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Abstract— The original Braess paradox has been predicted
in a context of Wardrop equilibrium in a road traffic con-
text where there is a continuum of (non-atomic) players. It
was shown that the performance of all users at equilibrium
becomes worse when adding a route. This paradox as well
as various variants were also studied in the context of
computer networks and telecommunications. We identify a
new type of paradox occurring in wireless communications
with some unusual properties with respect to previous
models in which the paradox has been identified.

I. INTRODUCTION

a) Background on Braess paradox: Service providers
or the network administrator may often be faced with
decisions related to upgrading of the network. For ex-
ample, where should one add capacity? Where should
one add new links? A frequently-used heuristic approach
for upgrading a network is through bottleneck analysis,
where a system bottleneck is defined as “a resource
or service facility whose capacity seriously limits the
performance of the entire system” (see p. 13 of [14]).
Bottleneck analysis consists of adding capacity to iden-
tified bottlenecks until they cease to be bottlenecks.
In a non-cooperative framework, however, this heuristic
approach may have devastating effects; adding capacity
to a link (and in particular, to a bottleneck link) may
cause delays of all users to increase; in an economic
context in which users pay the service provider, this
may further cause a decrease in the revenues of the
provider. This problem was identified by Braess [4] in
the transportation context, and has become known as the
Braess paradox. See also [8], [21]. The Braess paradox
has been studied as well in the context of queuing
networks [3], [5], [6], [7], [9].

In the latter references both queuing delay as well as
rejection probabilities were considered as performance
measures. The impact of the Braess paradox on the
bottleneck link in a queuing context as well as the para-
doxical impact on the service provider have been studied
in [19]. In all the above references, the paradoxical
behavior occurs in models in which the number of users
is infinitely large and the equilibrium concept is that of
Wardrop equilibrium, see [23].

It has been shown, however, in [16], [17], that the

problem may occur also in models involving a finite
number of players (e.g. service providers) for which the
Nash framework is used. The Braess paradox has further
been identified and studied in the context of distributed
computing [10], [11], [12] where arrivals of jobs may be
routed and performed on different processors. Interest-
ingly, in those applications, the paradox often does not
occur in the context of Wardrop equilibria; see [10].

In [20] (see also [18]), it was shown that the decrease in
performance due to the Braess paradox can be arbitrarily
larger than the best possible network performance, but
the authors showed also that the performance decrease is
no more than that which occurs if twice as much traffic
is routed. The result was extended and elaborated upon
in more recent papers by the same authors.

An updated list of references on the Braess paradox
is kept in Braess’ home page at http://homepage.ruhr-uni-bo
chum.de/Dietrich.Braess/#paradox

b) Our results: We obtain a Braess paradox in the
context of wireless networks. Our model builds on the
possibility of a mobile to transmit information to more
than one base station at a time using either macro
diversity or multi-homing. We assume that interference
occurs between traffic transmitted to the same base
station.
c) Structure: The structure of the paper is as follows.
After introducing the model in the next section, we study
obtain in Section III explicit expressions for the per-
formance obtained at symmetric equilibria. The Braess
paradox and convergence issues are discussed in Section
IV followed by a concluding section.

II. MODEL

Consider M mobiles, and b base stations, BSj , j =
1, ..., b. The channel gain in terms of power from mobile
i to BSj is given by hij , so that a fraction hij of
the power transmitted by mobile i over channel j is
actually received at base station j. Each base station uses
another frequency. The wireless channels are considered
to be the access for the mobiles to a global network
and this access can be done using either one of the
BSs (Base Stations). Moreover, a mobile can transmit
simultaneously to several BSs.



Mobile i has a power limitation of Vi. Let mobile i use
a fraction xij of its power Vi to transmit to BS j. Define
the SINR as

SINRij =
hijVixij

Nj +
∑

k 6=i hkjVkxkj
.

Nj is the power of the thermal noise at BSj . We
assume here that the throughput achieved by user i when
transmitting to BSj is proportional to SINRij . Mobile
i maximises the sum of its throughputs over the various
base stations:

Θi = α
∑

j

SINRij

(α is the proportionality constant). The assumption that
the throughput is linear in the SINR is often made in
the literature, see e.g. [13], [15]. It does not correspond
to the best achievable throughput given by the Shannon
capacity log(1 + SINR). It corresponds however to the
throughput obtained by various codecs as a function
of the SINR. It can also be used to approximate the
Shannon capacity at a regime of low SINR.

Let x = (x1, ..., xM ) be the vector of policies for all
mobiles, where the policy for mobile i is described by
a b-dimensional vector, xi = (xij), j = 1, ..., b.

We seek for a Nash equilibrium, i.e. a vector of policies
x such that for each i = 1, ...,M , and any policy yi for
mobile i, we have

Θi(x) ≥ Θi([yi, x
−i])

In the above, [yi, x
−i] denotes the vector of policies of

all mobiles obtained from x by a deviation of player i
from xi to yi.

III. SYMMETRIC EQUILIBRIUM

Assume that

• The number of base stations equals the number of
mobiles (we denote it below by n).

• hii is the same for all i. We shall denote it by hown.
• hij is the same for all i and j such that i 6= j; we

denote it by hother. We shall assume that without
loss of generality that hown ≥ hother.

• Vi does not depend on i; we then omit i from the
notation.

• Ni is the same for all i (and the index i is omitted).

First we begin by discussing the common setting of an
n mobile n base station case. For every mobile k, we
define a (normalized) policy as

xk1, xk2, ..., xkk, ...xkn

where

xk1 + xk2 + ... + xkk + ... + xkn = 1

and each 0 ≤ xki ≤ 1 according to which the mobiles
divide their power. Thus a mobile k allots power V xki

to a base station i and so on. Thus the number of policy
variables per mobile is n−1. Now a throughput function
for a particular mobile is a function f(k) of all the n(n−
1) policy variables defined according to the definition
of throughput mentioned earlier. Thus we get a set of
throughput functions [f(1), f(2), f(3)...f(n)] and every
mobile wants to maximize his throughput. For this set a
Nash equilibrium is characterized as a set of fixed values
for all n(n-1) variables from which no mobile has any
incentive to deviate. If this set is an interior point i.e.
0 < xki < 1 for each k, i, this means that, assuming
differentiability, at this point, the partial derivative of the
throughput function for a particular mobile with respect
to its (n-1) policy variables is zero for every mobile. At
a boundary point where at least one xki = 1, 0 , the case
is a bit complex and will be considered later.

Theorem III.1. (i) The optimal throughput is obtained
when each user transmits all its power on another
frequency: mobile i transmits all its power to base
station i and its throughput equals

Θi(global) =
αV hown

N
.

(ii) The optimal policy is a Nash equilibrium.

Proof.The proof is direct.

Introduce the following class S of symmetric poli-
cies. Let x = (x1, x2, x3, ..., xn) and x1 + x2 +
x3 + ... + xn = 1. Then mobile 1 allots V x1

power to BS1 and V x2, V x3, ..., V xn to base sta-
tions 2,...,n respectively. Mobile i allots V x1 power
to BSi and V x2, V x3, ..., V xn to base stations i +
1, ..., n, 1, 2, ..., i− 1 respectively.

Theorem III.2. Characterization of interior point equi-
libria.
(i) The policy where each mobile i assigns power z∗
given by

N(hother − hown) + h2
otherV − n−2

n−1hownhotherV

V (h2
own + h2

other)− n−2
n−1hownhotherV

to BS i and divides V minus that amount equally to the
other BS is a symmetric Nash equilibrium. Each player
achieves the following throughput at this equilibrium:

Θi(game) =

αV

[
h2

own + h2
other − n−2

n−1hownhother

(hown + hother

n−1 )N + hownhotherV

]

(iv) The aforementioned Nash equilibrium is the only
Nash equilibrium among S at an interior point.

Proof. Let a mobile deviate from his strategy
(x1, x2, x3, ..., xn) and adopt a distribution



(y1, y2, y3, ..., yn) and y1 + y2 + y3 + ...+ yn = 1 where
again, without loss of generality, it allots V y1 power to
BSown. Then the throughput for this mobile equals

Θ1 =
αV howny1

N + V hother(x2 + x3 + ... + xn)

+
αV hothery2

N + V hownx1 + V hother(x3 + x4 + x5... + xn)

+
αV hothery3

N + V hownx1 + V hother(x2 + x4 + x5... + xn)
+ ...

+
αV hotheryn

N + V hownx1 + V hother(x2 + x3 + x4... + xn−1)

which equals

Θ1 =
αV howny1

N + V hother(1− x1)

+
αV hothery2

N + V hownx1 + V hother(1− x1 − x2)

+
αV hothery3

N + V hownx1 + V hother(1− x1 − x3)

+ ... +
αV hother(1− y1 − y2 − ...− yn−1)

N + V hownx1 + V hother(1− x1 − xn)

Partially differentiating this function with respect to
y1, y2, y3, ..., yn−1 and equating the differentials to zero,
we get the following series of expressions

αV hown

N + V hother(1− x1)
=

αV hother

N + V hownx1 + V hother(1− x1 − xn)

and

αV hother

N + V hownx1 + V hother(1− x1 − xk)
=

αV hother

N + V hownx1 + V hother(1− x1 − xn)

for each k varying from 2 to n− 1
From the second condition, we get

x2 = x3 = ... = xn−1 = xn =
1− x1

n− 1

which means that the power remaining after allotment to
BSown is divided equally among the other base stations.
And now, using this result in the first condition we get
that x1 = z∗ At these values of (x1, x2, x3, ..., xn), the
mobile is indifferent. Its throughput does not depend on
its policy and hence by symmetry, this policy if used
by every mobile constitutes a unique Nash equilibrium
among S in the interior region.

So far we obtained two types of symmetrical equilib-
ria. We can now combine interior point solutions with
boundary solutions to obtain non-symmetrical equilibria.

Theorem III.3. Characterization of Nash equilibria at
a boundary point.
If n mobiles and n base stations are split into a number
of groups with no interaction between groups and each
group is under an optimal or interior point symmetric
Nash equilibrium, then the policies of the mobiles con-
stitutes a Nash equilibrium for the entire problem of n
mobiles and n base stations. Thus we can get several
non symmetric Nash equilibria.

Can there be other equilibria? and in particular symmet-
rical ones? We provide conditions for the existence of
another symmetrical equilibrium on the boundary.

Theorem III.4. (i) Consider two mobiles and two base
stations. Assume that

hother

N
>

hown

N + V hother
.

Then the situation where each mobile allocates all its
power to transmit to the other’s base station is also an
equilibrium.
(ii) At equilibrium,

Θi(game) =
αV hother

N

Proof. If the condition of the Theorem holds and one
player, say player i, deviates unilaterally and allots a
fraction x to his own base station, his throughput is

αV hownx

N + V hother
+

αV hother(1− x)
N

The derivative w.r.t. x is negative under the condition
of the Theorem, so that mobile i strictly looses in
throughput by deviating.

The Theorem can be generalized to the case of n mobiles
and n base stations. Consider a pure multi-strategy u for
which each mobile i transmits all its power to some base
station j = b(i) 6= i so that the power gain for each
mobile is hij = hother < hown.

Theorem III.5. (i) A necessary condition for u to be an
equilibrium is that b(i) are different for all i.
(ii) Such u is an equilibrium if and only if

hother

N
≥ hown

N + V hother(n− 1)/n
.

(iii) At equilibrium,

Θi(game) =
αV hother

N



IV. PROPERTIES OF THE INTERIOR EQUILIBRIUM

A. Braess Type Paradox

It follows from the above Theorem that we loose the
following amount of throughput at the indifference equi-
librium w.r.t. the optimal solution:

Θi(global)−Θi(game) =
αhother

N
×∆ (1)

where

∆ =
V h2

own + (hown − hother)N
N(hown + hother/(n− 1)) + hownhotherV

We see that the difference vanishes if we set hother = 0
where as for any value of hother (assumed to be smaller
than hown), the difference is strictly positive. Since the
globally optimal throughput does not depend on hother

(as long as it is smaller than hown), this implies that
at equilibrium, the performance with hother = 0 is
strictly better than with any other value of hother. This
is precisely a Braess-type paradox where each player
would do better if the radio link that allows a mobile to
communicate with another base station were eliminated.
This is the first case we know of an existence of Braess
paradox in a problem that has several equilibria.

B. Convergence

Consider two mobiles and two base stations. Recall that

Θ1(y, x) =
αV howny1

N + V hother(1− x1)
+

αV hother(1− y1)
N + V hownx1

Taking the partial derivative in y1 and in x1 we obtain:

∂2Θ1

∂y1∂x1
=

αV 2hotherhown

(N + V hother(1− x1))2
+

αV 2hotherhown

(N + V hownx1)2

which is strictly positive. By symmetry this holds also
for Θ2. This implies that the game is super modular [1],
[22], [24]. In case x1 = y1 = 0 is not an equilibrium,
then starting at these points we shall monotonically
converge to an equilibrium if we use best responses to
update policies.

V. CONCLUSION

We have identified in this paper a Braess-type paradox
that occurs in the context of wireless communications.
We were able to compute explicitly the degradation
of performance at equilibrium as a function of the
improvement of power gain. We make the following
observations.

• Our analysis focused on throughput. However, if
we notice that the delay needed for a mobile i to
transmit a unit of data is 1/Θi then we conclude that
when the throughputs improves then the delay also
improves (becomes smaller). Hence the paradoxical

behavior in terms of throughput also occurs with
respect to the delay.

• We note that the original Braess paradox deals with
costs or with delays and not with throughput: the
demand there is not assumed to depend on the
link costs or on whether a link is added or not.
In our case the paradox concerns both delay and
throughput.

• In view of the Braess paradox, the natural question
arises of how to upgrade a network in a way that
results in an improvement of performance for all
players at equilibrium. In our case

∂Θi(game)
∂hown

=

αV

(Nhownm + Nhother + mhownhotherV )2
×

[
N(h2

ownm2 + 2mhownhother − h2
other(m

2 + m− 1))

+V hotherm
2(h2

own − h2
other)

]
> 0,

where m := n − 1. We conclude that a way
to avoid a Braess-type paradox when upgrading
the network is by increasing hown (e.g. by using
better antennas); this leads to an improvement of
the throughput of all mobiles at equilibrium. Similar
problems have been considered in other contexts,
see [17], [2] who show that increasing capacity
of direct links between a source and a destination
in routing games improves the performances at
equilibrium.

• As in most cases of Braess paradox (but in contrast
with the paradox obtained in [10], [11], [12]) the
paradox persists for the case of n → ∞ (the
Wardrop equilibrium).
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