��i �	�

Proof� Direct consequence of Theorem ���� obtained by spe�
cializing it to functions � of the form ��x� i � x�Q�i�

It is appropriate here to list some useful properties of the
mathematical program QP�	k
� First note that the feasible
region satisfying the constraints �	� is nonempty� indeed�
P �i � � is feasible� Moreover it is a closed region� if the
B�i�s are strictly positive then the feasible region is bounded�
and an optimal solution for QP�	k
 exists� Let P ��i be the
optimal solution of QP�	i
� for i � S� Then P ��i� i � S� are
feasible forQP�	k
 for any k � S �this follows from Theorem
���� Consequently� if optimal solutions P ��i have already
been computed for i � S 	  S� then one can substitute these
for P �i in �	�� when computing P ��j for j �� S 	�

�� An iterative solution

We now present an iterative solution procedure for �	!� which
is an alternative to the one discussed in the previous section�
Consider the following value iteration algorithm�



	A�
 Set P��j �� �� j � S� Choose some constants �i� i �
S� that satisfy�

�i � max
u�

X
j ��i

�iu�j � max
u�

j�iu�ij�

	A�
 Compute Pn�j� j � S� n � 	� iteratively by solving
the Riccati�type equation�

� � ���i � �Pn	��i �Q�i � �A�iPn	��i

�Pn	��i
�B�i�R���i

�min
u�

X
j�S

�iu�jPn�j � �iPn�i� ���

Theorem ��� The solution P �j� j � S� of ���� is obtained
as the limit of the nondecreasing sequences fPn�jgn
��

Proof� To see that the Pn�j�s are nondecreasing� write ���
as

� � ���i � �Pn	��i �Qn�i � �A�iPn	��i

�Pn	��i
�B�i�R���i ��	

where

Qn�i �� Q�i �min
u�

X
j�S

�iu�jPn�j � �iPn�i� ���

Set Q��i � Q�i� It follows from ��� that for any i� n � ��

if � j � S Pn	��j � Pn�j� then Qn	��i � Qn�i � ���

This is because under 	A�
 coe�cients of the Pn�j�s in

m�u��Pn ��
X
j�S

�iu�jPn�j � �iPn�i ���

are each nonnegative� for every u� � U��i� Hence� under
the hypothesis of ����

m�u��Pn	� �m�u��Pn for each u� �U��i � ��!

from which ��� follows� Now� ��	 is a standard Riccati
equation that corresponds to a system that always remains
in state i� and where the weighting on the quadratic cost for
the state is Qn�i� Therefore� its solution Pn	��i will be
increasing in Qn�i� It then follows that

if Qn	��i � Qn�i� then Pn	��i � Pn	��i� ���

In view of the fact P��i � P��i � �� ������� establish by
induction the desired result that the sequences fPn�ig and
fQn�ig are nondecreasing for each i � S� and therefore have
respective limits� with the former satisfying �	!�

�� The Admission�Flow Control
Example

The results presented in the two previous sections now read�
ily apply to the admission��ow control problem formulated
in Section 	� We simply let A�i � � and B�i � 	� for
all i � S� To obtain some explicit results in this context�
we took � � � and s � � �i�e�� S � f	� �� �g� We further
took U��	 � f��� �	� 		� 	�g� U��� � f�g� U��� � f�g�
����� � ����� � 	� ����
 � ����
 � �� ����� � ����� � 	��
����
 � ����
 � ��� Q�	 � 	� Q�� � 	�� Q�� � ���

R�	 � 	�� R�� � �� R�� � 	� For each possible choice of
	�� we computed the corresponding optimal policy for con�
troller 	 �i�e�� 	�� and the associated optimal cost function�
By comparing the optimal value functions obtained for all
possible �four admission policies� we found the unique opti�
mal controller � to be 	���	 � ��� and the solution to �	�
to be� P ��	 � ��	�	� P ��� � ������ P ��� � ���!�� The
unique optimal �ow controller is then

	���q� i �

�
����	�	 q i � 	
������ q i � �
����!� q i � �

Typical system responses under all four admission control
policies are depicted in Figures 	$�� In each of the �gures�
we have plotted the time history of the queue size� tra�c
type� the �ow control and the integral cost incurred� For il�
lustration purposes� we have taken the initial queue size to
be �� units� which is 	� units larger than the desired queue
length of �� units� Since the high priority tra�c types �� and
� have stringent QoS speci�cations� the corresponding �ow
control is more aggressive to maintain the queue size around
its desired value� On the other hand� for the low priority type
�	� the control is smoother in order to minimize the jitter
�i�e�� variability in the network� These observations are con�
sistent with what we would have expected from the design�
We further observe that by admitting the high priority tra�c
at a higher rate� the queue size reaches its desired value more
quickly� at the expense of a larger control jitter� Although
they only represent one sample path of the stochastic system
in each of the four cases� the simulations corroborate the the�
ory very well� The smallest integral cost is achieved under
	��	 � ��� which is actually the optimal admission rule for
the average �expected value of the cost function�

We next considered the case when R�	 was increased to
R�	 � 	��� with all parameter values remaining the same as
above� In this case� the optimal admission controller turned
out to be 	���	 � 		� and the solution to �	� was� P ��	 �
��!�
� P ��� � ���"�� P ��� � ���
!� The unique optimal
�ow controller was then

	���q� i �

�
�����!	 q i � 	
�����
 q i � �
����
! q i � �

Typical system responses for this case are depicted in Figures
!$
� Qualitative behaviors similar to those in the previous
case are also observed here� Because of the increased weight�
ing of R�	� the �ow control magnitude for the type 	 tra�c
is reduced signi�cantly� The integral costs incurred under the
four admission control laws are ranked di�erently from the
previous case� Coincidentally� the cost incurred under the
optimal admission control 	���	 � 		 is the smallest among
the four particular sample paths simulated�

Finally� while holding R�	 at 	��� we increased Q���
from �� to Q�� � ��� With this change� the optimal con�
troller � turned out to be 	���	 � 	�� and the solution to
�	� was� P ��	 � ���
�� P ��� � ������ P ��� � !����� The
unique optimal �ow controller was then

	���q� i �

�
������
 q i � 	
������ q i � �
�!���� q i � �

Due to space limitations� we have included here only the �g�
ure corresponding to the optimal 	� �see Figure �� In all
four simulations we have observed qualitative behavior sim�
ilar to the previous two cases� We have seen a signi�cant



increase in the �ow control magnitude for type � tra�c� this
is due to the increased weighting of Q��� which corresponds
to a more stringent QoS for type � tra�c than in the previ�
ous cases� Again coincidentally� the cost incurred under the
optimal admission control 	���	 � 	� turned out to be the
smallest among the four particular sample paths simulated�

�� Conclusions

Several extensions of the results of this paper can be envi�
sioned� both for the general theoretical model and for the
special telecommunication network application� For the for�
mer� one question that this paper has left unanswered is
the structure of the solution to the HJB equation �!� or its
in�nite�horizon version ��� when the minimization over u�

in �	� depends on the state x� There is also the issue of de�
veloping computational tools for the solutions of �! and ��
when general structural information is lacking� One exten�
sion of the general model of this paper would be the inclusion
of an additional additive term in ��� which would represent
an unknown disturbance $ modeled either as a stochastic
process with known statistics �such as a Brownian motion
process or as a completely unknown deterministic process
�as in H� control ���� In the latter case� one chooses as
performance index the ratio of J� introduced here� to the en�
ergy of the unknown deterministic process� whose maximum
over the unknown input will now have to be minimized over
the multi�strategy 	� For discussions on the solution to this
problem for the special case when the transition rate matrix is
not controlled� but under various types of measurements for
the controller �including the noise�perturbed measurement
scheme not covered in this paper� see �!��

As far as the speci�c telecommunication network model
of Section 	 is concerned� there is the potential to extend it
to the more general case where the e�ective service rate rt is
not known� but is measured in some additive noise� Further�
more� rt could be generated by a stochastic ARMA process�
or by a deterministic linear model driven by an unknown de�
terministic process with �nite energy� Such models have been
considered before in ���� but for a single type tra�c �i�e�� with
s � 	� and the extensions to the cases where there are multi�
ple types of tra�c �as in this paper with �xed or controlled
transition rates remain today as interesting but challenging
research topics to pursue�
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