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The Role of Information Update in Flow Control
E. Altman, T. Başar, and N. Malouch

Abstract—A common feature of congestion control protocols
is the presence of information packets used to signal congestion.
We address here the question of how frequently such protocols
need to generate information packets in order to optimize their
performance. Through a number of congestion control models,
we identify and quantify different types of effects of the frequency
of generating information packets. We consider both TCP-type
protocols, in which controlling the frequency of information
packets is done through static or dynamic delayed ACK options,
as well as ATM type flow control, where the optimal time
spacing between the generation of network management packets
is computed. We show how the spacing between information
packets influences the throughput and the stability of the system.

Index Terms—Congestion control, flow control, information
rates.

I. INTRODUCTION

CONGESTION and flow control protocols make use of
special control packets to convey to the traffic sources

actions to be taken in order to adapt the transmission rates
to the available bandwidth. In TCP/IP, these are the acknowl-
edgement packets; in the ABR (Available Bit Rate) class of
ATM, these are the resource management packets. Even when
the size of these packets is significantly smaller than that of the
data packets, they still compete over network resources with
the data packets and thus decrease the amount of resources
available to them. In many cases, they may require an amount
of resource much larger than what their size would suggest.
For example, when using the IEEE 802.11 MAC protocol,
each data as well as ACK packet of the TCP flow requires
the same (large) overhead as of the three link layer packets
(RTS, CTS and a link layer ACK). Even in the absence of such
overheads, the processing time of an ACK at the destination
might require an additional overhead that could be pretty large
with respect to the transmission time when very high speed
networks are considered. We therefore raise the question, in
this paper, of at what frequency flow control protocols should
send control packets. Our aim is to answer this question
using analytical tools, supported by numerical and simulation
studies.
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6. 104 Avenue du Président Kennedy, 75016 Paris, France.

Digital Object Identifier 10.1109/TCOMM.2008.050389.

Note that TCP/IP already has the ”delayed ACK” option
that allows it to reduce the ACK frequency from one ACK
for every received packet to one ACK every d = 2 received
packets. For Ad-Hoc networks using the IEEE 802.11 MAC
protocol, it has been established through simulations that
further improvement can be obtained when using TCP with
d > 2 [6], [7]. Note that ACKs could also be filtered within
the network (see e.g. [9] and references therein).1

We introduce three frameworks in which to study the
optimization of the frequency of control packets. The first is
the case of TCP/IP traffic sources with routers using drop
tail queues. A simple mathematical model is derived for
optimizing the amount of ACK thinning at the destination so
as to maximize the system’s throughput. A simulation study
validates the conclusions we arrive at using the mathematical
model. In the second framework, we study the dynamics
of an Additive-Increase Multiplicative-Decrease (AIMD) flow
control interacting with a RED type buffer. We model the
system’s dynamics through a system of delay-differential
equations, and study the stability of the system as a function of
the frequency of ACKs. The third framework we adopt is that
of optimal rate control with sampled state information, similar
to models used for rate control in the ABR class in ATM
[2]. We formulate a linear-quadratic control model with two
different views of uncertainty (stochastic, and deterministic but
worst case), and we optimize the time between two successive
packets in information feedback by trading off length of time
against performance.

The three frameworks introduced above are covered respec-
tively in the three sections to follow, Sections II, III, and
IV, which also include simulation and numerical results. The
paper ends with the concluding remarks of Section V, and an
appendix.

II. A FIXED POINT METHOD TO MODEL ACK THINNING

In this section, we use the expression for TCP throughput
developed in the literature and standard queueing models to
quantify the impact of the delay factor d on the throughput.
The throughput T of a TCP connection can be approximated
by [21][
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1The advantage of thinning ACKs at the destination using the delayed
ACK option is that if d packets have not yet arrived at the destination but
some timer has expired, the destination will generate an ACK thus avoiding
situations in which the source will interpret the lack of ACKs as a loss of a
packet detected through the source’s timeout expiration.
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Fig. 1. A network model for ACK thinning.

where p is the loss probability of TCP packets, RTT is
the round-trip delay experienced by the TCP connection, and
RTO is the retransmission timeout.

The above formula was established under the assumption
that the TCP sender increases its congestion window for each
arriving ACK. It is worthwhile to notice that the TCP sender
can rather increase its congestion window using the number
of previously unacknowledged bytes each ACK covers [24],
[25]. In this case, the factor d disappears from the formula,
and the throughput increases. Since in this paper our goal is to
find the optimal value of d that maximizes the total throughput
of the TCP connections in the network, we keep the factor d
in (1). However, our study could also serve as a worst-case
analysis for the other scenario mentioned.

Remark 2.1: We use the term “throughput” in the same
sense as in [17], [18], i.e. the average number of packets sent
in a time unit. Note however that “throughput” is used in some
papers (see, e.g. [21], [17], [18]) in the meaning of “goodput”,
which is the average number of packets received error-free in
a time unit. The term “send-rate” is then used in the sense of
our meaning of “throughput” [21]. In any case, for small loss
probabilities, throughput is a good approximation of goodput.

We start by modeling the network as a bidirectional link.
Each direction of the link is modeled by a queue system.
Two sets of N symmetric TCP sources send data from both
end-points of the link (Figure 1). Each source of the first set
connects to a receiver that does not belong to the second set
and vice versa. Thus, in each queue TCP packets and ACK
packets from different connections are multiplexed in the same
queue and served by the same server. Using this model, we
assume that losses that occur in the system are only due to
congestion, i.e. buffer overflow.

We denote by α the “effective” size of ACK packets and
by Z the size of TCP packets. The parameter α would model
not only the actual size of ACK packets but also the eventual
overheads introduced in the processing time. Denote by b(t)
the service time distribution, which can be expressed as

b(t) =

⎧⎪⎪⎨
⎪⎪⎩

α

Z C
if an ACK is in service at time t

1
C

if a TCP packet is in service at time t

(2)
where C is the capacity of the link in TCP packets per unit
of time. In order to develop a tractable model, we need a
simple formula that relates the throughput at the buffers to
the losses that will be experienced there. To that end we shall
assume that the packet arrival process at each queue can be

approximated by a Poisson process. (We note that the validity
of this approximation in a similar context has been discussed
and examined in [1], [8].) Then, the packet loss probability is
the loss probability of an M/G/1/K system. Note that the
loss probabilities seen by ACK packets and TCP packets are
theoretically the same because of the PASTA property.

Below we propose two modeling approaches for the service
time: the exponential service time which provides a simple
expression for the losses but gives a rough approximation,
and the deterministic service time (whose duration varies ac-
cording to whether it is an ACK or a data packet) which gives
a better approximation but with a more complex expression
for the losses. In the deterministic model there are thus two
possible values of service times: α/ZC or 1/C.

A. The Exponential Service Time Case

In this case, the service time of packets is exponentially
distributed. The loss probability is then given by the loss
probability of an M/M/1/K system:

p = ρK 1 − ρ

1 − ρK+1
(3)

where ρ is the load of the system, which is computed as
follows:

ρ =
(

NT +
NT

d

)(
1

d + 1
α

ZC
+

d

d + 1
Z

ZC

)
=

1
C

(NT + NT
α

dZ
) (4)

We use the fixed point method to solve numerically the
system of equations (1), (3) and (4). The advantage of this
simple model is that we can compute the loss probability and
thus the throughput for large values of K and ρ.

B. The Deterministic Service Time Case

Here, we modify only the assumption that the service
times are exponentially distributed and thus only equation (3)
is replaced by the expression of the loss probability of an
M/G/1/K queue [22], [23]:

p =
1 + (ρ − 1) f

1 + ρ f
, where f =

1
2π i

∮
Dr

1
G(s) sK−1

ds (5)

Here, Dr is any circle in the complex plane with center 0 and
with radius r chosen small enough so that all zeros of the
function G(s) are outside the circle, i.e. r < |G(z)| ∀ z such
that G(z) = 0. The complex-valued function G(s) is defined
as

G(s) = LST (b(λ(1 − s))) − s ,

where LST (b(·)) =
∫∞
0 b(t) e−st dt is the Laplace Stieltjes

transform of the service time distribution:

LST (b(s)) =
1

d + 1
e−(αs/ZC)︸ ︷︷ ︸
ACK

+
d

d + 1
e−s/C︸ ︷︷ ︸

TCP

The parameter λ is the total arriving rate at the entrance of
each queue, which is equal to (NT + NT/d). Computation
of f is detailed in the Appendix.

Again, we solve the three equations (1), (5) and (4) nu-
merically, and compare the results to those obtained using the
exponential time distribution, as presented next.
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Fig. 2. Effect of d on the throughput
for various ACK sizes: the determin-
istic service time case.
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Fig. 3. Effect of d on the throughput
for various ACK sizes: the exponen-
tial service time case.

C. Numerical Results and Simulations

In this section we use our model to study numerically the
trade-off controlled by the delay factor d. We will show that a
relative gain in the throughput, ranging from 5% to 50%, can
be achieved by setting d > 1. We also performed simulations
using NS-2 to evaluate the accuracy of the two models at
capturing the impact of d on the throughput.

Figure 2 depicts plots of the throughput of TCP as a function
of the delay factor d. We consider an “effective” size of
TCP data packet of 500 bytes and various “effective” sizes
of ACKs, ranging from α = 40 to 250. (As mentioned in the
introduction, the difference between actual and effective sizes
of a packet is that additional overhead may be added to its
real size due to other protocols of other layers; in addition,
processing an ACK at some nodes may take longer than its
relative size with respect to a TCP data packet.) The queue
size is 20 packets, the round-trip time RTT is 200 ms and the
retransmission timeout RTO is 1.2 s. We set C to 125 TCP
packets/s, and we set N to 1 since the throughput depends only
on the fraction C/N . The plots were generated numerically
using the more precise model of deterministic service times.

The figure shows that for the small ACK size of 40, spacing
the ACK (using d > 1) results in a small improvement in
the performance (6%). However, the throughput is maximized
when d = 4. For higher values of “effective” ACK size
(α ≥ 100), we see an improvement of 12% to 31%, with
the optimum obtained for example for α = 100 at d = 5.
Using a value of d > 2, which is the default value in TCP,
results in a relative gain of around 10%. We have observed
similar trends with larger link capacities C (larger congestion
window) and with much smaller buffer sizes K (higher loss
probabilities). When K ≥ 60, the throughput approaches the
value obtained simply by solving for T from (4) with ρ set
equal to 1, which yields

T =
C

N(1 + α/(dZ))
,

and the relative gain can reach 50%.
Figure 3 depicts plots of the throughput versus d with the

same parameters as in the previous scenario, but now using
the exponential service time approximation. In this case, the

packet size can represent the average of the “effective” packet
size in the network. This model is useful when the packet
size in the backbone is variable and the exact distribution is
unknown. The figure shows that the trend in the throughput
is almost the same as before, except for the smallest ACK
size of 40 where spacing the ACK results in deterioration of
the performance for all values of d > 1. For larger ACK
sizes (α ≥ 200), once again, the gain of delaying ACKs goes
beyond 20%.

We can explain this behavior as follows. When increasing
d, it is seen from (1) that the throughput decreases; this is the
effect of the explicit dependence of the throughput on d. But d
has yet an indirect opposite impact on the throughput through
its impact on p: the probability of loosing a TCP data packet
is expected to decrease with d since the load decreases with
d, see eq. (4). This indirect impact of d on the throughput
clearly becomes smaller as the ACK size becomes smaller.
This impact is even smaller for the deterministic packet size.
This is due to the fact that the loss probability p in the
exponential model (M/M/1/K) overestimates the loss proba-
bility computed by the deterministic model (M/D+D/1/K). We
conclude that for all sufficiently small ACK size we can expect
the throughput to deteriorate when d becomes larger than 1.
Moreover, with exponentially distributed service time, this will
already occur with larger ACK size than those for which it
would occur in the case of deterministic service time.

Next, we performed two sets of simulations to study the
robustness of the models described above. First, we study the
effect of the number of connections N . Then, we look at the
effect of the receiver timeout2 which is not captured by the
two models. We use a similar network configuration as the
one described in the model of Figure 1, and we add N access
links of capacity 1 Mbs each to the bottleneck link. We set the
propagation delays such that RTT ≈ 200 ms and RTO ≈ 1.2
s.

In the first set of simulations, we vary the number of
connections N from 30 to 200, and we vary the bottleneck
capacity C in order to keep the ratio C/N constant at 125.
We fix the ACK size to α = 100. In this set of simulations,
we use the default value of the receiver timeout which is set to
100 ms. Figure 4 plots the average TCP throughput versus the
delayed factor d, using the two models and simulation traces
for N = 30, 50, 100 and 200.

The key observation we make here is that when N increases,
the relative error induced by the deterministic model decreases
notably. This is because the resulting process of multiplexing
the TCP connections approaches a Poisson process [8]. Sur-
prisingly, the model with the exponential service time approx-
imation predicts very well the throughput when N = 30. The
combination of two phenomena is responsible for that.

(i) First, we note that whereas the queueing models yield
the same throughput when multiplying both the number of
connections and the capacity by the same constant, the sim-
ulation results do not: when the number of connections in
the simulation is small, the capacity cannot be fully utilized
and the throughput of single connections decreases. Another

2The receiver timeout is used to send an ACK for arriving packets even
before d packets arrived at the receiver if the time since the unacknowledged
packet arrived exceeds the timeout.
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Fig. 4. Simulation results versus
numerical results.
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Fig. 5. Effect of the receiver timeout
on the number of generated ACKs
when N = 100.

reason for the fact that the throughput of the simulation is
lower for smaller N is that there is less multiplexing so the
packet arrival process is more bursty than the Poisson model.

(ii) Second, the exponential service model yields lower
throughput than the deterministic service one (this is due to
the fact that the exponential model (M/M/1/K) over-estimates
the loss probability with respect to the one computed by
the deterministic model (M/D+D/1/K)). Combining this with
the fact that the simulated throughput is lower than the
deterministic model can explain the better fit of the simulation
with the exponential model for smaller values of N . However,
it is important to notice that this observation do not lead to
the conclusion that exponential distribution provides a bound
for small N .

If we examine closely the plots in Figure 4, we can
observe that when d is large, the throughput in the simulations
decreases (as opposed to the one estimated by the deterministic
model). The explanation is that when d is large, the receiver
timeout expires more often especially when the congestion
window size is small. Thus, the number of ACKs increases
and the bandwidth consumed by ACKs becomes larger than
NT/d. Figure 5 illustrates this behavior when N = 100,
which depicts the ratio between the TCP and the ACK
throughputs. This ratio is seen to increase when the timeout
value increases.

After examining the influence of the receiver timeout on
the ratio of throughputs, we now turn to examine its impact
directly on the TCP throughput. We use the same parameter
values as in the previous simulations, and set N = 100. We
vary the receiver timeout from t1 = 10 ms to t2 = 180 ms.
Note that t1 is just larger than the minimum inter-arrival time
of two consecutive TCP packets sent in the same window, and
t2 is just less than RTT .

Figure 6 depicts plots of the average TCP throughput as a
function of the receiver timeout for various values of d. We
see clearly that when the timeout is large, then the throughput
is reduced. In the cases d = 2 and d = 4, the throughput is
maximized when the timer is equal to 20 ms. For d = 6 and
d = 8, the throughput is maximized at a timer of 50 ms.

Here, the gain in the throughput is relatively small (≈ 3%),
but this is because the average window size is also small
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Fig. 6. Effect of the receiver timeout on the TCP throughput.

(≈ 20). For larger window sizes, for example when the
delay-bandwidth product is large, the gain is more significant.
However, setting a small value for the timeout is risky since
the packet inter-arrival time depends on the cross traffic along
the path and hence could vary over time.

More generally, it is difficult to find a constant timeout that
is adequate for all network scenarios. Another alternative is
to compute dynamically the timeout using a similar method
as the one used by the sender to compute the retransmission
timeout.

In concluding this section, we note that it is worth to use
a delay factor d > 2, particularly for long TCP connections
and when the window size is large. In fact, the improvement
obtained from reducing the number of ACKs in the network
is more significant than the decrease in the throughput due
to the lack of information update. Besides, by choosing an
adequate receiver timeout, we can improve further the gain in
the throughput.

III. A DYNAMIC CONTROL MODEL OF TCP TRAVERSING

A RED BUFFER

After focusing on the quantitative impact of the rate of
information on the throughput, we study in this section a
more qualitative property, the stability, and show how stability
conditions are influenced by the rate of information packets.

We assume that N symmetric persistent TCP connections
share a bottleneck link of capacity C, located close to
the source, assumed to operate in the congestion avoidance
regime. Let W (t) be the window size of a connection at time
t, and R be the round trip delay (including queueing delay),
which is assumed to be a constant (this assumption holds when
queueing delays are much smaller than propagation delays).
Let p(t) be the loss (or marking) probability of the RED buffer
at time t. Let q(t) be the amount of buffered traffic at the queue
at the bottleneck link.

A standard way to study the interaction between TCP/IP
and the RED buffer is to consider a fluid approximation of
the window size of TCP. The window size evolution is then
given by

dW

dt
=

1
R

− W (t)W (t − R)
2R

p(t − R),
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see [15]. This equation has been obtained under the assump-
tions that (i) the delayed ACK mechanism is not used; and (ii)
a new ACK is generated with each TCP packet that arrives at
the destination, resulting in an increase of the window size by
one unit every round trip time.

We shall now consider the possibility of using a (dynamic)
delayed ACK approach in which an ACK is generated for
every d TCP packets that arrive at the destination. d will be
considered as a control variable and will thus be allowed to be
time dependent. Both the increase rate as well as the decrease
rate are divided by a factor d since the rate of ACKs that
arrive at the sources is d time smaller; In particular indications
for decreasing the rate (we assume that ACKs have marks
indicating congestion) return less frequently. The window size
evolution then becomes

dW

dt
=

1
Rd(t − R)

− W (t)W (t − R)
2Rd(t − R)

p(t − R).

The queue dynamics is given in [15] by

dq

dt
=

N

R
W (t) − C.

We shall assume that not only the TCP packets have to queue
but also the ACKs. To model the difference between the size
of an ACK and that of a TCP packet, we assume that an ACK
requires a fraction γ of buffer space required by a TCP packet.
The queue dynamics above is then modified to

dq

dt
=

N

R
W (t) − C +

γW (t − R)N
d(t − R)R

.

The tradeoff that influences the choice of the control d will
be the following: on one hand, when the window size is small,
we may wish d to be small so that the window size can grow
quickly so as to achieve higher throughput. On the other hand,
when the window size is large then we may wish to increase
d so as to limit the congestion due to ACKs in the bottleneck
queue.

We shall analyze in this section a linear control mechanism
in which d has the form d(t) = ζ(1 + βW (t)).

Finally, we shall consider the RED buffer marking proba-
bility (ignoring the averaging of the queue size) in its linear
operation regime: p(t) = η1q(t) − η2.

We summarize the system’s overall dynamics below:

dW

dt
=

1
Rd(t − R)

− W (t)W (t − R)
2Rd(t − R)

p(t − R) (6)

dq

dt
=

N

R
W (t) − C +

γW (t − R)N
d(t − R)R

(7)

d(t) = ζ(1 + βW (t)), ζ > 0, β ≥ 0 (8)

p(t) = η1q(t) − η2 (9)

Equilibrium: The equilibrium point (identified by a sub-
script ‘o’) is obtained by equating the right-hand sides of (6)
and (7) to 0, which leads to

N

R
Wo +

NγWo

doR
= C ⇒ Wo =

CR

N(1 + γ/do)
do = ζ(1 + βWo)
W 2

o po = 2 ⇒ po = 2/W 2
o

po = η1qo − η2 ⇒ qo = (po + η2)/η1

Hence the throughput is given by:

T =
Wo

R
=

C

N(1 + γ/do)
,

which is seen to increase with do.
A linearization of the dynamical system in a neighborhood

of the equilibrium point yields

dδW

dt
= − 1

RWodo
δW (t) − 1

RWodo
δW (t − R)

−η1W
2
o

2Rdo
δq(t − R)

dδq

dt
=

N

R
δW (t) +

ζγN

d2
oR

δW (t − R),

where δ stands for the shifted version of variables in which
the equilibrium value is subtracted (e.g. δW := W − Wo).
Taking the Laplace transform of these equations we obtain

sδW (s) = − 1
RWodo

δW (s) − e−sR

RWodo
δW (s)

−η1W
2
o

2Rdo
e−sRδq(s)

sδq(s) = N

(
1
R

+
ζγ

d2
oR

e−sR

)
δW (s)

With z = sR, the stability condition is then given by requiring
that all zeros of g(z) = 0 have strictly negative real parts [27],
where g(z) is given by

z2 +
z

Wodo
(1 + e−z) +

η1W
2
o N

2do
(1 +

ζγ

d2
o

e−z)e−z (10)

A. Solution of g(z) = 0

Let x := �(z), y := �(z). Then g(z) = 0 is equivalent to

0 = x2 − y2 + 2ıxy +
x + ıy

Wodo

+
(

x + iy

Wodo
+

η1W
2
o N

2do

)
e−x(cos y − ı sin y)

+
η1W

2
o ζγN

2d3
o

e−2x(cos 2y − ı sin 2y)

or equivalently,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 − y2 +
x

wodo
+

(
x

Wodo
+

η1W
2
o N

2do

)
e−x cos y

+
y

Wodo
e−x sin y +

η1W
2
o ζγN

2d3
o

e−2x cos 2y = 0

2xy +
y

Wodo
− (

x

Wodo
+

η1W
2
o N

2do
)e−x sin y

+
y

Wodo
e−x cos y

−η1W
2
o ζγN

2d3
o

e−2x sin 2y = 0

The goal. One may now identify two possible goals: (i)
maximize the system throughput while maintaining stability,
and (ii) for a given desired throughput, make the system “as
stable as possible” by which we mean to choose the parameters
so as to have the real part of the largest zero of g(z) as negative
as possible.
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Note that whereas the throughput only depends on do, γ,
N and C, and not directly on the values of ζ, β, η1, η2, the
stability regime does depend directly on ζ and η1, and hence
these parameters do enter into the optimization under goal
(i). For the second goal, we may first compute do and then
optimize stability with respect to the other parameters.

We first need to verify (numerically) that there are no zeros
of g with x ≥ 0. We show below that we can in fact restrict
the numerical search to a bounded domain.

Assume x ≥ 0. Then,

|g(z)| ≥ |z|2 − 2|z|
wodo

− η1w
2
oN

2do

(
1 +

ζγ

d2
o

)
=: f(|z|)

A necessary condition for g(z) = 0 is then f(|z|) ≤ 0. Note
that f(|z|) = (|z| − z1)(|z| − z2), where

z1,2 =
1

wodo
±

√
1

(wodo)2
+

η1w2
oN

2do

(
1 +

ζγ

d2
o

)
Thus, for x ≥ 0, a necessary condition for g(z) = 0 is that
|z| ≤ z1 (where z1 is the positive zero).

Note: in a similar way, we can show that to find the zeros
of g(z) = 0 in the region x ≥ v (where v may be negative or
positive), it suffices to consider |z| ≤ z(v) where

z(v) :=
1
2

(
1 + e−v

wodo
+√(

1 + e−v

wodo

)2

+ 4
η1w2

oNe−v

2do
(1 +

ζγe−v

d2
o

)

⎞
⎠

B. A numerical example

This numerical example is picked to show that the system
could be unstable for meaningful choices of the values of the
parameters.

η1 = 0.001, η2 = 0.02, qmin = 20, qmax = 60. Further let
ζ = 1, d0 = 3, N = 5, γ = 250/500 = 0.5, RC >> qo so
we take RC = 100. Then,

Wo =
CR

N(1 + γ/do)
= 100/(5× 1.166) = 17.142857

Hence po = 2/W 2
o = 0.006806, β = (d0/ζ − 1)/Wo =

0.11666 , and q0 = p0+η2
η1

= 26.80555 , which is indeed small
with respect to RC. We can verify that z = 0.09964430039+
0.4704656808 ∗ I is a zero of (10), and hence the system is
unstable.

C. Impact on Stability

In this section we present conclusions drawn from the
results presented in previous subsections.

Examining the form of the equation g(z) = 0 (whose
solutions provide the stability condition), we observe the
following.

(i) The stability condition is not a function of the round trip
delay. This is seen directly from (6)-(9): if we scale time so
that a time unit corresponds to a round trip time, we get a
new system of equations that does not involve R.

(ii) From the form of the expression for g(z), we see that for
the same values of C, R, N, γ, η1, η2 and for the same value

TABLE I
IMPACT OF DYNAMIC CONTROL ON STABILITY

do ζ ⇒ β The system is
3 1 0.33 (W ↗ d ↗) stable
3 2 0.08 (W ↗ d ↗) stable
3 3 0 (no control) unstable
3 4 -0.04 (W ↗ d ↘) unstable

do at equilibrium, the stability region can change according
to the choice of the parameters ζ and β. The choice β = 0
corresponds to a non-dynamic value of d (i.e. a value that does
not change with W ) in which case ζ = do. (Other advantages
of dynamic d have already been illustrated in [6] in the context
of mobile communications.)

(iii) We also see that for fixed C, R, N, γ, ζ, β and a fixed
queue size qo, at equilibrium, g(z) will be influenced by η1

(and hence the stability region). In fact g(z) does not depend
on η2, but note that since we assume that R includes the mean
queueing delay (which is proportional to qo), this means that
fixing qo and η1 already determines η2.

In the following, we choose a scenario that shows clearly
the impact of using a dynamic delayed ACK factor d on the
stability of RED. We fix the parameters used in the numerical
example. We set N = 14, and vary ζ from 1 to 4. Since we
fix d0, β is deduced. Table I presents the results concerning
the stability of the system.

The first observation we make is that when ζ = 3 (= d0),
the system is unstable, which means that when there is no
dynamic variation of the delay factor d, the system is unstable.
However, for ζ = 1 or 2, the system is stable. Besides, β is
positive, which means that the linear control is the correct one
(d(t) is a non-decreasing function of W (t)). When ζ = 4, β is
negative and the system is unstable. These results corroborate
the fact that with an increase of the TCP window, we should
increase the delay factor d. Moreover, using an adequate
adaptive control of d, we can improve the stability of the
system.

IV. LINEAR QUADRATIC APPROACHES FOR FLOW

CONTROL

In this section we study another facet of the interaction
between the network and control data, namely, the problem
of optimum choice (in a sense to be defined later in this
section) of the time interval between successive transmissions
of information in ATM-like networks. However, unlike the
previous study of TCP we do not consider here a precise
model for an ATM protocol such as ABR but we employ
a specific control theoretic approach that is representative
of the ABR rate control mechanism [5]. Our approach uses
continuous variables and lies within a linear quadratic frame-
work. Such frameworks have frequently been used in rate-
based flow control where the nonlinearity at queue boundaries
(corresponding to empty or full buffers) are avoided through
tight control. More precisely, we make three simplifying (but
realistic) modeling assumptions, and a fourth one on the nature
of the information flow:

1. Fluid approximation. We replace a discrete number
of packets by a continuous fluid. The fluid approximation
is justified by the fact that in today’s technology, buffering
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capabilities are very large (in the order of several thousands)
in terms of the number of packets they can store, so that the
error introduced by replacing integers by real numbers is small
(in fact, negligible) relative to the size of the buffers. This type
of approximation is common both in the design of controllers
in high-speed telecommunication networks (see e.g. [13]) as
well as in the performance evaluation of existing controllers
[19], [20].

2. Linearized dynamics. We assume that the network
has linearized dynamics for the control of queue length; see
(11) below. This amounts to neglecting losses due to buffer
overflow and also neglecting the boundary effect of an empty
queue. The latter is a reasonable simplification given the fact
that the controllers that we derive operate in a region close
to full throughput utilization, so that the queue length will
almost never hit zero. Full utilization is indeed common in the
control of ABR switches, see e.g., [16], and can be assured
by regulating the (controlled) input rate and adapting it to the
available capacity. As described below, we set some desirable
threshold on the queue length which we attempt to track,
precisely so as to avoid large queues (which might lead to
losses) or empty queues (which might result in loss of potential
throughput). When a control mechanism has a full utilization,
then the nonlinearity around zero disappears. For similar
models with a single controller, simulations have confirmed
[4], [3] that controlled linearized models lead to trajectories
that are very close to the original one. The other assumption–
that buffer overflow will not happen– can be justified through
similar arguments, since the optimal control to be derived will
be shown to be symmetric with respect to positive or negative
deviations around the target queue value.

3. Bottleneck assumption. We assume that all perfor-
mance measures (such as throughput, delays, loss probabil-
ities, etc.) are determined essentially by a bottleneck node.
This assumption admits theoretical as well as experimental
justifications; see [12].

4. Information flow. We assume that information is sent
to the controller on the queue length periodically, every τ
seconds.

We next introduce the model, where we assume that there is
a single bottleneck link, which is used by both the information
packets and the data packets, with the former having priority
over the latter. The link capacity, C, available to data packets
thus depends on the rate, 1/τ , of the information packets:

C(τ) = Ctotal − a/τ ,

where Ctotal is the total capacity and a is a proportionality
constant. Part of C is also used by uncontrolled inputs,
whose total input rate is assumed to be C1 + w(t) where
C1 is a constant and w is some uncertainty, which could be
modeled as a stochastic process with independent increments
and zero mean (capturing the stochastic nature of the rate of
uncontrolled sources), or some unknown deterministic process
with average value zero (we will consider both possibilities in
the sequel). The average rate of the controlled source is then
C2 = C(τ) − C1, and we denote the rate of change around
this nominal value to be u(t), which is the control variable.
Letting q(t) denote the queue length at the bottleneck link,

we then have the queue length dynamics given by

dq = u dt + dw (11)

which is idealized because the end-point effects have been
ignored. The objectives of the flow controller are to ensure that
(i) the bottleneck queue size stays around some desired level
Q, and (ii) variations in the rate remain small. The choice of
Q and the variability around it have a direct impact on loss
probabilities and throughput.

We next introduce a shifted version of q: x(t) := q(t)−Q,
and note that (11) can equivalently be written as

dx = udt + dw (12)

An appropriate local cost function that is compatible with
the objectives stated above would be the one that penalizes
variations in x(t) and u(t) around zero — a candidate for
which is the weighted quadratic cost function: x2+ku2, where
k is some positive weighting parameter.

We now seek a control policy that is optimal (in a sense
to be clarified shortly) among those which choose u(t) as a
function of the queue length at the time instants when new
information becomes available; that is, with μ denoting such
a policy,

u(t) = μ(x(0), x(τ), ..., x(nτ), t),

for t ∈ [nτ, (n + 1)τ), n = 0, 1, 2, ...
We consider two different approaches toward the characteri-

zation of the optimum μ, depending on whether w is stochastic
or deterministic (but unknown). The former case leads to the
LQG (linear quadratic Gaussian) formulation, and the latter to
the H∞ formulation. Both cases are discussed below.

A. LQG model

Here we assume that w is a zero mean Brownian motion
with incremental variance intensity r. The expected average
cost corresponding to a given policy μ and initial state x is
then defined as

J(x, μ, τ) = lim sup
T→∞

1
T

Eμ
x

[∫ T

0

(
x2(t) + k u2(t)

)
dt

]

where Eμ
x is the expectation with respect to the probability

measure induced by a policy μ and an initial state x. We first
seek to obtain the optimal policy, μ∗, and the corresponding
value of the cost, J∗, as a function of x and τ :

J∗(x, τ) := min
μ

J(x, μ, τ) = J(x, μ∗, τ). (13)

The following theorem whose proof is in the Appendiix states
that result.

Theorem 4.1: The optimal cost value of the LQG problem
is independent of the initial state x and is given by

J∗(τ) =
τ

2
r + r

√
k , (14)

and the unique policy that attains the minimum is given by

u∗(t) = μ∗(x(nτ), t) = − 1√
k

e
− t−nτ√

k x(nτ) (15)

for t ∈ [nτ, (n + 1)τ).
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We note that as long as τ2 is much smaller than
√

k, the
value is quite insensitive to changes in the spacing τ . On the
other hand, when it is much larger than

√
k, we see that

the spacing of information packets has a big impact on the
performance: the cost grows quadratically in the spacing.
Optimal spacing of information for the LQG model

Having determined the optimal control policy for a given
parameter τ of spacing of information packets, we next turn
to finding the optimum value of τ . In order to bring in some
tradeoff in the choice of τ , in addition to the optimum cost
J∗(τ) given by (14), we assume that the flow control has some
utility U(τ) for the average throughput Ctotal−a/τ available
for data packets. We will consider two types of functions:

1) A linear utility: U(τ) = Ctotal − a/τ .
2) A logarithmic utility: U(τ) = log(Ctotal − a/τ).

The overall cost to be minimized in both cases will be taken as
Z(τ) = J∗(τ)−β U(τ) , where β is some positive weighting
parameter that characterizes the level of tradeoff between
sending data packets and information packets. Under both
types of utility functions, the function Z(τ) is a strictly convex
function of τ on (0,∞), and admits a unique minimum. This
solution is given in the theorem below.

Theorem 4.2: The optimal information spacing, τ∗, is given
by the following under each of the two utility functions:
(i) under linear utility: τ∗ =

√
2βa/r

(ii) under logarithmic utility:

τ∗ =
a

2Ctotal

[
1 +

√
1 + 8(β/ar)Ctotal

]
Proof. The expressions for τ∗ follow by setting the deriva-

tive of Z to zero, and solving for the positive roots of the
resulting quadratic equations. 

B. A worst-case (H∞) approach

The second modeling paradigm does not ascribe any statis-
tics to the uncertainty process, w, but instead associates an
adversary (player) with the uncertainty, who chooses the
process in such a way so as to maximize its effect on the
deviations from the nominal queue length and the nominal
rate, which is the framework of H∞-optimal control [11].
More precisely, taking the initial deviation on the queue length
as x(0) = 0, and letting v(t) := dw(t)/dt, we define

V (μ, τ) = sup
v

L(μ, v, τ)

||v||2 (16)

where L(μ, v, τ) =
∫∞
0

(
x2(t)+ ku2(t)

)
dt , and where μ is a

controller of the type defined earlier, and ||v|| is the L2 norm
of v over the interval [0,∞), that is, ||v||2 =

∫∞
0 v2(t) dt . One

then wishes to find the μ that minimizes V (μ, τ) over the class
of policies that depend on sampled (in time) values of x, as
identified in the previous subsection; denote the infimum by
(γ∗)2, that is infμ V (μ, τ) =: (γ∗)2 .

For γ > γ∗, let us introduce the γ-parameterized soft-
constrained cost function Lγ(μ, v, τ) := L(μ, v, τ)− γ2 ||v||2,
and consider a two-player dynamic game where Lγ is to
be minimized by Player 1 (controlling μ) and maximized
by Player 2 (controlling v). For this game, we can take
x(0) = x0, where x0 is known but not necessarily zero. If

there exists some policy μ∗ that minimizes V (μ, τ), then it
has the property [11]:

sup
v

Lγ∗(μ∗, v, τ) = inf
μ

sup
v

Lγ∗(μ, v, τ) ,

The quantity above is the upper value of the zero-sum dynamic
game with kernel Lγ∗ , which is in fact a quadratic function
of x0, and hence equal to zero if x0 = 0. It can actually be
shown that for any γ > γ∗, the upper value of the game with
parameterized kernel Lγ is also quadratic in x0 (and hence is
equal to zero if x0 = 0), and for γ < γ∗, its upper value is
infinite. Hence, γ∗ is the “smallest” positive scalar γ for which
the zero-sum game with kernel Lγ has a finite upper value.
Furthermore, in this result, and the computation of the upper
value, what information v is endowed with does not play any
role; it could be closed loop, or sampled data, or open loop.

In view of the above result, instead of obtaining μ∗,
we will in fact solve for a parameterized class of con-
trollers, {μγ , γ > γ∗}, where μγ is obtained from
supv Lγ(μγ , v, τ) = infμ supv Lγ(μ, v, τ) . The controller μγ

will clearly have the property that it ensures a performance
level no worse than γ2 for the index adopted in (16), i.e. the
attenuation is bounded by

{L(μγ , v, τ)}1/2

||v|| ≤ γ for all v. (17)

This solution is now given in the theorem below.
Theorem 4.3: For the problem formulated above, given a

fixed τ > 0 and a fixed attenuation level γ >
√

k, an
admissible control policy μγ that leads to satisfaction of the
disturbance attenuation bound (17) is

uγ(t) = μγ(x(nτ), t)

= − γ

k
√

(γ2/k) − 1
e−

1
γ

√
γ2
k −1 (t−nτ)x(nτ)

for t ∈ [nτ, (n + 1)τ ) , n = 0, 1, 2, . . . , provided that the
following inequality (tradeoff) between τ and γ holds:

τ

γ
+ arctan

1√
(γ2/k) − 1

≤ π

2
(18)

The corresponding worst-case uncertainty process, vγ , is given
in closed-loop form by

vγ(t) = νγ(x(t)) =
1

γ
√

(γ2/k) − 1
x(t) , t ≥ 0

and under (μγ , νγ) the queue dynamics

dq

dt
= u + v , q(0) = q0

is asymptotically stable, with q(t) exponentially converging to
Q̄ for all q0.

The largest value of τ (that is the coarsest spacing of
information) that leads to attainment of a given level, γ >

√
k,

of disturbance attenuation is

τ =
π

2
γ − γ arctan

1√
(γ2/k) − 1

, (19)

and conversely, for a given τ > 0, the optimum level of
disturbance attenuation, γ∗(τ), is obtained as the unique
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Fig. 7. Maximum value of τ from (19) as a function of γ.

solution of (19), and the corresponding controller is μγ∗,
which is well defined as the limit of μγ as γ ↓ γ∗.

Proof. See the Appendix. 
Remark. It is worth noting that for each τ > 0 the limit
limγ→∞ μγ =: μ∞ is a well-defined controller, and is pre-
cisely the controller (15) obtained for the Gaussian model.

Remark. It directly follows from H∞-optimal control theory
([11], [10]) that τ in (19) is a monotonically increasing
function of γ–a property that can also be proven directly by
differentiating the right-hand-side of (19) with respect to γ,
and seeing that it is indeed positive:

dτ

dγ
=

π

2
− arctan

1√
(γ2/k) − 1

+
1√

(γ2/k) − 1
> 0

Figure 7 depicts this property for k = 1. The spacing (y-axis)
is seen to be concave increasing in the required attenuation,
and asymptotically it grows linearly with it.
Optimum spacing of information packets under H-infinity
Given the constraint (19) linking τ and γ, we want to find
an optimal value of τ under a criterion that shows tradeoff
between minimization of the level of disturbance attenuation,
γ, and maximization of utility for capacity available for data
traffic, that is Ctotal−a/τ . Hence, the objective function to be
minimized, subject to (19), is Z(τ ; γ) = F (γ)−βU(τ) where
F (·) is an increasing differentiable function on (0,∞), and
U(·) the utility function, which is strictly concave increasing,
and differentiable everywhere on (0,∞). Furthermore, β > 0
is a tradeoff parameter.

Differentiating Z(τ ; γ) with respect to τ , by also (implic-
itly) taking into account the dependence of γ on τ through
the constraint, we have F ′(γ) γ′(τ) = βU ′(τ) where ‘prime’
(′) denotes derivative with respect to the argument of the
corresponding function. Note that because of the conditions
imposed on F and U , and the one-to-one relationship between
γ >

√
k and τ > 0 through the constraint (19), the stationarity

condition above is not only necessary but also sufficient.
Further, total-differentiating the constraint equation (19) with

respect to τ , we obtain:

(
τ
γ + 1√

(γ2/k)−1

)
γ′(τ) = 1.

Using the expression for γ′(τ) from the preceding equation

in the stationarity condition leads to F ′(γ) = β

(
τ
γ +

1√
(γ2/k)−1

)
U ′(τ). This will have to be solved, along with

(19), for the optimum value of τ . Note that τ from (19) can
be substituted into the equation above, to lead to a single
equation for γ, which can then be solved (numerically) for
the optimum γ (and in turn for the optimum τ ) corresponding
to different choices of U (as in the LQG case) and F .

V. CONCLUSION

We have studied in this paper the problem of optimum
information transfer in communication networks, using three
specific models. This study provides us with insight into the
interaction (and tradeoffs) between network performances and
control information that should be sent back to the sources in
congestion control mechanisms. We have deliberately chosen
simple models in order to obtain tractable results. Indication
on the validity and accuracy of our first model has been
obtained using simulations as well as numerical computations
involving more precise models. We consider both IP-based
and ATM-based networks.

In IP-based networks, we have shown that the rate of
information can have quantitative impacts on the system, as
conveying information consumes resources which would oth-
erwise be available for the data packets. In particular, delaying
control information (ACK packets) results in increasing TCP
throughput by 5% to 50% in our numerical computations.
However, above some spacing threshold, the gain is worthless.
The rate of information can also have qualitative effects, in
the sense that it may impact the stability of a congestion
control algorithm. Especially, we have found that adapting
dynamically the frequency (spacing) of control information
might be necessary to avoid network instability.

In ATM-based networks, control information are impor-
tantly deployed in the rate control mechanism of ABR class
of service. We have used a specific control theoretic approach
that is representative of an ABR rate control in order to
study the optimum frequency. We have shown that the optimal
spacing between control information can be found by solving
numerically a trade-off equation that relates the cost of control
information and the capacity available to data. We have shown
how to derive this optimal spacing τ∗ for LQG and H-infinity
design problems. In the former case, we have found an explicit
expression for τ∗, and in the latter case as a root of the trade-
off equation.

We are currently applying similar methodologies in order
to investigate the gain we can possibly obtain from separating
control and data information. So far, we have considered that
control and data share the same queue. Preliminary results
show that it is worthy to separate between them only under
high load.

VI. APPENDIX

A. Computation of f for Section II

Let s = reıθ = r cos θ + ı r sin θ, and β = ζ/Z and L =
λ/C, then we can write

f =
1

2π ı

∮
Dr

1
G(s) sK−1

ds
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=
1

2π rK−2

∫ 2π

0

e−ıθ(K−2) G(θ)
|G(θ)|2 dθ (20)

where

G(s) =
1

d + 1
e−

ζλ(1−s)
ZC +

d

d + 1
e−

λ(1−s)
C − s,

e−ıθ(K−2) G(θ) =

cos (θ K − 2 θ)

(
e−β L(1−r cos θ) cos (β Lr sin θ)

d + 1

+
de−L(1−r cos θ) cos (Lr sin θ)

d + 1
− r cos θ

)

+sin (θ K − 2 θ)

(
−e−β L(1−r cos θ) sin (β Lr sin θ)

d + 1

−de−L(1−r cos θ) sin (Lr sin θ)

d + 1
+ r sin θ

)

+ı

[
− sin (θ K − 2 θ)

(
e−β L(1−r cos θ) cos (β Lr sin θ)

d + 1

+
de−L(1−r cos θ) cos (Lr sin θ)

d + 1
− r cos θ

)

+ cos (θ K − 2 θ)

(
−e−β L(1−r cos θ) sin (β Lr sin θ)

d + 1

−de−L(1−r cos θ) sin (Lr sin (θ))

d + 1
+ r sin θ

)]
In view of this,

|G(θ)|2 = −
⎛
⎝−d2e2 L(−1+r cos(θ)) − r2

+2 eβ L(−1+r cos(θ)) cos (β Lr sin (θ)) r cos (θ)

+2 eβ L(−1+r cos(θ)) sin (β Lr sin (θ)) r sin (θ)

−2 eL(−1+r cos(θ))(β+1) sin (β Lr sin (θ)) d sin (Lr sin (θ))

−2 eL(−1+r cos(θ))(β+1) cos (β Lr sin (θ)) d cos (Lr sin (θ))

+2 eβ L(−1+r cos(θ)) cos (β Lr sin (θ)) r cos (θ) d

+2 d2eL(−1+r cos(θ)) cos (Lr sin (θ)) r cos (θ)

+2 deL(−1+r cos(θ)) cos (Lr sin (θ)) r cos (θ)

+2 eβ L(−1+r cos(θ)) sin (β Lr sin (θ)) r sin (θ) d

+2 d2eL(−1+r cos(θ)) sin (Lr sin (θ)) r sin (θ)

+2 deL(−1+r cos(θ)) sin (Lr sin (θ)) r sin (θ)

−e2 β L(−1+r cos(θ)) − r2d2 − 2 r2d

⎞
⎠/

(d + 1)2

We can check that the real parts of e−iθ(K−2) G(θ) and
|G(θ)|2 are even functions in θ, and that the imaginary part
of e−iθ(K−2) G(θ) is odd. Then, (20) is reduced to:

f =
1

π rK−2

∫ π

0

Real(e−iθ(K−2) G(θ))
|G(θ)|2 dθ (21)

Choosing a radius r for the integration. Note that when
β = 1, i.e. ζ = Z , then L = ρ and the queueing system is
reduced to M/D/1/K . It is possible to compute a radius in
this case [26]. Let r(ρ) denote such a radius. We can show
that r(ρ) can also be used to compute the integral in the case
when β < 1. 

B. Proof of Theorem 4.1

Let us first consider the version of the problem with finite-
horizon cost

J(x, μ; T ) =
1
T

∫ T

0

E
(
x2(t) + ku2(t)

)
dt

where T is a multiple of τ . Under the given scalar dynamics
(12), J(x, μ; tf ) can equivalently be written as [14]

1
T

[ ∫ T

0

E|u(t) +
1
k

p(t; T )x(t)|2kdt + m(0; T )
]

,

where p and m satisfy (and are unique solutions of) the ODEs:
ṗ + 1− 1

kp2 , p(T, T ) = 0 and ṁ+ pr = 0 , m(T, T ) = 0.
Taking T = Nτ for some integer N , a further equivalent
expression for J(x, μ; T ) is

N−1∑
i=0

1
Nτ

∫ (n+1)τ

nτ

E|u +
1
k

px|2kdt +
1
T

m(0; T ) .

Given that on the time interval [nτ, (n + 1)τ), the control
u depends on x(nτ) (as well as the past sampled values of
x), x(t) can be written for t ∈ [nτ, (n + 1)τ) as x(t) =
x̂(t) + e(t), where dx̂(t)

dt
= u(t) , x̂(nτ) = x(nτ), de(t) =

dw(t) , e(nτ) = 0 and x̂ and e are statistically independent.
In view of this, J(x, μ; T ) can equivalently be written as

N−1∑
i=0

1

Nτ

∫ (n+1)τ

nτ

E
[
|u +

1

k
px̂|2k + p2(t, T )e2(t)

]
dt +

1

T
m(0; T ) .

It readily follows from the above form of J(x, μ; T ) that the
unique minimizing control for the finite-horizon sampled-data
stochastic control problem is

u(t) = μ(x(nτ), t) = −(1/k)p(t, Nτ) x̂(nτ) ,

and the corresponding minimum value is

1
N

N−1∑
i=0

1
τ

∫ (n+1)τ

nτ

p2(t, Nτ)(t − nτ)dt +
1

Nτ
m(0; Nτ).

As N → ∞, p(t, Nτ) converges uniformly in t to the
constant p̄ =

√
k, and (1/Nτ)m(0, Nτ) → p̄r. Furthermore,

1
N

N−1∑
i=0

1
τ

∫ (n+1)τ

nτ

p2(t, Nτ)(t − nτ)dt → τ

2
r

Given that with u = −(1/
√

k)x̂(t), x̂(t) = e
− t−nτ√

k x(nτ),
t ∈ [nτ, (n + 1)τ), Theorem 4.1 readily follows. 

C. Proof of Theorem 4.3

This result is a direct application of the general theory in
[10] on H∞-optimal control of linear systems under deter-
ministic sampled-data information. With instantaneous state
feedback, a control that guarantees a level of disturbance
attenuation (DA) γ is given (for the scalar system at hand) by:
uγ(t) = −(1/k)Zγx(t) , where Zγ is the positive solution of
the generalized algebraic Riccati equation:

(
1
k−γ−2

)
Z2−1 =

0 , provided that γ2 > k. If γ <
√

k, then no control
can guarantee such a level of DA, and the upper value of
the associated soft-constrained game is infinite. When the
upper value is bounded, then the worst-case disturbance is
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vγ(t) = γ−2Zγx(t). If the information available is sampled
data (say, with frequency 1/τ ), then the achievable level of DA
is higher, and is determined by the condition of solvability of a
series of finite-horizon Riccati differential equations (RDEs).
On the time interval [nτ, (n + 1)τ), the relevant RDE is

Ṡ + γ−2S + 1 = 0 , S((n + 1)τ) = Zγ

We require that this RDE has no finite escape on the given
interval, for which the condition is precisely (18), that is

τ

γ
+ arctan

1√
(γ2/k) − 1

≤ π

2
.

If this condition holds, then the RDE admits a unique positive
solution which is finite over t ∈ (nτ, (n+1)τ), and if the left-
hand side is larger than π/2, then the RDE will have a finite
escape before the solution reaches nτ . Note that the condition
is independent of n, and thus of the specific interval on which
the RDE is defined, and hence it applies to all such RDEs. The
final observation is that, again following [10], a sampled-data
control that guarantees the achievable level of DA is obtained
from uγ(t) = −(1/k)Zγx(t) by solving for x(t) on the
interval (nτ, (n + 1)τ ] in terms of x(nτ), from

ẋ = uγ(t) + vγ(t) =
(
γ−2 − 1

k

)
Zγx(t) ,

and substituting into uγ(t), which leads to the μγ(x(nτ), t)
given in the theorem. This completes the proof of the theorem,
including asymptotic stability of the resulting queue dynamics
(which directly follows from [10]). 
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Dr. Başar is the Editor-in-Chief of Automatica, Editor of the Birkhauser
Series on Systems & Control, Managing Editor of the Annals of the In-
ternational Society of Dynamic Games (ISDG), and member of editorial
and advisory boards of several international journals in control, wireless
networks, and applied mathematics. He has received several awards and
recognitions over the years, among which are the Medal of Science of
Turkey (1993); Distinguished Member Award (1993), Axelby Outstanding
Paper Award (1995), and Bode Lecture Prize (2004) of the IEEE Control
Systems Society (CSS); Millennium Medal of IEEE (2000); Tau Beta Pi
Drucker Eminent Faculty Award of UIUC (2004); the Outstanding Service
Award (2005) and the Giorgio Quazza Medal (2005) of the International

Federation of Automatic Control (IFAC); and the Richard E. Bellman Control
Heritage Award of the American Automatic Control Council (2006). He is a
member of the National Academy of Engineering (of USA), a member of the
European Academy of Sciences, a Fellow of IEEE, a Fellow of IFAC, a past
president of CSS, and the founding president of ISDG.

Naceur Malouch is an assistant professor at the
University Pierre et Marie Curie Paris 6, France
since 2003, and a researcher in the Network and
Performance Analysis team at LIP6. He received
the Ph.D. in computer science from the University
of Nice Sophia-Antipolis, France in January 2003.
During his ph.d studies, he was with the MISTRAL
group at INRIA Sophia-Antipolis. From 2002 to
2003, he was assistant professor at the “Ecole Su-
perieure en Sciences Informatiques” (ESSI), Univer-
sity of Nice Sophia-Antipolis. He is the responsible

of the European CELTIC BOSS project and the national MosoMuso project
for LIP6. He has been the responsible of the Research program of the
Master degree from 2005 to 2007. His publications are in the area of
transport protocols, overlay multicast, low complexity high scalability Quality
of Service (QoS) and performance over wireless Mesh networks. Doctor
Malouch was a cooperative visitor at IBM T.J. Watson Research Center from
June to August 2001, Naceur Malouch has served as a TPC member in
the ad-hoc and wireless networks symposium of GLOBECOM2007. He is
a TPC memeber for ICCCN’2008, PIMRC’2008 and GlobeCom’2008. He is
a publicity co-chair of sigmetrics’2008.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on March 18, 2009 at 23:46 from IEEE Xplore.  Restrictions apply.


