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ABSTRACT
We present a class of evolutionary games involving large
populations that have many pairwise interactions between
randomly selected players. The fitness of a player depends
not only on the actions chosen in the interaction but also on
the individual state of the players. Players stay permanently
in the system and participate infinitely often in local inter-
actions with other randomly selected players. The actions
taken by a player determine not only the immediate fitness
but also the transition probabilities to its next individual
state. We define and characterize the Evolutionary Stable
Strategies (ESS) for these games and propose a method to
compute them.
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1. INTRODUCTION
Evolutionary games have been developed by J. Maynard
Smith to model the evolution of population sizes as a result
of competition between them that occurs through many lo-
cal pairwise interactions, i.e. interactions between randomly
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chosen pairs of individuals. Central in evolutionary games
is the concept of Evolutionary Stable Strategy, which is a
distribution of (deterministic or mixed) actions such that if
used, the population is immune against penetration of muta-
tions. This notion is stronger than that of Nash equilibrium
as ESS is robust against a deviation of a whole fraction of
the population where as the Nash equilibrium is defined with
respect to possible deviations of a single player. A second
foundation of evolutionary games is the replicator dynamics
that describes the dynamics of the sizes of the populations
as a result of the fitness they receive in interactions. Mey-
nard Smith formally introduced both, without needing an
explicit modeling of stochastic features. We shall call this
the deterministic evolutionary game.

Randomness is implicitly hinted in the requirement of ro-
bustness against mutations, and indeed the ESS is defined
through robustness against any mutation. Random aspects
can be explicitly included in the modeling of evolutionary
games. We first note that since deterministic evolutionary
games deal with large populations, they may provide an
interpretation of the deterministic game as a limit smaller
games that included randomness that has been averaged out
by some strong law of large numbers. Such an interpretation
can be found in [11].

Yet, other of randomness have been introduced into evolu-
tionary games. Some authors have added small noise to the
replicator dynamics in order to avoid the problem of having
the dynamics stuck in some local minimum, see [15, 12, 13]
and references therein. The ESS can then be replaced by
other notions such as the the SSE [12].

In this paper we introduce another class of stochastic evolu-



tionary games, which we call ”Markov Decision Evolution-
ary Games” (MDEG). There are again many local interac-
tions among individuals belonging to large populations of
players. Each individual stays permanently in the system;
from time to time it move among different individual states,
and interacts with other users. The actions of the player
along with those with which it interacts determine not only
the immediate fitness of the player but also the transition
probabilities to the next state it will have. Each individual
is thus faced with an MDP in which it maximizes the ex-
pected average cost criterion. Each individual knows only
the state of its own MDP, and does not know the state of the
other players it interacts with. The transition probabilities
of a player’s MDP are only controlled by that player. The
local interactions between players can be viewed as a cost-
coupled stochastic game [1, 2] which suggests the sufficiency
of stationary strategies.

A simple application of an MDEG to mobile communica-
tions has been introduced in [6] for the case in which indi-
viduals have finite life time and the criterion that is max-
imized is the total expected fitness during the individual’s
life time. Mobile terminals transmit packets occasionally.
Their destination occasionally may receive simultaneously a
transmission from another terminal which results in a colli-
sion. It is assumed however that even when packets collide,
one of the packets can be received correctly if transmitted
at a higher power. The immediate fitness rewards successful
transmissions and penalizes energy consumption. Each mo-
bile decides at each slot what its power level will be. This
decision is allowed to depend on the depletion level of the
battery, which serves as the ”individual state”. The battery
is considered to be either in the state ”Full” (F) in which
case there are two power levels available, or ”Almost Empty”
(AE) in which only the weak power level is available, or at
the empty state E. Transmission at high power at state F
results in a larger probability of moving to state AE. When
at state E, the battery is replaced by a new one at some
constant cost. We extend this model in Subsection 3.4, and
adapt it to the average expected fitness criterion.

An interesting application of MDEG is the repeated game
version of the well known Hawk and Dove game in which
some of the features of MDEG are already present, [7, 8, 9].

2. REMINDER ON (STANDARD) EVOLU-
TIONARY GAMES (EG)

Consider a large population of players. Each individual
needs occasionally to take some action. We focus on some
(arbitrary) tagged individual. Occasionally, the action of
some N (possibly random number of) other individuals in-
teract with the action of that individual. We define by
J(p, q) the expected payoff for our tagged individual if it
uses a strategy (also called policy) p when meeting another
individual who adopts the strategy q. This payoff is called
“fitness” and strategies with larger fitness are expected to
propagate faster in a population. p and q belong to a set
K of available strategies. In the standard framework for
evolutionary games there are a finite number of so called
”pure strategies”, and a general strategy of an individual is a
probability distribution over the pure strategies. An equiv-
alent interpretation of strategies is obtained by assuming
that individuals choose pure strategies and then the prob-

ability distribution represents the fraction of individuals in
the population that choose each strategy. Note that J is
linear in p and q.

Suppose that the whole population uses a strategy q and
that a small fraction ε (called “mutations”) adopts another
strategy p. Evolutionary forces are expected to select against
p if

J(q, εp + (1− ε)q) > J(p, εp + (1− ε)q) (1)

Definition 2.1. A strategy q is said to be ESS if for ev-
ery p 6= q there exists some εy > 0 such that (1) holds for
all ε ∈ (0, εy).

In fact, we expect that if

for all p 6= q, J(q, q) > J(p, q) (2)

then the mutations fraction in the population will tend to
decrease (as it has a lower reward, meaning a lower growth
rate). q is then immune to mutations. If it does not but if
still the following holds,

for all p 6= q, J(q, q) = J(p, q) and J(q, p) > J(p, p) (3)

then a population using q are “weakly” immune against a
mutation using p since if the mutant’s population grows,
then we shall frequently have individuals with strategy q
competing with mutants; in such cases, the condition J(q, p) >
J(p, p) ensures that the growth rate of the original popula-
tion exceeds that of the mutants. We shall need the following
characterization:

Theorem 2.1. [3, Proposition 2.1] or [4, Theorem 6.4.1,
page 63] A strategy q is ESS if and only if it satisfies (2) or
(3).

Corollary 2.1. (2) is a sufficient condition for q to be
an ESS. A necessary condition for it to be an ESS is

for all p 6= q, J(q, q) ≥ J(p, q) (4)

The conditions on ESS can be related and interpreted in
terms of a Nash equilibrium in a matrix game. The situ-
ation in which an individual, say player 1, is faced with a
member of a population in which a fraction p chooses strat-
egy A is then translated to playing the matrix game against
a second player who uses mixed strategies (randomizes) with
probabilities p and 1− p, resp.

3. MODEL
We use a hierarchical description of the system composed
of a model for the individual player and a global model for
aggregating individual’s behavior.

3.1 Model for Individual player
A player arrives is born at some random time t0. It has a
clock that is responsible to the times at which interactions
with other players occur. These interactions occur accord-
ing to a Poisson process with rate λ. Each time the timer



clicks, the player interacts with another randomly selected
player. It receives some reward (fitness) that depends on
the individual state of the players involved in the interac-
tion and on their action at that instant. We associate with
each player a Markov Decision Process (MDP) embedded at
the instants of the clicks.

The parameters of the MDP are given by the tuple {S,A, Q}
where

• S is the set of possible individual states of the player

• A is the set of available actions. For each state s, a
subset As of actions is available.

• Q is the set of transition probabilities; for each s, s′ ∈ S
and a ∈ As, Qs′(s, a) is the probability to move from
state s to state s′ taking action a.

∑
s′∈S Qs′(s, a) is

allowed to be smaller than 1.

Define further

• The set of (behavioral) policies is U . A general policy u
is a sequence u = (u1, u2, . . .) where ui is a distribution
over action space A at time i. The dependence on time
is a local one: it concerns only the individual’s clock;
a player is not assumed to use policies that make use
of some global clocks.

• The subset US of stationary policies; a stationary pol-
icy u is a policy in which the probability to choose
an action a depends only on the current state s; it is
denoted by u(a|s).

• The subset UD ⊂ US of pure or deterministic station-
ary policies UD. A policy of this type can be viewed
as a function from the states to the actions.

• The set UM of mixed strategies: A mixed strategy is
identified with a probability γ over the set of pure sta-
tionary strategies. It can be considered as first choos-
ing a pure stationary policy u with probability γ(u)
and then keeping choosing forever the actions accord-
ing to u.

Occupation measure Often we encounter the notion of in-
dividual states in evolutionary games; but usually the pop-
ulation size at a particular state is fixed. In our case the
choices of actions of an individual determine the fraction of
time it would spend at each state. Hence the fraction of the
whole population that will be at a given state may depend
on the distribution of strategies in the population. In order
to model this dependence we first need to introduce the ex-
pected average frequency f t

η,u(s) that an individual spends
till time t at a given state s when it follows a strategy u
and its initial state at time 1 is distributed according to a
probability η over S. More generally, we define f t

η,u(s, a)
the expected average frequency till time t during which it is
at state s and it chooses action a.

More precisely, define pt(η, u; s, a) = IPη,u(St = s, As =
a) the probability for a user to be in state s, at time t,

using action a under policy u when the initial state has
a probability distribution η. Further define pt(η, u; s) =∑

a pt(η, u; s, a). Define

f t
η,u(s) =

1

t

t∑
r=1

pr(η, u; s), f t
η,u(s, a) =

1

t

t∑
r=1

pr(η, u; s, a)

Denote f t
η(u) := {f t

η,u(s, a)}.

Define the Φu
η to be the set of all accumulation points of

f t
η(u) as t → ∞. Whenever Φu

η contains a single element,
we shall denote it by fη(u).

We shall assume the following:

A1: Under any pure stationary, policy St is unichain: it is
a Markov chain that has a single ergodic class of states.

3.2 Interactions and System model
We have a large population of individuals. As in standard
evolutionary games, there are many pairwise interactions
between randomly selected pairs.

Let r(s, a, s′, b) be the immediate reward that a player re-
ceives when it is at state s and it uses action a while in-
teracting with a player who is in state s′ that uses action
b.

Denote by α(u) = {α(u; s, a)} the system state: α(u; s, a) is
the fraction of the population at individual state s and that
use action a when all the population uses strategy u. We
shall add the index t to indicate a possible dependence on
some time.

Consider an arbitrary tagged player and let St and At be
its state and action at time t (as measured on its individual
clock). Then his expected immediate reward at that time
when all other players use u is given by

Rt =
∑
s,a

αt(u; s, a)r(St, At, s, a).

Assume now that a player arrives at the system at (local)
time 1. The expected fitness when using a policy v is then

Fη(v, u) = lim inf
t→∞

1

t

t∑
m=1

Eη,v[Rm].

When η is concentrated on state s we write with some abuse
of notation Fs(v, u) = Fη(v, u). We shall often omit the
index η (in case it is taken to be fixed).

Introduce the following assumptions.

A2(U): When the whole population uses a policy u ∈ U ,
then at any time t which is either fixed or is an individual
time of an arbitrary player, αt(u) is independent of t and is
given by

αt(u; s, a) = fη,u(s, a) = π(s)u(a|s)
for all s, a where fη,u(s, a) is the single limit of f t

η,u(s, a) as
t →∞.



A2: Assumption A2(U) holds for U = Us and for U = UM .

The validity of the Assumption depends on the way the in-
finite population model is obtained by scaling a large finite
population model. This aspect is beyond the scope of this
paper.

Denote the set of all policies for which Φu
η is a singleton by

U
∗
.

For u ∈ U∗, the following holds:

F (v, u) = inf
z∈Φv

η

∑
s,a

z(s, a)
∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′). (5)

Note that for any u ∈ UM , and for any strategies v and w,

Φv
η ⊂ Φw

η implies F (v, u) ≥ F (w, u). (6)

This, together with the fact that for any policy u and z ∈ Φu
η

there exist a stationary policy v ∈ U∗ satisfying fv
η = z, will

motivate us to limit ourselves to policies in U∗.

When both u and v are in U∗, the global expected fitness
simplifies to

F (v, u) =

∞∑
t=1

Eη,vRt =
∑
s,a

fη,v(s, a)
∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′).

(7)

Definition 3.1. We shall say that two strategies u and
v in U∗ are equivalent if the corresponding occupation mea-
sures are equal: fv

η = fu
η . We shall write u =e u′.

Note that if u and u′ are equivalent policies for a given player
then for any v ∈ U∗ used by the rest of the population, the
fitness under u and under u′ are the same.

3.3 Defining Equilibrium and Weak ESS
With the expression (7) for the fitness, we observe that we
are again in the framework of Section 2.

Definition 3.2. (i) A strategy u ∈ U∗ is an equilibrium
for the MDEG if and only if it feasible and satisfies

F (u, u) ≥ F (v, u). (8)

(ii) A strategy u ∈ U∗ is a weak ESS (WESS) for the MDEG
if and only if

• it is an equilibrium, and

• for all v ∈ U∗ such that v 6=e u that satisfy F (u, u) =
F (v, u), the following holds: F (u, v) > F (v, v).

The fitness function (5) is bilinear in the occupation mea-
sures of the players that interact with each other. The set of
occupation measures will be shown to be a polytope whose
extreme points correspond to strategies in UD. This will
allow us to transform the MDEG to a standard EG.

We could use the following as an equivalent Definition of
WESS for MDEG.

Theorem 3.1. A strategy u ∈ U∗ is a WESS if and only
if for every v ∈ U∗ with v 6=e u, there exists some εv > 0
such that the following holds for all ε ∈ (0, εv):

F (u, εu + (1− ε)v) > F (u, εu + (1− ε)v) (9)

In (9) we use a convex combination of two policies. We delay
the definition of this to the next section (see Remark 4.1).

3.4 Application to Energy Control in Wireless
Networks

We next illustrate the MDEG setting with a problem that
arises in dynamic power control in mobile networks. A spe-
cial case of this framework (where a choice between several
control actions exists in one state only) has been studied
in [6] with, however, a total cost criterion.

Users participate in local competitions for the access to a
shared medium in order to transmit their packets. An in-
dividual state of each mobile represents the energy level at
the user’s battery which, for simplicity, we assume to take
finitely many values, denoted by S = {0, . . . , n}.

Each time the battery empties (which corresponds to reach-
ing state 0), the mobile changes the battery to a new one
(this corresponds to state n), and pay a cost C. We assume
that each time a mobile reaches state zero, it remains there
during a period whose expected duration is τ .

In each state s ∈ S \ {0}, each mobile has two available
actions h and l which correspond respectively to high power
pH and low power pL. We consider an Aloha-type game
where a mobile transmits a packet with success during a
slot if:

• with probability p, the mobile is the only one to trans-
mit during this slot,

• the mobile transmits with high power and the other
transmitting mobile uses low power or is in state 0.

The reward function r depends on a mobile’s state as well as
on the transmission powers, that is, the action of the mobile
as well as that of the one it interacts with. Then we have
for s 6= 0:

r(s, a, s′, a′) = p+(1−p)1l(s′=0)+(1−p)1l((a=h), (a′=l), (s′ 6=0)).

For s = 0 we take r(0, a, s′, a′) = C/τ .

For each state s ∈ S\{0}, the transition probability Qs′(s, a)
may be non-zero (for both a ∈ {l, h}) only for s′ ∈ {s, s−1}.
Then, as the two possible transitions are to remain at the
same energy level or move to the next lower one, we simplify
the notation and use Q(s, a) to denote the probability of
remaining at energy level s using action a.



To model the fact that the mobiles stays in the average
τ units at state 0 and then moves to state n we set the
transition probabilities from state 0 to any state other than
n and 0 to be zero; the probability to move to n is 1/τ and
that of remaining at 0 is 1− 1/τ .

We have the following assumptions on the transition proba-
bilities which are motivated by the application.

• For all state s ∈ S \ {0}, we have Q(s, h) < Q(s, l)
because using less power induces higher probability to
remain in the same energy level.

• For all state s ∈ S\{0} and for both actions a ∈ {l, h},
we have Q(s, a) > Q(s − 1, a) because less battery
energy the mobile has, less is the probability to remain
at the same energy level.

4. COMPUTING EQUILIBRIA AND WESS
Define the set of occupation measures achieved by all (indi-
vidual) policies in some subset U ′ ⊂ U as

Lη(U ′) =
⋃

u∈U′
Φu

η .

Recall from eq (7) that the expected fitness of an individual
depends on the strategy u of that individual only through
fη,u. We are therefore interested in the following character-
istic of Lη(U) (see [14, 10]):

Lemma 4.1. Lη(U) equals to the set Qη defined as the set
of α = {α(s, a)} satisfying
∑

s′∈S

∑

a∈A′s

α(s′, a)[δs′(s)−Qs′(s, a)] = ,∀s, α(s, a) ≥ 0,∀s, a. (10)

where δs′(s) is the Dirac distribution in state s′.
(ii) We have: Lη(U) = Lη(US) = coLη(UD) where coLη(UD)
is the convex hull of Lη(UD).
(iii) For any θ ∈ Lη(U), define the individual stationary
policy u ∈ US by

us(a) =
θ(s, a)∑

a∈As
θ(s, a)

.

Then fη,u = θ.

Transforming the MDEG into a standard EG
Consider the following standard evolutionary game EG:

• the finite set of (pure) actions of a player is UD,

• the fitness of a player that uses v ∈ UD when the other
use a policy u ∈ US is given by (5).

• Enumerate the strategies in UD such that UD = (u1, ..., um).

• Define γ = (γ1, ..., γm) to be a probability measure
over the set UD; where γi is the fraction of the popu-
lation that uses ui. γ can be interpreted as a mixed
strategy which we denote by γ̂.

Remark 4.1. Here the convex combination εγ̂ +(1− ε)γ̂′

of the two mixed strategies γ̂ and γ̂′ is simply the mixed
strategy whose ith component is given by εγi + (1 − ε)γ′i,
i = 1, ..., m.

Proposition 4.1. (i) γ̂ is an equilibrium for the game
EG if and only if it is a WESS for the original MDEG.
(ii) γ̂ is an ESS for the game EG if and only if it is a WESS
for the original MDEG.

Proof. The statements hold if we allowed for only mixed
policies; indeed, they follow from Lemma 4.1 and eq. (5).
We have to check that if a mixed policy is an equilibrium or a
WESS when restricting to UM then it is also an equilibrium
among all policies. This in turn follows from from Lemma
4.1 and eq. (7).

5. CONCLUSIONS
In this paper we have studied a new class of evolutionary
games which we call MDEG, where the decision of each
player determine transition probabilities between individ-
ual state. We have illustrated this class of game through an
energy control problem in wireless networks. We had intro-
duced already in [6] a definition of ESS strategies in station-
ary policies in a particular simple MDEG in which only in
one state there are decisions to be taken. If we apply di-
rectly that definition to general policies (we call this here a
Strong ESS) it turns out that when abandoning the restric-
tion to stationary policies, even in this simple model there
are no ESS (except for some restricted choice of parameters
that results in some pure ESS). We solved this problem by
defining a weaker notion of ESS using occupation measures.
We have then proposed methods to determine weak ESS.
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