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ABSTRACT

We consider the problem of optimally controlling piecewise
deterministic �or equivalently jump parameter
 linear sys�
tems� where the transition rate matrix of the underlying
Markov jump process is also controlled� We �rst develop
a general theory for the existence and characterization of op�
timal feedback controllers� and then apply the speci�c results
obtained for the scalar case to a problem that arises in high
speed telecommunication networks� This involves combined
admission and rate�based �ow control� where the former cor�
responds to control of the jump Markov process� and the
latter to control of the continuous linear system�

�� A Motivating Example

To motivate the class of control problems studied in this pa�
per� consider the following communication network� which
can be viewed as a modi�ed version of the models studied
recently in �	� and ����� It is assumed that the network has
linearized dynamics �for the control of queue length
� and
all performance measures �such as throughput� delays� loss
probabilities� etc�
 are determined essentially by a bottle�
neck node� Both these assumptions have theoretical as well
as experimental justi�cations� see� �	��

Let qt denote the queue length at a bottleneck link� and
rt denote the e�ective service rate available for tra�c of the
given source at that link at time t� We let rt be arbitrary�
but assume that the controllers have perfect measurements
of it� Let �t denote the �controlled
 source rate at time t� and
u�t �� �t�rt �called �ow control
 its shifted version� Consider
the following linearized dynamics for the queue length�

dq

dt
� u� � �	


which is called linearized because the end�point e�ects have
been ignored� The objectives of the �ow controller are �i�
to ensure that the bottleneck queue size stays around some
desired level �Q� and �ii� to achieve good tracking between
input and output rates� In particular� the choice of �Q and the
variability around it have direct impact on loss probabilities
and throughput� We therefore de�ne a shifted version of q�

xt �� qt � �Q�
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�These earlier papers dealt with the �ow control problem only


whereas the present paper addresses both admission and �ow con�
trol� on the other hand
 the models in the earlier papers were

more general
 accounting for the possibilities of imperfect
 delayed
measurements
 and partially unknown statistics for noise�

in view of which �	
 now becomes

dx

dt
� u�� ��


An appropriate local cost function that is compatible with
the objectives stated above would be the one that penalizes
variations in xt and u�t around zero � a candidate for which
is the weighted quadratic cost function�

Suppose that there are several types �say s
 of possible
tra�c� with di�erent kinds of requirements on the perfor�
mance measures� Associated with type i tra�c are the pos�
itive constants Q�i
 and R�i
 appearing in the immediate
cost� L�x� i� u
 � jxj�Q�i� � ju�j�R�i�� Typically� tra�c requir�

ing higher quality of service �QoS
 might have a larger Q�i
�
which re�ects the fact that it might require lower loss proba�
bilities and higher throughput� It could be receiving a higher
priority from the network in the sense that larger variations
in u� will be tolerated so as to achieve the required QoS�
thus the corresponding R�i
 might be smaller� The occur�
rence of these di�erent types of tra�c will be governed by a
continuous�time Markov jump process� with transitions con�
trolled by a second controller with a �nite action set�

A typical admission control problem is the following� by
default the system always accepts tra�c of some given type�
say 	� Tra�c of type 	 is transmitted until a session con�
sisting of another type of tra�c of higher priority� say type i
�i � �� �� � � � � s
� is accepted� When it is accepted� the session
cannot be interrupted until it ends� Thus at states � � i � 	�
there are no �admission
 control actions available�

The controller � is thus e�ective only at state 	� at which
the rate of arrival of sessions of high priority tra�c is to
be determined� To each tra�c type there corresponds two
admission decisions �that are part of the action to be chosen
by controller �
� � � corresponding to low admission rate
��j
� and 	� corresponding to a high admission rate ���j
� The
control action at state 	 is thus of the form u� � �u��� � � � � u

�
s
�

u�j � f�� 	g� The controlled transition rates have the form

���u� �j � ��j
	fu�
j
��g � ���j
	fu�

j
��g �

where 	f�g denotes the set indicator function� Note that� if

at state 	 the control action u� is �xed� then the next type
of session to be accepted will be j�j � 	
 with probability

���j
	fu�
j
��g � ���j
	fu�

j
��g��

�

sX
k��

�
��k
	fu�

k
��g � ���k
	fu�

k
��g

�
�

The problem then is to minimize the expected discounted
or average long term cost �with instantaneous cost being L



above
 with respect to the multi�strategy 	 �� �	�� 	�
� where
	� is the �ow controller and 	� the admission controller� both
having as arguments the current and past values of �� r� and
��

�� General Model

A general model that captures the telecommunication net�
work problem formulated above as a special case is the fol�
lowing� Consider a system that evolves according to

dx

dt
� A��
x� B��
u�� x��
 � x� ��


where x � IRn� x� is a �xed �known
 initial state� u� is a
control� applied by controller 	� taking values in U� � IRr �
and ��t
 is a controlled� continuous time Markov jump pro�
cess� taking values in a �nite state space S� with cardinality s�
Transitions from state i to j occur at a rate controlled by con�
troller �� who chooses at time t an action u��t
 among a �nite
setU��i
 of actions available at state i� LetU� �� �i�SU��i
�
The controlled rate matrix �of transitions within S
 is

� � f�i�a�jg� i� j � S� a �U��i
�

where henceforth we drop the �commas� in the subscripts
of �� The �iaj �s are real numbers such that for any i �� j�
and a � U��i
� �iaj � �� and for all i � S and a � U��
�iai � �

P
j ��i

�iaj� Fix some initial state i� of the controlled

Markov chain S� and the �nal time tf �which may be in�nite
�
Consider the class of policies 	k � Uk for controller k �k �
	� �
� whose elements �taking values in Uk
 are of the form

uk�t
 � 	k�t� x���t�� ����t�
� t � ��� tf 
�

Here� 	k is taken to be piecewise continuous in its �rst argu�
ment� and piecewise Lipschitz continuous in its second argu�
ment�

De�ne X � IRn � S to be the global state space of the
system and U �� U� � U� to be the class of multi�strategies�
De�ne the immediate cost L � X �U� � IR� where Q��
 � �
and R��
 � ��

L�x� i� u�
 � jxj�Q�i� � ju�j�R�i� �

To any �xed initial state �x�� i�
 and a multi�strategy
	 � U � there corresponds a unique probability measure P�

x��i�

on the canonical probability space � of the states and actions
of the players� equipped with the standard Borel 
�algebra�
Denote by E�

x� �i�
the expectation operator corresponding to

P�
x��i�

� Denote by �X�t
�S�t

� U�t
� t � ��� tf 
� the stochas�
tic processes corresponding to the states and actions� respec�
tively�

Consider a discount factor � � �� and introduce the fol�
lowing discounted cost function corresponding to an initial
state �x�� i�
� a multi�strategy 	 � U � and a horizon of dura�
tion tf �where Qf ��
 � �� and we take Qf 	 � when tf �

�

J��tf � x�� i�� 	
 �� E�
x� �i�

�
jX�tf
j

�
Qf �S�tf ��

�

Z tf

�

e��tL�X�t
�S�t
� U��t

dt

�
�

The optimal control problem is then the minimization of J�
over 	 � U � which is what we address in this paper�

�� Main Results

Introduce the backward controlled Markov operator Av asso�
ciated with the system above as follows� for each ��t� �� i
 such
that ���� �� i
 � C� for all i � S� and for each v � �u� a
 �U�

Av��t� x� i
 ��

��t� x� i



t

�f�x�u� i
 �Dx��t� x� i
 �
X
j�S

�iaj��t� x� j


where Dx stands for the gradient operator� and f�x� u� i
 ��
A�i
x� B�i
u � Further introduce� for each function ��x� i

for which ���� i
 � C� for all i � S� and for each v �U�

Gv��x� i
 �� �f�x�u� i
 �Dx��x� i
�
X
j�S

�iaj��x� j
�

Let
 J��tf � x�� i�
 �� inf

��U
J��tf � x�� i�� 	
 � ��


denote its counterpart when tf � 
 by  J��x�� i�
� and the
minimizing multi�strategy in each case by 	� �assuming that
it exists
� For �nite tf � consider� subject to the boundary
condition ��tf � x� i
 � jxj�Qf �i�

� the HJB equation�

� � min
v�U

�
Av��t� x� i
 � e��tL�t� x� i� u


�
� �!


For in�nite tf � consider its in�nite�horizon version�

���x� i
 � min
v�U

��Gv��x� i
 � L�x� i� v
� � ��


Associate with �!
 and ��
 the corresponding sets� D� of func�
tions � having continuous �rst�order partial derivatives� We
�rst have�

Theorem ��� �i� Consider the case of �nite tf � and assume
that ��� has a solution � in D� Then the value of ��� equals
�� Moreover� any Markov policy that chooses at time t� for
all t � ��� tf �� actions that achieve the argmin in ���� given
that the state at that time is �x� i
� is optimal�
�ii� Assume that �	� has a solution � in D� Then�

�a� ��x� i
 � J��x� i� 	
 for every 	 � U that satis�es

lim
t���

e��t�E�
x�i��X�t�
� S�t�

 � �� �"


�b� Any stationary policy g that chooses at state �x� i
� ac

tions that achieve the argmin in �	� satis�es��x� i
 � J��x� i� g
�
provided that

lim
t���

e��t�Eg
x�i��X�t�
� S�t�

 � �� �



Equation �!
 does not generally admit a closed�form so�
lution� but it does in some special cases� To investigate these
cases� let us �rst stipulate a structure for ��t� x� i
 that is
quadratic in x�

��t� x� i
 �� xT #P �i� t
x� t � ��� tf �� i � S� ��


where #P �i� t
 is an n � n matrix for each i � S� t � ��� tf ��
Substituting this structural form into �!
� we obtain�

� � xT #Pt�i� t
x� xTQ�i
xe��t

�min
u�

�
��A�i
x� B�i
u�
T #P �i� t
x �	�


� e��tju�j�R�i�

�
�min

u�

X
j�S

�iu� jx
T #P �j� t
x



The minimizing control u� in �	�
 is

	�opt�x� i� t
 � �e�tR���i
BT �i
 #P �i� t
x� �		


whose substitution into �	�
 leads to�

� � xT
�
Pt�i� t
� �P �i� t
 � Q�i
 � �AT �i
P �i� t


� PT �i� t
B�i
R���i
BT �i
P �i� t

�
x

�min
u�

X
j�S

�iu�jx
TP �j� t
x � �	�


where P �i� t
 �� #P �i� t
e�t� Hence� the quadratic structure is
the right one provided that the minimization over u� is inde�
pendent of x $ which is clearly the case for the scalar problem
�that is� when n � 	
� Let P �i� t
 be a nonnegative solution to
the following set of linearly coupled scalar Riccati equations�
subject to the boundary condition P �i� tf 
 � Qf �i
e�tf �

�P �i� t
 � Pt�i� t
 �Q�i
 � �A�i
P �i� t
 �	�


�P �i� t
�B�i
�R���i
 �min
u�

X
j�S

�iu�jP �j� t


Then we have the following result�

Theorem ��� Assume that n � 	� i�e� x is one dimen

sional�
�i� Let tf be �nite� and assume that there exists a nonnega

tive function P �i� t
� i � S� that satis�es ���� for all i � S� t �

��� tf �� Then  J��tf � x� i
 � #P�i� t
x� is a solution of ���� where
#P �i� t
 � P �i� t
 exp���t
� A Markov policy 	�� that uses at
time t an action �depending on i and t� but not on x� that
achieves the minimum in ���� is optimal� The nonnegative
solution P of ���� determines an optimal Markov policy 	��


	���x� i� t
 � �
�
B�i
P �i� t
�R�i


�
x �	�


�ii� Consider the in�nite
horizon cost case� and assume that
there exist nonnegative functions P �i
� i � S satisfying the
linearly coupled Riccati equations

�P �i
 � �A�i
P �i
� P �i
�B�i
�R���i


�Q�i
 �min
u�

X
j�S

�iu�jP �j
� i � S� �	!


Then  J��x� i
 � P �i
x� is a solution of �	�� A stationary pol

icy 	�� obtained as the argument that achieves the minimum
in ���� is optimal� and the solution P determines an optimal
stationary policy 	�� through �����

Proof� �i
 follows directly from Theorem ��	 �i
�
�ii
 Let ��x� i
 �� xTP �i
x which is in D �see the de�nition
below ��

� We now make use of Theorem ��	 �ii
� since � is
nonnegative� �

 holds for 	� � �	��� 	��
� Let 	 � U be an
arbitrary policy� and suppose that it does not satisfy �"
� It
then follows that there exists some � � � such that

lim
t���

e��t�E�
x�ijX�t�
j

�
Q�S�t��� � �� �	�


Since Q�i
 are positive� this implies that J��x� i� 	
 � 
� so
that

J��x� i� 	
�
 � J��x� i� 	
� �	"


Finally� if 	 satis�es �"
� then �	"
 follows from Theorem ��	
�ii
�

Next we show that �	!
 admits a unique nonnegative so�
lution� which can further be obtained as the value of a ��nite

quadratic program� First we introduce a useful de�nition�

De�nition ��� The set of superharmonic functions % is
the class of functions � � X � IR that satisfy for all i � S
and 	 � U 


���x� i
 � f�x� i� 	
 �Dx��x� i


�
X
j�S

�iaj��x� j
 � L�x� i� 	
 �	



and that grow at most polynomially fast in jxj�

Theorem ��� The value function  J� is the largest superhar

monic function �componentwise��

Proof� Consider an arbitrary superharmonic function �� and
let 	� be the optimal �stationary
 policy� Then� by applying
the Dynkin formula �see ���� p� 	��� eq����"
 
 we get

��x� i
 � E�
x�i

Z t�

�

e��tL�X�t
�S�t
� U�t

 dt

�e��t�E�
x�i��X�t�
� S�t�

�

Since system ��
 is scalar and 	 is optimal� it stabilizes the
stochastic system �as there exists a common Lyapunov func�
tion
� and therefore by taking the limit as t� goes to in�nity
we obtain

��x� i
 � E�
x�i

Z �

�

e��tL�X�t
�S�t
� U�t

dt �  J��x� i
�

Since� by Theorem ����  J��x� i
 is a super�harmonic function�
this completes the proof�

Theorem ��� enables us to formalize a mathematical pro�
gram to compute the solution P ��
 of �	!
�

Theorem ��� For any arbitrarily �xed k � S� the solution
P �k
 of ���� is given by the following quadratic program

QP�	k
� Find P �i
� i � S� to maximize P �k
 subject to

� � ��P �i
 �Q�i
 � �A�i
P �i


��P �i
���B�i
��R���i


�
X
j�S

�ivjP �j
� �i � S� v �U��i
 �	�


Proof� Direct consequence of Theorem ���� obtained by spe�
cializing it to functions � of the form ��x� i
 � x�Q�i
�

It is appropriate here to list some useful properties of the
mathematical program QP�	k
� First note that the feasible
region satisfying the constraints �	�
 is nonempty� indeed�
P �i
 � � is feasible� Moreover it is a closed region� if the
B�i
�s are strictly positive then the feasible region is bounded�
and an optimal solution for QP�	k
 exists� Let P ��i
 be the
optimal solution of QP�	i
� for i � S� Then P ��i
� i � S� are
feasible forQP�	k
 for any k � S �this follows from Theorem
���
� Consequently� if optimal solutions P ��i
 have already
been computed for i � S 	 
 S� then one can substitute these
for P �i
 in �	�
� when computing P ��j
 for j �� S 	�

�� An iterative solution

We now present an iterative solution procedure for �	!
� which
is an alternative to the one discussed in the previous section�
Consider the following value iteration algorithm�



	A�
 Set P��j
 �� �� j � S� Choose some constants �i� i �
S� that satisfy�

�i � max
u�

X
j ��i

�iu�j � max
u�

j�iu�ij�

	A�
 Compute Pn�j
� j � S� n � 	� iteratively by solving
the Riccati�type equation�

� � ���i � �
Pn	��i
 �Q�i
 � �A�i
Pn	��i


�Pn	��i

�B�i
�R���i


�min
u�

X
j�S

�iu�jPn�j
 � �iPn�i
� ���


Theorem ��� The solution P �j
� j � S� of ���� is obtained
as the limit of the nondecreasing sequences fPn�j
gn
��

Proof� To see that the Pn�j
�s are nondecreasing� write ���

as

� � ���i � �
Pn	��i
 �Qn�i
 � �A�i
Pn	��i


�Pn	��i

�B�i
�R���i
 ��	


where

Qn�i
 �� Q�i
 �min
u�

X
j�S

�iu�jPn�j
 � �iPn�i
� ���


Set Q��i
 � Q�i
� It follows from ���
 that for any i� n � ��

if � j � S Pn	��j
 � Pn�j
� then Qn	��i
 � Qn�i
 � ���


This is because under 	A�
 coe�cients of the Pn�j
�s in

m�u��Pn
 ��
X
j�S

�iu�jPn�j
 � �iPn�i
 ���


are each nonnegative� for every u� � U��i
� Hence� under
the hypothesis of ���
�

m�u��Pn	�
 �m�u��Pn
 for each u� �U��i
 � ��!


from which ���
 follows� Now� ��	
 is a standard Riccati
equation that corresponds to a system that always remains
in state i� and where the weighting on the quadratic cost for
the state is Qn�i
� Therefore� its solution Pn	��i
 will be
increasing in Qn�i
� It then follows that

if Qn	��i
 � Qn�i
� then Pn	��i
 � Pn	��i
� ���


In view of the fact P��i
 � P��i
 � �� ���
����
 establish by
induction the desired result that the sequences fPn�i
g and
fQn�i
g are nondecreasing for each i � S� and therefore have
respective limits� with the former satisfying �	!
�

�� The Admission�Flow Control
Example

The results presented in the two previous sections now read�
ily apply to the admission��ow control problem formulated
in Section 	� We simply let A�i
 � � and B�i
 � 	� for
all i � S� To obtain some explicit results in this context�
we took � � � and s � � �i�e�� S � f	� �� �g
� We further
took U��	
 � f��� �	� 		� 	�g� U���
 � f�g� U���
 � f�g�
����� � ����� � 	� ����
 � ����
 � �� ����� � ����� � 	��
����
 � ����
 � ��� Q�	
 � 	� Q��
 � 	�� Q��
 � ���

R�	
 � 	�� R��
 � �� R��
 � 	� For each possible choice of
	�� we computed the corresponding optimal policy for con�
troller 	 �i�e�� 	�
� and the associated optimal cost function�
By comparing the optimal value functions obtained for all
possible �four
 admission policies� we found the unique opti�
mal controller � to be 	���	
 � ��� and the solution to �	�

to be� P ��	
 � ��	�	� P ���
 � ������ P ���
 � ���!�� The
unique optimal �ow controller is then

	���q� i
 �

�
����	�	 q i � 	
������ q i � �
����!� q i � �

Typical system responses under all four admission control
policies are depicted in Figures 	$�� In each of the �gures�
we have plotted the time history of the queue size� tra�c
type� the �ow control and the integral cost incurred� For il�
lustration purposes� we have taken the initial queue size to
be �� units� which is 	� units larger than the desired queue
length of �� units� Since the high priority tra�c types �� and
�
 have stringent QoS speci�cations� the corresponding �ow
control is more aggressive to maintain the queue size around
its desired value� On the other hand� for the low priority type
�	
� the control is smoother in order to minimize the jitter
�i�e�� variability
 in the network� These observations are con�
sistent with what we would have expected from the design�
We further observe that by admitting the high priority tra�c
at a higher rate� the queue size reaches its desired value more
quickly� at the expense of a larger control jitter� Although
they only represent one sample path of the stochastic system
in each of the four cases� the simulations corroborate the the�
ory very well� The smallest integral cost is achieved under
	��	
 � ��� which is actually the optimal admission rule for
the average �expected
 value of the cost function�

We next considered the case when R�	
 was increased to
R�	
 � 	��� with all parameter values remaining the same as
above� In this case� the optimal admission controller turned
out to be 	���	
 � 		� and the solution to �	�
 was� P ��	
 �
��!�
� P ���
 � ���"�� P ���
 � ���
!� The unique optimal
�ow controller was then

	���q� i
 �

�
�����!	 q i � 	
�����
 q i � �
����
! q i � �

Typical system responses for this case are depicted in Figures
!$
� Qualitative behaviors similar to those in the previous
case are also observed here� Because of the increased weight�
ing of R�	
� the �ow control magnitude for the type 	 tra�c
is reduced signi�cantly� The integral costs incurred under the
four admission control laws are ranked di�erently from the
previous case� Coincidentally� the cost incurred under the
optimal admission control 	���	
 � 		 is the smallest among
the four particular sample paths simulated�

Finally� while holding R�	
 at 	��� we increased Q��
�
from �� to Q��
 � ��� With this change� the optimal con�
troller � turned out to be 	���	
 � 	�� and the solution to
�	�
 was� P ��	
 � ���
�� P ���
 � ������ P ���
 � !����� The
unique optimal �ow controller was then

	���q� i
 �

�
������
 q i � 	
������ q i � �
�!���� q i � �

Due to space limitations� we have included here only the �g�
ure corresponding to the optimal 	� �see Figure �
� In all
four simulations we have observed qualitative behavior sim�
ilar to the previous two cases� We have seen a signi�cant



increase in the �ow control magnitude for type � tra�c� this
is due to the increased weighting of Q��
� which corresponds
to a more stringent QoS for type � tra�c than in the previ�
ous cases� Again coincidentally� the cost incurred under the
optimal admission control 	���	
 � 	� turned out to be the
smallest among the four particular sample paths simulated�

�� Conclusions

Several extensions of the results of this paper can be envi�
sioned� both for the general theoretical model and for the
special telecommunication network application� For the for�
mer� one question that this paper has left unanswered is
the structure of the solution to the HJB equation �!
� or its
in�nite�horizon version ��
� when the minimization over u�

in �	�
 depends on the state x� There is also the issue of de�
veloping computational tools for the solutions of �!
 and ��

when general structural information is lacking� One exten�
sion of the general model of this paper would be the inclusion
of an additional additive term in ��
� which would represent
an unknown disturbance $ modeled either as a stochastic
process with known statistics �such as a Brownian motion
process
 or as a completely unknown deterministic process
�as in H� control ���
� In the latter case� one chooses as
performance index the ratio of J� introduced here� to the en�
ergy of the unknown deterministic process� whose maximum
over the unknown input will now have to be minimized over
the multi�strategy 	� For discussions on the solution to this
problem for the special case when the transition rate matrix is
not controlled� but under various types of measurements for
the controller �including the noise�perturbed measurement
scheme not covered in this paper
� see �!��

As far as the speci�c telecommunication network model
of Section 	 is concerned� there is the potential to extend it
to the more general case where the e�ective service rate rt is
not known� but is measured in some additive noise� Further�
more� rt could be generated by a stochastic ARMA process�
or by a deterministic linear model driven by an unknown de�
terministic process with �nite energy� Such models have been
considered before in ���� but for a single type tra�c �i�e�� with
s � 	
� and the extensions to the cases where there are multi�
ple types of tra�c �as in this paper
 with �xed or controlled
transition rates remain today as interesting but challenging
research topics to pursue�
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