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Abstract - We consider a random access network in which
the nodes need to optimize their channel access rates. The
nodes are assumed to be rational and interested in their per-
formance seen as a transmitter as well as a receiver. By cast-
ing this problem as a non-cooperative game, we derive condi-
tions for the Nash equilibrium. We also show the existence of
a Nash equilibrium when the nodes are constrained by their
battery power (for this case, the constraints on the access rates
of the nodes become coupled). For the special case where all
nodes are each other’s neighbors, we find that the equilibrium
is given by the solution of a system of linear equations. An
adaptive distributed scheme is then proposed for learning this
equilibrium and its convergence is studied numerically.

Keywords - Game theory, Stochastic approximation algo-
rithm.

I. I NTRODUCTION

The most prominent medium access scheme in CSMA
based networks is that of random access where, after sens-
ing an idle channel, a node waits for a random amount of
time before starting its transmission. This provides protection
against the possibility of many nodes transmitting simultane-
ously when the channel becomes idle. Important recent exam-
ple of a CSMA based network is a wireless ad hoc network
that uses the IEEE 802.11 protocol [1] for medium access.

After it has sensed an idle channel, a node has tooptimally
attempt a transmission. Byoptimal attempt we mean that the
nodes should try not to be too aggressive in attempting a trans-
mission (thereby risking a collision) and, at the same time,
nodes should not be too conservative so as to miss a chance
of a successful transmission. For IEEE 802.11, for example,
this is same as optimizing the mean of the backoff timer distri-
bution. Clearly this optimal operating point (if it exists) will
depend on the topology of the network (that is, the number of
nodes and their relative orientation in space). In the case of ad
hoc networks however the network topology is not fixed and
changes over time owing to mobility or failure of the nodes.
Thus there is a need for a node toadapt its channel access rate
to the changing network topology.

There is significant amount of literature which addresses
the above problem (see [2], [3] and references therein). Most
of the studies of wireless ad hoc networks take the view which
assumes that a constituting device (node) is either a source,
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a forwarder or a destination of packets and assumes that a
node’s perceived performance is the rate at which itstrans-
missions are successful. These studies implicitly assume that
maximizing the success probability for transmissions from
the nodes in a network, one can get good performance for
nodes acting as receivers (see, for example, [2], [3]). How-
ever, contrary to the viewpoint adopted in these models, a
node in an ad hoc network is both sender as well as receiver
of packets and hence will be interested in acombined perfor-
mance measure that reflects its performance as a sender and
as a receiver. These are two conflicting requirements: a node,
if it tries to be too aggressive in sending packets, may lose
opportunity to receive packets meant for itself and vice versa.

An important example in such a scenario is where a node
is transferring data using TCP. Here a node is required to be
equally available for transmission of data packets as well as
the reception of acknowledgment packets in order to be able
to get a better performance from the closed loop behavior of
TCP. Yet another example of such a scenario is where mul-
tiple applications running on a node are sending as well as
downloading files, as in this case also the traffic in both direc-
tions are equally important for the node.

Another motivation for the present work comes from look-
ing at proposed algorithms for multicast over IEEE 802.11
networks. The existing literature (see [4] and references
therein) looks at a node only as a sender and proposes strate-
gies for the node to exploit the information about the number
of its neighboring nodes which are ready to receive. How-
ever, it may be possible that using the proposed protocols a
sender node may not get a chance to become a receiver fre-
quently, thus losing on the reverse traffic. This is because the
proposed protocols usually make many consecutive attempts
to transmit a single packet which may reduce the chance of
successful reception by other nodes and may also result in
increased MAC layer collisions.

As observed in [3], the nodes forming an ad hoc network
are expected to be rational, i.e., are interested in maximiz-
ing their own performance. This is different from the case of
sensor networks where, as in [5], nodes try to optimize some
overall network objective and thus the performance seen by
an individual node does not matter.

We view the problem as a non-cooperative game with each
node trying to optimize its own objective. By using a general
performance metric for each node, we show the existence of
a Nash equilibrium giving an optimal channel access rate for
each node. The existence of a Nash equilibrium is shown also
for the case when the nodes are constrained by their battery



power (for this case the constraints on the access rates of the
nodes become coupled); this requires showing that the con-
straint defining functions are quasi-concave. For the special
case where each node is neighbor of other node (like in Wire-
less LANs), we propose a stochastic approximation algorithm
based iterative scheme to learn the Nash equilibrium. This
algorithm is obtained in much a similar way as done in [6]
which studied the problem of finding the channel access rates
for a network where nodes are interested in success of their
transmissions (not in receiving). [6] shows the existence of
Nash equilibrium only in the case where nodes are not bat-
tery power constrained so that the constraint set for each node
is orthogonal.

II. T HE MODEL AND PROBLEM FORMULATION

Let the network consist ofN nodes. Denote the set of
nodes byN . For i; j 2 N say i ! j if node i can re-
ceive nodej’s transmission. We assume thati ! j iff
j ! i and use the notationi $ j to mean either of these
two. Associate with each nodei 2 N , a neighborhood set
N (i) := fj 2 N : i $ jg. Also let S(i) := fk 2
NnN (i)nfig : 9j 2 N (i) : k 2 N (j)g be the second hop
neighbor set of nodei.

We assume that the system operates in a slotted mode and
nodes attempt transmissions of packets to their neighboring
nodes. We also assume that in any slot, nodei has a packet to
transmit with a fixed probabilitypi. The channel access is ran-
dom, i.e., in each slot, if nodei has a packet to be transmitted,
it decides to attempt a transmission (broadcast) with probabil-
ity �i and decides to receive with probability(1��i). Thus, in
any slot, nodei attempts a transmission with probabilityp i�i.
The quantity�i = pi�i is called theattempt probability of
nodei. What follows can be easily modified to account for a
nodei keeping an attempt probability� i;j for its neighboring
nodej, or to some subset of its neighbors (multicast).

Our problem now is to find, for a given network, the values
of �i (or �i;j , as the case may be) which maximize nodei’s
performance.Sincepi is fixed, it is enough to compute�i in
order to find�i. The objective then is to design an algorithm
using which a nodei computes�i or �i;j = pi�i;j for itself
adaptively in a distributed manner.

LetPs(i) be the conditional probability that a transmission
attempt from nodei is successful (conditioned on the event
that nodei transmits), andPr(j; i) denote the probability that
a transmission from nodej is successfully received by nodei.

Here one can have various notions of nodei’s transmission
beingsuccessful. We use the simple (though not restrictive)
criteria: nodei’s transmission is successful ifall of it’s neigh-
boring nodes correctly receive the transmission.

Each node wants to maximise its own utility function which
reflects the performance obtained by the node under the send-
ing probabilities selected by the nodes in the network. A com-
mon ingredient of the utility function of nodei is a combina-
tion of the rates at which nodei successfully transmits and

receives packets. Thus the problem for nodei is to maximise

Ui(�) = Ai�iPs(i) +
X

j2N (i)

Ai;j�jPr(j; i)� Ci ��iPs(i) (1)

such that�i � 0 and ��i = 1��i � 0. HereAi, Ci andAi;j

are some non-negative constants. The first and second terms
here are “rewards” forsuccess owing to, respectively, trans-
mission and reception.Ai;j will be zero for nodej whose
transmission can not be directly received by nodei. The third
term is included to act as a punishment for missed opportuni-
ties, thus aiming at maximising nodei’s use of network. Note
that the last term also is the probability of the event where
none of the neighboring nodes of nodei are sending to nodei
when nodei is ready to receive, thus this term also represents
the time wasted by nodei in trying to receive when there is
nothing to receive.

Our definition ofPs(i) means that none of the first or sec-
ond hop neighbors ofi transmit when nodei does. Thus

Ps(i) = �j2N (i)(1� �j)�k2S(i)(1� �k): (2)

Similarly, it is seen that, forj 2 N (i), Pr(j; i) is,

Pr(j; i) = �k2N (i)[fignfjg(1� �k): (3)

Since the nodes are each trying to optimize their own objec-
tives without any cooperation, this is a noncooperative game.
The ‘action space’ for each node is the interval[0; 1] from
which it chooses the transmission probability. This is com-
pact convex. Also, each node’s objective function (1) is sep-
arately concave continuous in each argument (in fact, linear).
This is a concaveN -person game, thus a Nash equilibrium
exists, i.e., a choice�� = [��1; � � � ; �

�
N ] such that if all but the

i�th node transmit with probabilities��j ’s, j 6= i, then it is
optimal for i�th node also to use��i [7]. Our aim will be to
attain this Nash equilibrium. With this objective, we first seek
the sufficient conditions for the Nash equilibrium.

Since for fixed�j , j 6= i, this is a single agent optimization
problem faced by thei�th node, we consider the correspond-
ing Kuhn-Tucker condition. For any vector� of attempt prob-
abilities, letA�(�) = fi : 0 < �i < 1g. The (equivalent of)
Kuhn-Tucker conditions for a vector� to be a Nash equilib-
rium, i.e., a componentwise local maximum of corresponding
utility functions when the other components are unperturbed,
are (withAi;i := Ai + Ci)

Ai;iPs(i)�
X

j2N (i)

Ai;j�j
Pr(j; i)

1� �i
= 0; 8 i 2 A�(�) (4)

Ai;iPs(i)�
X

j2N (i)

Ai;j�j
Pr(j; i)

1� �i
� 0; 8 i : �i = 1 (5)

Ai;iPs(i)�
X

j2N (i)

Ai;j�j
Pr(j; i)

1� �i
� 0; 8 i : �i = 0: (6)

Let �� be a Nash equilibrium for the game problem and
assume, for simplicity, thatA�(��) = N . (The case where



A�(��) 6= N will be studied in Section IV). Let� be a
column vector whoseith entry is�i. Also introduceG(�) :=
@

@�i
Ui(�) = Ai;iPs(i)�

P
j2N (i) Ai;j�j

Pr(j;i)
1��i

.

A. Effect of Imposing Power Constraints

Till now we have not imposed any restriction on the pos-
sible values that�i’s are allowed to take (except that�i 2
[0; 1]). Since the nodes are battery power constrained, one
would like to see the effect of imposing a constraint on� i so
as to use the battery power efficiently. A natural candidate for
such a constraint for nodei is Ti�i +Ri(1� �i)Pr(i) � Pi,
whereTi andRi are the average power required for trans-
mission and reception of packets,Pi is the average battery
power of nodei and Pr(i) is the probability that nodei
is trying to receive while it is not transmitting.Pr(i) =
1 � �j2N (i)(1 � �j), i.e., that a node spendsRi amount of
power whenever there is a transmission attempt from at least
one neighboring node. In practice, the case of interest would
beTi � Pi � Ri. (If Pi � max(Ti; Ri) then, effectively,
the �i’s are not battery power constrained.) Note now that
the action space of the nodes are dependent on the actions
of other nodes. The existence of a Nash equilibrium would
follow if the constraint set so obtained is convex [7]. For a
general network topology, it can be shown that the constraint
defining functionsPi � Ti�i � Ri(1 � �i)Pr(i) are quasi-
concave [8] so that the constraint set is convex. Further, the
constraint set is easily seen to be nonempty because the point
�i = 0; 8i is always feasible. Proof of quasi-concavity of the
power constraint functions is detailed in [9].

III. A D ISTRIBUTED ALGORITHM

To compute�i, the Kuhn-Tucker condition of Equation 4
suggests the following (gradient ascent type) iteration

�(n+ 1) = �(n) + a(n)G(�); (7)

wherefa(n)g are the usual stochastic approximation step-
size schedules, i.e., positive scalars satisfying

P
n a(n) =

1;
P

n a(n)
2 < 1. By the standard ‘o.d.e. approach’ to

stochastic approximation [10], this tracks the asymptotic be-
havior of the ordinary differential equation (o.d.e.)_x(t) =
G(x): For a general network and coefficientsAi; Ai;j ; Ci, the
stability of the equilibrium points of the o.d.e. cannot be a
priori assumed (see also [7] for this issue). However, for a
special case where all the nodes are neighbors of each other,
it can be shown that the (slightly modified) o.d.e. is globally
asymptotically stable and hence the suggested iteration above
is guaranteed to converge irrespective of the coefficients.

A. The Case of All Nodes Neighbors of Each Other

Consider the special case where for any nodei,N (i) = N ,
i.e., all the nodes are neighbors of each other. This is a com-
mon scenario in wireless LANs spanning a small area (office
etc.). The standard Slotted ALOHA system is yet another ex-
ample of such scenario.

Recently, [2] has also considered a game theoretic ap-
proach to delay minimization in Slotted Aloha systems with
the retransmission probabilities as decision variables. How-
ever, it does not consider the problem of nodes computing
the optimal retransmission probabilities. The problem there
also assumes symmetry, i.e., (unlike our case) all nodes have
equal weightage thus resulting in equal optimal retransmis-
sion probabilities for each node.

For the present case whereS(i) is empty, it is seen that
Ps(i) = �j 6=i(1 � �j); andPr(j; i) = �k 6=j(1 � �k) =
Ps(j). Note thatPr(j; i) = Pr(j; k) for anyk; i 6= j. The
condition in Equation 4 is rewritten as

P
j 6=i Ai;j

�j

1��j
=

Ai;i; 8i: Let �j :=
�j

1��j
, �i;j = Ai;j ; i 6= j and�i = Ai;i.

This condition in matrix form is,

�� = �: (8)

Remark: Equation 8 gives a complete characterization of the
solution of the optimization problem under consideration as
a solution to a set of linear equations. This is a considerable
simplification given the complex set of equations representing
the optimization problem. Now we proceed to give a method
to compute this optimum in a distributed manner.

B. The Algorithm

To solve Equation 8, the iteration to be considered is�(n+
1) = �(n) + a(n)(� � ��(n)); corresponding to the o.d.e.
_x(t) = (� � �x(t)); whose stability, again, can not be apriori
assumed. We thus consider the modified o.d.e. having same
critical points

_x(t) = �(� � �x(t)): (9)

This will be stable if the matrix� is invertible, whence� 2 will
be positive definite. The solution will be that of linear system

�� � �2� = 0; (10)

which then has the same solution as (8). Thus nodei will be
solving theith row of (10). The iteration at nodei is thus

�(n+ 1) = �(n) + a(n)�(� � ��(n)): (11)

The algorithm run by the nodes based on the above iteration
is detailed as follows.

1) Set the slot numbern = 0. Initialize �
(0)
i ; 1 � i �

N; to some small positive values. Also letN(i) = 0,
the last slot number when nodei updated its attempt
probability.

2) For1 � i � N , nodei does the following operations:
- It either decides to transmit with probability�(n)

i , or

decides to receive with probability1� �
(n)
i .

- If decided to transmit, a node sends the data packet
destined for all the neighboring nodes. It also transmits
the information relevant for other nodes for updating
their attempt probabilities based on (11). In particular,
nodei transmits�(n)

i , N(i),N (i).



- If decided to sense the channel, do the following:
� If node i receives a signal that can be decoded cor-
rectly, then it checks if the received signal contains the
update information. If yes, update nodei’s local in-
formation about its neighbors based on information ex-
tracted from the transmission received from its first hop
neighbor. Here nodei updates its estimate of�j ; j 6= i;

only if the value ofN(j) that it has now received is
more than nodei’s copy ofN(j).
� Update�(n)

i based on the updated information.
� SetN(i) = n.

3) n = n+ 1, Go to step2.

IV. N UMERICAL RESULTS

In this section we present some numerical results from a
software implementation of the algorithm. The network pa-
rameters are chosen to motivate certain possible problems that
can arise when using the proposed algorithm. Modifications
to the proposed algorithm to solve these problems are simul-
taneously provided in this section.

In all the results presented here the learning parameter was
a(n) = 0:1

(n mod1e5)+1:0
. The periodic nature ofa(n) used

is to ensure that a transient (owing to node failure or mo-
bility) dies out quickly. Note that this does not satisfy the
usual stochastic approximation constraints. However, the pe-
riodic resetting of the learning sequence can be used for a
time-varying situation as long as this variation is on a suffi-
ciently slow timescale.
Unique Solution: Inactive Constraint Consider the sym-
metric case whereAi;j = K for someK. For this case the�2

matrix is invertible and hence unique solution for the system
of linear Equation 10 exists and is given by:� i = 1

N�1 ; 8i

hence�i = 1
N
; 8i. This is also evident from simulation

results shown in Figure 1.
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Fig. 1. Plot showing node1’s estimate of attempt probability
as a function of simulation time for different values ofN =
2; 5 and10. The weightsAi;j were same for all pairs(i; j).

Consider the case whereN = 2 andAi;j = 1
log(i+j) . For

this problem again the� 2 matrix is invertible and hence the
unique solution for the system of linear equations exists. Fig-
ure 2 gives the simulation result for this case. Now we con-
sider the case whereN = 3 andAi;j = 1

(i+j) . The unique
solution for the system of linear equations exists. Figure 3
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gives the simulation result for this case. These three exam-
ples provide cases where the algorithm of Section III-A works
without any modification. Next we present some cases where
the algorithm requires some modification.
Unique Solution: Active Constraint Note that in the net-
work parameters considered so far, the Nash equilibrium were
feasible (as they were strictly positive and less than1). Con-
sider now the case whereN = 4 andAi;j = 1

log(i+j) . For
this system, it can be seen that for this case the unique solu-
tion to the Kuhn-Tucker condition is�1 = �0:269; �2 =
0:307; �3 = 0:415; �4 = 0:458. However, a negative at-
tempt probability is certainly not a feasible solution. Note
also that negative value of�1 implies that node1 will have an
effective attempt probability of0. While�i > 1 implies that
nodei will be transmitting all the time and has no chance to
receive. Thus, to avoid these undesirable behavior, we modify
the algorithm as follows:

1) Each nodei keeps a lower and an upper bound on the
attempt probability0 < �i;min < �i;max < 1.

2) If in any slot nodei’s computed value of� i is below
a lower bound on the attempt probability, i.e.� i �
�i;min, it changes the computed�i to �i;min. �i;max

is also used similarly.
3) The probabilities associated with nodes that have hit the

constraint boundaries continue to be updated subject to
the constraint that they remain in the permitted range.
This is to take care of any freak episodes of hitting the
constraint boundary due to ‘noise’, errors, etc.

Figure 4 gives the simulation result for this case with
�i;min = 0:001. It is seen that node1 achieves the lower



bound and stays there while the other nodes attain their (now
modified) equilibrium.
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Nonunique Solution Consider the case whereN = 3 and the
coefficient matrix is given byA = [1 1 0; 1 1 1; 0 1 1]. For
this case there can be multiple solutions to the Kuhn-Tucker
condition. Figure 5 shows the values of�1 and�3 as ob-
tained from simulation of the proposed algorithm for differ-
ent initial values. Note from the figure that the initial value of
� affects the equilibrium point achieved. Owing to symme-
try of the problem, it is desirable to have�1 = �3, however
the proposed algorithm fails to achieve this fairness. Thus,
non-uniqueness of the solution leads to two undesirable fea-
tures, i.e., dependence on initial condition and possible un-
fairness. To avoid this problem we modify the algorithm so
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Fig. 5. Estimates of attempt probability forN = 3.

that each node adds a small value� to the diagonal elements
of its estimate of the� matrix. Figure 6 gives simulation re-
sults using� = 0:01. The algorithm converges to a value of
�1 = �3 = 0:329 irrespective of the initial value of�i. Thus
it is seen from the simulations that the proposed slight mod-
ification solves both the problems mentioned above, i.e., that
of dependence on initial value and that of unfairness.

V. CONCLUSION

We considered the problem of a node computing its own
optimal channel access rate in a random access network with
two-way traffic. We considered a realistic scenario where a
node is interested in both receiving as well as transmitting
packets. We proved existence of Nash equilibrium for our
problem as well as for the case where nodes are battery power
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constrained so that the constraint set (action space) of differ-
ent nodes is coupled. We proposed a distributed scheme for
adapting random access for the mentioned scenario. The ad-
vantage of the scheme is its simplicity thus making it attrac-
tive from implementation point of view.

The presented iteration is guaranteed to be stable by ex-
ploiting the special structure of the case where a node is
neighbor of all the other nodes (as is frequently in the case of
Wireless LANs); this also required a modification to the ini-
tial iteration of Equation 7. The actual iteration of Equation 7,
though it can be used for a general network, is not guaranteed
to converge. We are now considering a development similar
to that presented here for general topologies.
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