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Abstract We consider a zero-sum stochastic game with side constraints for both
players with a special structure. There are two independent controlled Markov
chains, one for each player. The transition probabilities of the chain associated
with a player as well as the related side constraints depend only on the actions
of the corresponding player; the side constraints also depend on the player’s con-
trolled chain. The global cost that player 1 wishes to minimize and that player 2
wishes to maximize, depend however on the actions and Markov chains of both
players. We obtain a linear programming formulations that allows to compute the
value and saddle point policies for this problem. We illustrate the theoretical results
through a zero-sum stochastic game in wireless networks in which each player has
power constraints.

1 Introduction

Zero-sum stochastic games have been an active area of research and a useful tool in
many applications. Yet, it is well known that identifying saddle point policies even
in zero-sum stochastic games with finite state and action spaces is hard. Unlike
the situation in Markov decision processes (MDPs) in which stationary optimal
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policies are known to exist (under suitable conditions), and unlike the situation in
constrained MDPs (CMDPs) with a multichain structure, in which optimal Mar-
kov policies exist (Hordijk and Kallenberg 1984; Kallenberg 1994), we know that
saddle point policies in stochastic games depend in general on the whole history
(Mertens and Neyman 1981). This difficulty motivated researchers to search for
various possible structures of stochastic games in which saddle point policies exist
among stationary or Markov strategies and are easier to compute.

In this paper we consider two CMDPs, where the transition probabilities of
each one are controlled by just one of the players who has information only on the
history of the CMDP it controls. The cost is determined jointly by the states and
actions of both CMDPs. For the expected average cost, we obtain linear programs
(LPs) that allow us to compute the value and saddle point policies for both the
unichain as well as the multi-chain ergodic structure. We illustrate the theoretical
results through a zero-sum stochastic game in wireless networks in which each
player has average power constraints.

Related work Several papers have already dealt with constrained stochastic games.
An important class of zero-sum stochastic games that can be solved using LPs has
been introduced in parallel in Hordijk and Kallenberg (1981a,b), Kallenberg (1994)
and Vrieze (1981). In those games only one player controls the transition proba-
bilities (but both players determine the cost through their actions). The existence
of a stationary Nash equilibrium in non zero-sum constrained stochastic games
has been established in Altman and Shwartz (2000) under a Slater-type condition.
A highly non-stationary saddle-point was obtained in Shimkin (1994) for con-
strained stochastic games with expected average costs. Our work as well as the
class of games we study are based on Gómez-Ramı́rez et al. (2003), who intro-
duced LPs for obtaining the saddle point policies and the value of stochastic games
with sample average costs and a unichain structure.

2 The model

We consider two MDPs characterized by the triplets (Ik,Ak,Pk), k = 1, 2, where
Ik,Ak stand for the finite state and action spaces, respectively, and where Pk =
{P kiaj } stands for the corresponding transition probabilities; P kiaj is the probabil-
ity that player k’s state moves from i to j if the player chose action a. At state
i ∈ Ik , the set of actions available to player k is Ak(i). Let Kk stand for the set of
(i, a), i ∈ Ik, a ∈ Ak(i).

Define a history hn in MDP k as hn = (i0, a0, i1, a1, ..., in−1, an−1, in) where
i� ∈ Ik , a� ∈ Ak(i�), � = 0, 1, 2, .... A player k strategy u is a sequence (u0, u1, ...)
where u� is a probability measure over Ak(i�) conditioned on hn. Note that player
k strategies do not depend on the realizations of the cost. If they were allowed to
depend on these then a player could use the costs to estimate the state and actions
of the other player.

Player k hasmk side constraints of the formDk
s (β

k, uk) ≤ ξks , s = 1, 2, ..., mk ,
where βk is a probability distribution of the initial state of player k, and where ξks
are some constants. Let β = (β1, β2). We shall write the side constraints in the
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vector form

Dk(βk, uk) ≤ ξk, k = 1, 2. (1)

Denote by Uk the set of all strategies (also called policies) for player k, and let Uk
c

be the set of strategies of player k that satisfy (1). Let Uc := (U 1
c , U

2
c ). We shall

assume throughout

Uk
c is non empty, k = 1, 2. (2)

LetUk(S) andUk(M) be the set of stationary and of Markov policies, respectively,
of player k, and set Uk

c (S) and Uk
c (M) be the corresponding subsets that satisfy

(1). A stationary policy u ∈ Uk(S) is identified with a set of probability functions
denoted as u(·|i), over the actions Ak(i). For all i ∈ Ik u(a|i) is then the probability
of choosing action a if the state is i. A Markov policy u ∈ Uk(M) is identified with
a set of probability functions denoted (with some abuse of notation) as u(·, n|i),
over the actions Ak(i). For all i ∈ Ik and integer n u(a, n|i) is the probability of
choosing action a at time n if the state is i.

We further introduce the cost C(β1, β2, u1, u2) where uk ∈ Uk which player
1 wishes to minimize and which player 2 wishes to maximize. We seek a saddle
point couple (u∗, v∗) ∈ Uc, i.e. a policy for each player such that

V := inf
u∈U 1

c

C(β, u, v∗) = C(β, u∗, v∗) = sup
v∈U 2

c

C(β, u∗, v). (3)

Next we specify what C and D will stand for.
Let c(i, j, a, b) correspond to the immediate cost for player 1 when she is at

state i and chooses action a, and when player 2 is at state j and chooses action b.
Let dks (i, a) be an immediate cost related to the sth side constraint of player k,

when she is at state i and chooses action a.

The expected average cost. We define the expected average costs as

Cea(β, u
1, u2) = lim sup

t→∞
1

t

t−1∑

n=0

Euβc(I
1
n , I

2
n , A

1
n, A

2
n), (4)

Dk,s
ea (β

k, uk) = lim sup
t→∞

1

t

t−1∑

n=0

Eu
k

βk
dks (I

k
n , A

k
n).

Remark 1 It follows from the proof of Theorem 2.8 in Altman and Shwartz (1991)
that our results are unchanged if we replace the lim sup in (4) by lim inf.

3 The unichain case

We consider the expected average cost with a unichain structure: under any pure
stationary policy1 uk for player k, the corresponding Markov chain has a single
ergodic class.

1 A pure policy is one that does not use any randomizations.
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We solve the problem

inf
u1∈U 1

c

sup
u2∈U 2

c

Cea(β, u1, u2). (5)

To do that, we first fix a stationary policy u1 for player 1, then the player 2 is faced
with a CMDP for which we know that an optimal policy exists within the stationary
policies (Altman and Shwartz 1991, Theorem 2.8).2 So for player 2 we find the
optimal value �∗

ea(u
1) of the cost (4) for a fixed stationary u1. We then solve the

optimization problem infu1∈U 1
c (S)

�∗
ea(u

1). Later we shall show that indeed one can
restrict to stationary policies for player 1 without loss of optimality.

3.1 Some definitions

Define for a fixed u ∈ Uk , xk,tea (β
k, u) = {xk,tea (βk, u; i, a)(i,a)∈Kk } where

xk,tea (β
k, u; i, a) := 1

t

t−1∑

n=0

Pu
βk
(I kn = i, Akn = a), (i, a) ∈ Kk

(Pu
βk

is the unique probability measure corresponding to a policy u ∈ Uk for an

initial distribution βk over the states). The set Xkea(β
k, u) defined as the set of

accumulation points of xk,tea (β
k, u) is known as a set of occupation measures cor-

responding to a strategy uk and an initial distribution βk .
Let Qk

ea be the set of vectors ρ ∈ R|Kk | satisfying

Qk
ea =






∑

(j,a)∈Kk

ρ(j, a)(δi(j)− Pkjai) = 0, ∀i ∈ Ik,

∑

(j,a)∈Kk

ρ(j, a) = 1,

ρ(j, a) ≥ 0, ∀(j, a) ∈ Kk,

(6)

where δi(j) is the indicator which is equal to one if i = j and is zero otherwise. It
should be noted that any ρ satisfying the above constraints is a probability measure.

Define further

Qk
ea,c :=

{
ρ ∈ Qk

ea :
∑

(j,a)∈Kk

ρk(j, a)dks (j, a) ≤ ξks , s = 1, ..., mk
}
.

Note that Qk
ea,c is non-empty due to Assumption 2 in (Hordijk and Kallenberg

1984).
It is shown in Altman (1999) and Hordijk and Kallenberg (1984) that the set of

achievable occupation measures achieved by all feasible strategies uk ∈ Uk
c equals

to those achieved by stationary policies and further equals to the set Qk
ea,c.

2 This reference implies the sufficiency of stationary policies for both the cases of maximizing
as well as for minimizing Cea subject to side constraints.
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For a given probability measure ρ over Kk , we define the stationary policy
wk(ρk) as

wki (a, ρ) = ρ(i, a)∑
a′∈A(i) ρ(i, a

′)
, a ∈ Ak(i), (7)

whenever the denominator is non-zero (when it is zero, wk(ρ) is chosen arbi-
trarily). Here wki (a, ρ) is the probability that player k will choose action a at state
i according to this stationary policy.

Let u be a policy for which for all i and a, Puβ (I
k
n = i, Akn = a) has a limit

which we denote by πkea(β
k, u; i, a). For policies with this property we have

πkea(β
k, u; i, a) = lim

t→∞ x
k,t
ea (β

k, u; i, a).

These include in particular the stationary policies. If πk(u) = {πk(u; i)}i∈Ik is the
unique steady state distribution of the Markov chain induced by a stationary policy
u ∈ Uk , then

πkea(β
k, u; i, a) = πk(u; i)u(a|i),

which is independent of the initial distribution βk .

3.2 Player 2

We fix a stationary policy u1 for player 1. Then player 2 is faced with a standard
CMDP. It follows from Altman (1999) that the optimal value for player 2 among
all policies U 2

c is given by the value of the following LP:

Find �∗
ea(u

1) := max
ρ2∈Q2

ea,c

∑

(j,a)∈K2

ρ2(j, a)c(u1; j, a), (8)

where c(u1; j, b) :=
∑

(i,a)∈K1

π1
ea(β

1, u1; i, a)c(i, j, a, b), u1 ∈ U1. (9)

Moreover, w2(ρ2) is an optimal stationary policy for player 2 in this CMDP
(Altman 1999). Hence the above LP allows us to obtain a best response of player
2 against a stationary policy of player 1.

We shall also use the dual LP. Its decision variables are ψ2, φ2(i), i ∈ I2 as
well as the m-dimensional non-positive vector λ2 ∈ Rm2− (ψ2 will correspond to
the value of the expected average problem for fixed stationary u1 and for an imme-
diate reward of c(u1; j, b) + 〈λ2, d2(j, b)〉, and λ2 will correspond to Lagrange
multipliers related to the side constraints of player 2). With 〈·, ·〉 denoting the scalar
product, we have:

�∗
ea(u

1) := min
ψ2,φ2,λ2

ψ2 −
m2∑

s=1

λ2
s ξ

2
s (10)
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subject to

φ2(j)+ ψ2 ≥ c(u1; j, b)+ 〈λ2, d2(j, b)〉
+

∑

�∈I2

P2
jb�φ

2(�), ∀(j, b) ∈ K2 (11)

λ2
s ≤ 0, s = 1, . . . , m2.

3.3 Player 1

It follows from the previous subsection that player 1 is faced with the optimi-
zation problem: infu1∈U 1

c (S)
�∗
ea(u

1) where �∗
ea(u

1) is given in (10). It is seen
from (9), however, that the dependence on u1 is only through occupation mea-
sure X1

ea(β
1, u1). We know from Altman (1999) that

{
X1
ea(β

1, u1) : u1 ∈ U 1
c (S)

}
= Q1

ea,c. (12)

Moreover, for any ρk ∈ Qk
ea , the stationary policy defined in (7) provides

πkea(β
k, w(a, ρ); i, a) = ρk(i, a),

see Altman (1999). Hence, the following LP provides the value for problem (5),
when player 1 restricts to stationary policies (we shall show later that such restric-
tion is without loss of optimality).

LPea : Find C∗
ea := min

ψ2,φ2,λ2,ρ1∈Q1
ea,c

ψ2 −
m2∑

s=1

λ2
s ξ

2
s subject to

φ2(j)+ ψ2 ≥
∑

(i,a)∈K1

ρ1(i, a)c(i, j, a, b)+ 〈λ2, d2(j, b)〉

+
∑

�∈I2

P2
jb�φ

2(�), ∀(j, b) ∈ K2

λ2
s ≤ 0, s = 1, . . . , m2.

Moreover, for any ρ∗
1 ∈ Q1

ea,c for which (ψ2, φ2, λ2, ρ1) achieves the above mini-
mization, the corresponding w1(ρ∗

1 ) (defined in (7)) provides a policy for player 1
which is the best among stationary policies.

Next we consider the problem

sup
u2∈U 2

c (S)

inf
u1∈U 1

c

Cea(β, u1, u2). (13)
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Introduce the following LP:

DPea : Find C∗
ea := max

ψ1,φ1,λ1,ρ2∈Q2
ea,c

ψ1 −
m1∑

s=1

λ1
s ξ

1
s subject to

φ1(i)+ ψ1 ≤
∑

(j,b)∈K2

ρ2(j, b)c(i, j, a, b)+ 〈λ1, d1(i, a)〉

+
∑

�∈I1

P1
ia�φ

1(�), ∀(i, a) ∈ K1

λ1
s ≥ 0, s = 1, . . . , m1.

By the same arguments as before, for any ρ∗
2 ∈ Q2

ea,c for which (ψ1, φ1, λ1, ρ2)

achieves the maximal value of C∗
ea , the correspondingw2(ρ∗

2 ) (defined in (7)) pro-
vides a policy for player 2 which is the best among stationary policies for problem
(13).

Due to the duality of the LPea and DPea, we conclude that C∗
ea = C∗

ea and thus
that (w1(ρ∗

1 ), w
2(ρ∗

2 )) are a saddle point for (3). Indeed,

C∗
ea = sup

u2∈U 2
c (S)

inf
u1∈U 1

c

Cea(β, u1, u2) ≤ sup
u2∈U 2

c

inf
u1∈U 1

c

Cea(β, u1, u2)

≤ inf
u1∈U 1

c

sup
u2∈U 2

c

Cea(β, u1, u2) ≤ inf
u1∈U 1

c (S)
sup
u2∈U 2

c

Cea(β, u1, u2) = Cea

which implies that all inequalities hold with equality.

4 The expected average cost: multichain case

Following Hordijk and Kallenberg (1984) and Kallenberg (1994), we introduce
the class of policies Uk(1) which are all policies u of player k for which the set
Xkea(β

k, u) is a singleton. Define Ũ k(M∗) = Uk(1) ∩ Uk(M). We further define
Uk(M∗) as the subset of Ũ k(M∗) of policies for which Pu

βk
(I kn = i, Akn = a) has

a single limit. It follows from Hordijk and Kallenberg (1984, Theorem 2) that the
set of all occupation measures achieved by strategies uk ∈ Uk(M∗) is equal to the
set of all occupation measures achieved by all policies.

Define Qk
eam,c(β

k) as the set of couples (ρ, z) satisfying






∑

(j,a)∈Kk

ρ(j, a)(δi(j)− Pkjai) = 0, ∀i ∈ Ik

∑

a∈Ak(i)

ρ(i, a)+
∑

(j,a)∈Kk

z(j, a)(δi(j)− Pkjai) = βki , ∀i ∈ Ik

ρ(j, a) ≥ 0, z(j, a) ≥ 0, ∀(j, a) ∈ Kk

∑

(j,a)∈Kk

ρ(j, a)dks (j, a) ≤ ξks , s = 1, ..., mk.

For the meaning of the new decision variable z, see Altman and Spieksma (1995).
For any policy u ∈ Uk(M∗) of player k, the other player is faced with a CMDP
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for which there exists an optimal policy within Ul(M∗) (l �= k) that can be com-
puted as in Hordijk and Kallenberg (1984). This follows from the same arguments
as in the proof of Theorem 2.8 in Altman and Shwartz (1991). Thus, for a fixed
u1 ∈ U 1(M∗), the value of this CMDP is given by that of the LP (8) with Qk

eam,c(β
k)

replacing Qk
ea,c(β

k). Its dual is

�∗
ea(u

1) := min
ψ2,φ2,λ2

〈
β2, ψ2

〉 −
m2∑

s=1

λ2
s ξ

2
s subject to

∑

�∈I2

(δj (�)− P2
jb�)ψ

2(�) ≥ 0, ∀(j, b) ∈ K2

φ2(j)+ ψ2(j) ≥ c(u1; j, b)+ 〈
λ2, d2(j, b)

〉 +
∑

�∈I2

P2
jb�φ

2(�), ∀(j, b) ∈ K2

λ2
s ≤ 0, s = 1, . . . , m2,

where c(u1; j, b) is given in (9). To minimize�∗
ea(u

1) over u1 ∈ U 1
c (M

∗), we have
to solve

LPeam(β) : C∗
ea := min

ψ2,φ2,λ2,(ρ1,z1)∈Q1
ea,c(β

1)

〈
β2, ψ2

〉 −
m2∑

s=1

λ2
s ξ

2
s s.t.

∑

�∈I2

(δj (�)− P2
jb�)ψ

2(�) ≥ 0, ∀(j, b) ∈ K2

φ2(j)+ ψ2(j) ≥
∑

(i,a)∈K1

ρ1(i, a)c(i, j, a, b)+ 〈
λ2, d2(j, b)

〉

+
∑

�∈I2

P2
jb�φ

2(�), ∀(j, b) ∈ K2

λ2
s ≤ 0, s = 1, . . . , m2.

For any optimal solution of the above LP, one can obtain from the variables (ρ1, z1)
an optimal policy u1 ∈ U 1(M∗) for player 1, as it is done in Hordijk and Kallenberg
(1984). The dual of the above LP then provides an optimal policy for player 2.

5 Examples in wireless communications

5.1 Example 1

We consider two mobile terminals and one base station. Mobile 1 seeks to transmit
information to the base station. Mobile 2 has an antagonistic objective: to prevent
or to jam the transmissions of mobile 1 to the base station. We consider a discrete
time model. At each slot n, mobile k transmits a packet with power level pkn. The
radio channel between mobile k and the base station is characterized by a Markov
chain Mk . The channel state of both mobiles are independent. The channel state of
a mobile determines the power attenuation between the mobile and the base sta-
tion. Denote by hk(ζ ) the attenuation of mobile k’s power when at state ζ ∈ Mk .
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The throughput (the amount of bits per second) that mobile 1 can send to the base
station at a given slot n is given by

T (ζ 1, ζ 2, p1, p2) = B log2

(
1 + p1h1(ζ 1)

N0 + p2h2(ζ 2)

)
(14)

where B is a channel bandwidth, ζ 1 and ζ 2 are the channel states and p1 and p2

are the power levels. N0 is a constant that stands for the thermal noise power at
the receiver. The term pkhk(ζ k) determines the power level received at the base
station from mobile k. The term p1h1(ζ 1)

N0+p2h2(ζ 2)
is the ratio between the power received

at the base station from mobile 1 and the total power of noise and interference.
Equation (14) is known as the Shannon capacity. It gives the least upper bound of
the transmission rate that can be achieved with an error probability less than any
ε > 0, if we assume that the interference of player 2 at a slot is presented as a
Gaussian white noise (this excludes the possibility of the receiver to decode the
signal of player 2 which, if successful, would have allowed to subtract it from the
noise experienced by player 1).

Mobile k’s action set is given by a discrete set Powk , where Powk stands for the
transmission power and is given by a finite ordered set Powk = (powk1, ..., pow

k
ν).

We assume that each mobile has a constraint on the power that it can use. We see
that our formalism of independent state processes can indeed be used to model and
solve this problem. In particular, the expected average cost seems to be appropriate
if the mobiles have constraints on the expected average power consumption.

In Example 1 (section 5.1), no player controls the transitions. It might at first
seem to be a special case of the framework of Hordijk and Kallenberg (1981b) and
Vrieze (1981) where only one player controls the transitions and the other doesn’t.
But in fact, the framework of Hordijk and Kallenberg (1981b) and Vrieze (1981)
is different from ours since in the former, both players have full state information
whereas in our framework, each player has its own information.

5.2 Numerical calculations for example 1

Let the radio channel between mobile k and the base station be characterized by a
Markov chain Mk with states ζi = 0, . . . , N ,N = 10 and the following transition
probabilities:

P ki,i = P ki,i+1 = 1

2
, i = 0;

P ki,i = P ki,i−1 = P ki,i+1 = 1

3
, i = 2, . . . , N − 1; (15)

P ki,i = P ki,i−1 = 1

2
, i = N.

The transition probabilities (15) imply that at each slot the Markov chain with the
same probability does one of the following: preserves its state, changes it to the
next one or changes it to the previous one.
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Fig. 1 Supports of the optimal policies

Each state of the Markov chain radio channel correspond to some level of the
power attenuation:

ζi 0 1 2 . . . 10
hk(ζi) 0.0 0.1 0.2 . . . 1.0

Let mobile k’s action set Powk be given by Powk = (0, ..., 10). The exact
power of the signal of the mobile k is Pkj = P0Powk

j , where P0 is some base value

of the power, and Powk
j is one of the elements of Powk . For the noise power at the

receiver we will assume that N0 = P0n0, where we take n0 = 1. As the cost func-
tion depends only on the ratio between the power received from the first mobile and
the total power of noise and interference of the second, we do not need to specify
the exact value of the base power P0.

Let the expected average power consumption of both mobiles be constrained
by the following bound:

Dk
ea(u

k) ≤ 5P0.

The immediate cost related to this constraint is

dk(ξki ,Pkj ) = Pkj = P0Powk
j .

As the transition probabilities of both players do not depend on their strategies, the
problem is of unichain case and thus has a solution within stationary policies.

On Figure 1 one can see the supports of the optimal policies of both players.



Zero-sum constrained stochastic games 385

The exact values of the stationary policieswk(hk(ζi), powj ) are the following:

w1(0, 0) = w1(0.1, 0) = w1(0.2, 0) = w1(0.4, 5) = w1(0.5, 6)
= w1(0.6, 7) = w1(0.7, 8) = w1(0.8, 8) = w1(0.9, 9) = w1(1.0, 9) = 1,

w1(0.3, 2) = 1
3 , w1(0.3, 3) = 2

3 ;
w2(0, 0) = w2(0.1, 2) = w2(0.2, 5) = w2(0.3, 6) = w2(0.4, 6)

= w2(0.5, 6) = w2(0.6, 6) = w2(0.7, 6) = w2(0.8, 6) = w2(1.0, 5) = 1,

w2(0.9, 5) = 2
3 , w2(0.9, 6) = 1

3 .

The value of the expected average cost in this problem is C∗
ea = C∗

ea = 0.9207.

5.3 Example 2

Let us consider the same statement as in Example 1 (section 5.1), but now we will
presume that if at time t , mobile k uses some power level then at time t + 1 it can
only move to the neighboring states (increasing or decreasing the level by 1) or
stay at the same power level. This is compatible with the UMTS standard for the
third generation cellular phones in Europe.

It then follows that the Mobile k’s state is thus given by a set Ik = (Mk×Powk),
where Mk stands for the channel state and Powk stands for the present transmission
power. The action set of mobile k at state i = (ζ k, powj ) is Ak(i) = {−1, 0, 1}
for 1 < j < ν where a = −1 results in a decrease of the power level to powj−1,
a = 0 means remaining at the same power level, and a = 1 means increasing
the power level to powj+1. Moreover, for j = 1, Ak(i) = {0, 1} and for j = νk ,
Ak(i) = {−1, 0}.

In this case the CMDPs are not unichain anymore. Moreover, unlike the pre-
vious example, here each mobile indeed controls also the state transitions of his
MDP.
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