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ABSTRACT We study optimal static routing problems in open multiclass
networks with state-independent arrival and service rates. Our goal is to
study the uniqueness of optimal routing under different scenarios. We con-
stder first the overall optimal policy that s the routing policy whereby the
overall mean cost of a job is minimized. We then consider an indiwvidually
optimal policy whereby jobs are routed so that each job may feel that its own
expected cost 1s minimazed if it knows the mean cost for each path. This is
related to the Wardrop equilibrium concept in a multiclass framework. We
finally study the case of class optimization, in which each of several class
of jobs tries to minimaze the averaged cost per job within that class; this is
related to the Nash equilibrium concept. For all three settings, we show that
the routing decisions at optimum need not be unique, but that the utiliza-
tions in some large class of links are uniquely determained.
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1.1 Introduction

We consider the problem of optimally routing in networks. Much previous
work has been devoted to the routing problem in which at each node one
may take new routing decisions. We consider a more general framework
in which the sources have to decide how to route their traffic between
different existing paths. (These two problems coincide in the case where
the set of paths equals to the set of all possible sequences of consecutive
directed links which originate at the source and end at the destination.)
In ATM (Asynchronous Transfer Mode [26])% environment, this problem
arises when we wish to decide on how to route traffic on a given existing
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set of virtual paths or virtual connections. Our framework thus allows us to
handle routing both in a packet switching as well as in a circuit switching
environment. We consider three different frameworks:

(i) The overall optimization criterion, where a single controller makes
the routing decisions. Extensive literature exists for this approach, both in
telecommunication applications as well as in load balancing for distributed
computer systems [5, 11, 12, 14, 28].

(i) The individual optimality, in which each routed individual chooses its
own path so as to minimize its own cost. An individual is assumed to have
an infinitesimally small impact on the load in the network and thus on costs
of other individuals. This framework has been extensively investigated in
transportation science, see [6, 10, 23], and was also considered in the context
of telecommunication [13] and in distributed computing [11, 12, 13]. The
suitable optimization concept for this setting is of Wardrop equilibrium
[29]; it is defined as a set of routing decisions for all individuals such that a
path is followed by an individual if and only if it has the lowest cost for that
individual. Individual optimality is the most natural concept in networks
which implement Bellman-Ford type algorithms on a packet base; in such
networks, packets are routed along the shortest path.*

(iii) The class optimization; a class may correspond to all the traffic
generated by a big organization. It may represent a service provider in a
telecommunication in case that it is the service providers that take the
routing decisions for their subscribers. A class contains a large amount of
individuals and has a nonnegligible impact on the load in the network.
Each class wishes to minimize the average cost per individual, averaged
over all individuals within that class; there is thus a single entity per each
class which takes the routing decisions for all individuals of that class. The
suitable optimization concept for this approach is that of Nash equilibrium
[10]; it is defined as a set of routing decisions for the different classes such
that no class can decrease its own cost by unilaterally deviating from its
decision. This approach was used in telecommunication applications in [22,
15, 19], in load balancing problems in distributed computer systems [17,
11, 12] and in transportation science in [10].

Except for some exceptions [1, 3, 7], optimal solutions for the different
frameworks may lead to quite different performances. In particular, the
well known Braess paradox [4] shows that in the individual optimization,
adding a link to the network may result in a new equilibrium with larger
delays to all users. The same phenomenon may occur also in class opti-

4In [9], for example, a shortest path adaptive decentralised routing protocol is pro-
posed for an Ad-hoc network. The authors justify this approach by saying that it does
not suffice to minimize the average delay of a packet, since one has to consider in addi-
tion the resequencing delays due to the fact that packets may follow different paths. By
using shortest paths, it is likely that the sojourn times of different packets do not vary
much, so that resequencing delays are minimized.
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mality [17, 15], but cannot occur in the case of overall optimization (in
both the class and individual optimal solution, traffic is sent over the new
link, whereas this link is unused by the overall optimal solution). Another
important difference between the different solution concepts is that for con-
vex increasing link costs, the solutions are known to be unique (in terms
of link utilization) for the individual and the overall optimization, under
very general topologies for the single class case (we extend this result to
the case of several classes). However, for the class optimization problem we
know of simple counterexamples (see [22] for a 4-node example) that the
equilibrium is not unique.

An optimization problem does not necessarily have a unique solution.
If they are not unique, it is necessary to make clear the range and char-
acteristics of the solutions, in particular, when we calculate numerically
the optimal solutions and when we intend to analyse the effects of the
system parameters on the optimal solutions. [13] already studied the first
two approaches (overall and individual optimization) and characterised the
uniqueness for a particular cost structure, that of open BCMP queueing
networks [2, 18]° with state-independent arrival and service rates. We ex-
tend here these results to a fairly general cost function. We also extend
substantially results obtained in [22] for the uniqueness of class optimiza-
tion.

In Section 1.2 we provide the notation and some assumptions used in this
paper. In Section 1.3 we obtain the overall optimal solution, and discuss the
uniqueness of the overall optimal solution. In Section 1.4 we show similar
results on the uniqueness of the individually optimal solution. Some results
on uniqueness for class optimization are presented in Section 1.5. Numerical
examples are presented in Section 1.6, and the paper ends with a concluding
section 1.7.

1.2 Notation and assumptions

We consider an open network model that consists of a set M containing
M links. We assume that in the network there are pairs of origin and
destination points. We call the pair of one origin and one destination points
an O-D pair. The unit entity that is routed through the network is called
a job. Each job arrives at one of the origin points and departs from one
of the destination points. The origin and destination points of a job are
determined when the job arrives in the network.

Jobs are classified into J different classes. For the sake of simplicity,
we assume that jobs do not change their class while passing through the

5More details on these networks are given later on. The name BCMP was given due
to the initials of its authors [2]
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network. A class k job may have one of several different origin-destination
pairs. Such a class may represent all the users of a given service provider in
a context of telecommunications, provided that they control the routes of
the traffic of their subscribers. In the context of road traffic it may represent
the set of vehicles of a given type, such as busses, or trucks, or bicycles,
etc. With this in mind, it is natural to expect that jobs of different classes
are faced with different types of routing decisions.

A class k job with the O-D pair (o, d) originates at node o and destinates
for node d through a series of links, which we refer to as a path, and then
leaves the system. We assume that links are class-dependent directional,
i.e. for each class, there is a given direction in which the flow can be sent.

In many previous papers [22, 15], routing could be done at each node.
In this paper we follow the more general approach in which a job of class
k with O-D pair (0,d) has to choose one of a given finite set of paths (see
also [13, 23]). We call this set the paths of job class k O-D pair (o, d).

We assume that we can choose the job flow rate of each path in order
to achieve a performance objective. A path may be a given sequence of
links that connect the origin and destination nodes. In that case, it may
correspond to a virtual connection in ATM. We allow, however, a path to
be some more general object. It may contain a number of subpaths; we
assume however that once the job flow rate of a path is given, the job flow
rate of each subpath in the path is fully determined (and is not the object
of a control decision). That is, the relative flow rate of each subpath in the
same path is governed by some fixed transfer proportions (or probabilities)
between the links.

For example, one may consider paths that include noisy links, where
lost packets have to be retransmitted locally over the link. Thus, some
given proportion of the traffic in this path use a direct subpath (no losses)
whereas other have to loop (this models losses and retransmissions). An-
other example of a path containing several subpaths is a network in which
switches route arriving traffic in some fixed proportions between outgoing
links (subpaths); if this proportion is not controlled by the the entity that
takes routing decision for the class, then resulting routes from the outgoing
links are still considered as a single path.

The solution of a routing problem is characterised by the chosen values
of job flow rates of all paths. Below, the rate of flows will be real numbers,
and methods related to convex optimization will be used. Our model is
therefore appropriate for applications in which we may ignore the discrete
nature of packets and/or sessions, thus avoiding the high complexity of
discrete optimization methodologies. A job can correspond to an IP packet
in a network through which a large number of packets flow (and in which
the route of each packet may be different). There are cases, as in ATM,
in which all packets of a connection have to follow the same route. Our
model will still be useful provided that we need to choose the route of a
large number of sessions.
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Notation regarding the network:

D) = Set of O-D pairs for class k jobs.

Hc(lk) = Set of paths that class k jobs of O-D pair d € D'*) flow through.
II(F) = Set of all paths for class k jobs, i.e., II(F) = U Hék).

de D)

g 1 ifpe 1% and k=¥,
pd 0  otherwise.
Notation regarding arrivals to the network and flow rates:

qﬁfik) = Rate at which class k jobs join O-D pair d € D),

; . . . . k
#®) = Total job arrival rate of class k jobs, i.e., p(F) = Z q&g ),

de D)
J
& = System-wide total job arrival rate, i.e., & = Z q&(k).
k=1
xg,k) = Rate at which class &k jobs flow through path p.

01, = Percentage of the rate xg,k) that pass through link , for p € TI(%).

)\Ek) = Rate at which class k jobs visit link /, )\Ek) = Z 5sz§,k).
pEIT (k)

¢Elk)7 %) & and §;, are given constants (and not decision variables).
Notation regarding service and performance values in the open
network:

,ugk) = a constant denoting the service rate of class k jobs at link [.
pl(k) = )\Ek)/,ugk). Utilization of link [ for class & jobs.
J
o = Zpgk). Total utilization of link 7.
k=1

Tl(k) =Mean cost of class k jobs at link [.

Ti(p1) = Weighted cost per unit flow in link [.

6Each term in the sum is positive even if the directions of flows are not the same.
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T,Sk) =Average class k cost of path p, pe I, k=1,2,...,J.7
A =Overall mean cost of a job (averaged over all classes).

A®) =QOverall mean cost of a job of class k.

Notation regarding vectors and matrices:

p = [p1,p2,---,pm]T where T means ‘transpose’. We call this the utiliza-
tion vector.

A =DWAM AW AW,

)\gk), cee, )\5\};), ...,]¥, i.e, the vector of total flows over all links.

¢ =| gl), gzﬁgl), cey 52), ¢g2), ...]T, i.e., the arrival rate vector.

x :[x§1)7a¢gl), . ,x§2),xé2)7 ...]T, i.e., the path flow rate vector.

«a :[agl), agl), cey a?), 0452), ...]T, i.e., the vector whose elements are agk), de
D®  k=1,2,...,7J; the elements agk) will correspond to some La-
grange multipliers.

¢ =] 9) él), . 9,552), ...]T, i.e., the vector whose elements are §l(k)7 le

M, k=1,2,...,J; the elements §l(k) will correspond to some La-
grange multipliers.

T :[Tl(l), T2(1), ceey T1(2), T2(2), ...]T, i.e., the vector whose elements are T,Sk),p €
o®, r=1,2,...,J.
(k) = (k) (k) .]T

xy, %y ,...]", i.e., the path flow rate vector for class k jobs.

»™ a® and T are defined similarly.

x~k :[xgl), xgl), . ,xgkfl), . ,xgkﬂ), ...]%, i.e., the path flow rate vector
for jobs of the classes other than class k.
Y21 Y22 --- 21 722
r = ; ; i.e., the incident matrix whose
Y21 Y22 oo 21 722

(i,j) element is v p e T®) |k =1,2,...,J, d € DF) | =

k—1 k'—1
1,2,...,J, where i = p+ Z|H(”)| and j =d+ Z |D(”)|.
k=1 k=1

7Tl(k),Tl and Tl(k) are defined at the end of the section (Assumption B1)
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T

Xy = inyi, i.e., the inner product of vectors x = [z1,z2,...]" and

3

y= [?ley2a~-~]T-

We make the following assumptions on the cost:

B1: The cost over a path is given by as a weighted sum of link-by-link
costs over the path: associated with each link I € M there is a cost T;(p;)
per flow unit, that depends on the utilization of the link (The function T;
does not depend on the class k!). There is further a class dependent weight

factor ,ugk) per link [. Thus, the cost per unit flow of class k£ on link [ is

Tl(k) = Tl/,ul(k). Thus the average cost per unit flow of class k job that
passes through path p € TI%) is

3 - (k o
T]Ek) — Z 6lpTl(k) — Z (—ll:)Tl(pl) (1.1)
lem lem My

(For examples of such costs, see [13].)

B2: T} :[0,00) — [0, 0], and T;(0) is finite.

B3: The set M is composed of two disjoint sets of links:

(i) Mz, for which T;(p;) are convex and strictly increasing (in the interval
where they are finite),

(ii) Me, for which T;(p;) = T; are constant (independent of p;).

B4: T;(p;) are continuous. Moreover, they are continuously differentiable
whenever they are finite.

Assumptions B1 — B4 cover in particular the cost that is mostly used
in networking games in telecommunications, which is the expected queue-
ing delay in the so called BCMP queueing networks [2, 18] with state-
independent arrival and service rates. These include open networks (net-
works in which all arrivals eventually leave the network) in which jobs arrive
at nodes according to independent Poisson processes, and in which each
node of the network is represented by (i) a queue which has independent
exponentially distributed service times and FIFO (first in first out) ser-
vice order, or (ii) a queue which has a generally (independent) distributed
service time and a processor sharing service or discipline.

Denote

Py = py(X)=plp=0,iemc. This is the same as p except that p; = 0 for
all [ € Me.

The overall mean cost of a job, A, can be written as

J (k)
A=Y Y T = 2 S T,

k=1 peH(k) leM
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The mean cost of a job of class k, A¥)| can be written as
(k) ) iy _ L (k)
AT = Z Pk P = A0 Z o Ti(p)-
p€eIl(®) leM

Note that the following conditions should be satisfied for each k =
1,2,..., 7,

> oalh) = o), de D", (1.2)
pem®
2P >0, pe T, (1.3)

We can express (1.2) as

J
S Y Ak = ol de D%,

k'=1 pe (k")

or, equivalently, I''x = ¢. (1.4)

Remark Our model includes those discussed for the static routing prob-
lems of communications networks [5, 8, 14]. It also includes those of the
load balancing problems of distributed computer systems such as given in
[12, 20, 27, 28]. From condition B3 it is easy to see that Tl(k) is a convex
function of )\Ek),l e Mz, k=1,2,...,J. It follows that Tl(k) is also convex
with respect to x.

1.3 Overall optimal solution

By the overall optimal policy we mean the policy whereby routing is de-
termined so as to minimize the overall mean cost of a job. The problem of
minimizing the overall mean cost is stated as follows:

L. 1
minimize: A = El;;plTl(pl) (1.5)

with respect to x subject to
I'x=¢, x>0, (1.6)

where pr = 37, A /u™ and AF = 3 o) G, Note that (1.6) are

the same as (1.2) and (1.3), respectively. We call the above problem the

overall optimization problem, and its solution the overall optimal solution.
Define
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tg,k) = B(SPA)/Bxg,k), i.e., class k marginal cost of path p, p € I® k =
1,2,...,J.

t =M e D P T s the gradient vector of the function $A,

i.e., the vector whose elements are tg,k),p elI™ k=1,2,...,J.

Lemma 1.1. x is an optimal solution of the problem (1.5) if and only if x
satisfies the following conditions. There exist Lagrange multipliers o such that

[t(x)—Ta]-x = 0, (1.7)
t(x)—Ta > 0, (1.8)
r's—¢ = o0, (1.9)

x > 0. (1.10)

Proof. Since the objective function (1.5) is convex and the feasible region
of its constraints is a convex set, any local solution of the problem is a global
solution point. So by applying the Karush-Kuhn-Tucker’s Theorem [25], we
obtain that x is an optimal solution of problem (1.5)-(1.6) if and only if x
satisfies the following conditions. There exists Lagrange multipliers a such
that (1.7)-(1.10) hold. g

Lemma 1.2. X is an optimal solution of the problem (1.5) if and only if

t(x)-(x—%) > 0, forall x (1.11)
such that TTx = ¢ and x > 0.

Proof. (1.11) holds for some % if and only if X is the solution of the
following linear program (where the decision variables are x):

min t(X) - x subject to T''x = ¢, x > 0

with X fixed. x is an optimal solution of the linear program if and only if
x satisfies the Kuhn-Tucker conditions (see e.g. pp. 158-165 in [25]) for the
Lagrangian

Lx,a*) = t(X)-x+a" (¢ —-I"x). (1.12)
The Kuhn-Tucker conditions are
g—i = t(x)-Ta* >0, (1.13)
g—i -x = [t(x)-Ta]-x=0, (1.14)
= —T'x = 1.1
— = ¢-I'x=0, (1.15)

x > 0. (1.16)
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That is, the relation (1.11) (i.e., the statement that X is a solution of the
above linear program) is equivalent to the set of relations in Lemma 1.1 for
some (finite) Lagrange multiplier a* (for the finiteness, see Cor. 5.1 p. 165
in [25]). g

From condition B1 we see that A depends only on the utilization of
each link, p;, which results from the path flow rate matrix. It is possible,
therefore, that different values of the path flow rate matrix result in the
same utilization of each link and the same minimum mean cost.

We define below the concept of monotonicity of vector-valued functions
with vector-valued arguments.
Definition Let F(e) be a vector-valued function that is defined on a
domain S C R"™ and that has values F(x) in R™. This function is monotone
in S if for every pair x,y € S

(x—y) - [F(x) - F(y)] > 0.
It is strictly monotone if, for every pair x,y € S with x # vy,
(x —y) - [F(x) - F(y)] > 0.

We need the following property:

Lemma 1.3. Assume Bl — B4, and let | € Mz. Then

(i) Ty(p1) is finite if and only if its derivative Ty (p;) is finite.

(1) If T/ (p1) is infinite then for any x for which the load on link | is pi, the
corresponding cost A(x) is infinite.

Proof. (i) Due to the convexity of T}, we have

Pl
Ti(pr) Z/O T/(¢)dG < piT] ().

By B2, if T;(p;) = oo then p; > 0, which implies by the latter equation that
T/(pr) is infinite.
For the converse, assume that Tj(p;) is finite. Then by continuity, there
exists some € > 0 such that T;(p; + €) is finite. Since T7 is convex, T} (p;) <
e Y(Ti(pi + €) — Ty(pr)) and is thus finite as well.

(ii) If T/(pr) is infinite then by (i), T;(p;) is infinite; moreover, p; > 0 by
assumption B2, so that A(p) = oo (by (1.5)). &

For the function t(x) we have the following.

Lemma 1.4. Assume B1— B4. Whenever finite, t(x) is monotone but is not
strictly monotone, i.e., for arbitrary x and x' (x # x'), if A(x) or A(x') is finite
then

(x—x)-[t(x) —=t(x)] >0 i py# py, (1.17)
=0 if py=py, (1.18)
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where py = py(x) and py = py(x') are the utilization vectors that x and x'
result in, respectively.

Proof. Assume that p;; # pf;. Then
(x —x') - [t(x) — t(x')]

LYY @ - )P g — 9]

k=1 peII(x)

J
= 2 > Y@ -w)x (1.19)

k=1 pe(*) leM

{1 1)

| dTy(p1) ,de(pi)]}

+[ﬂz o " ap
= Z(pz—pi){[ifz(m)—Tz(pE)] (1.20)
leEMz
dli(p)  ,dTi(p;)
+ [ ém’ Y d’p;l]}>0 (1.21)

(The second equality above follows from (1.1). The last inequality follows
from the strict monotonicity of T;(p;), as well as the fact that its derivative
is increasing in p;, and the derivative remains increasing when multiplied by
pi- Due to Lemma 1.3, if A(p) is finite then T} (p;) is finite for all links I € M
(and similarly for A(p')). The last inequality follows since by condition B3,
Ti(p1) are strictly monotone and p;dT;(p;)/dp; are increasing for | € M.
Therefore we have the relations (1.17) and (1.18). g

Theorem 1.3.1 Assume B1— B4 and that there exists some finite feasible
solution. Then the utilization in each link k € Mz is uniquely determined
and is the same for all overall optimal solutions.

Proof. Suppose that the overall optimal policy has two distinct solutions
x = and X, which result in the utilization vectors p; := py(X) and
py = py(X), respectively, and p;; # p;. Then we have from Lemma
1.2, t(%) - (x —%) >0,t(x) - (x —%) > 0.

Hence (% — %) - [t(fc) - t(i)] <0.
From Lemma 1.4 we have

(R —%)- [t(f()—t(fc)] > 0,

since p;; # Ppy. This leads to a contradiction. That is, if there exist two
distinct optimal solutions, the utilization vectors of both the solutions must
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be the same. Note that the utilization of link [ € Mg is considered always
zero. Naturally, in that case, ZZEMC p; must be unique but each of p;, [ €
Mg, need not be unique. g

Note that even when the utilization in each link is unique, the overall
optimal solution may not be unique. This is due to the fact that 7" depends
only on p (see (1.5)) (thus if x is overall optimal then any solution x’ that
gives rise to the same value of p will be optimal as well). In Section 5 of
[13] there is an example of the cases where more than one optimal solution
exists.

Now let us consider the range of the optimal solutions. From the above,
we obtain the following relations that characterise the range of the optimal
solutions.

J o)
YD gy =en L€Mz, (1.22)
k=1pet  Hi
J o0
Z Z Z 6lp% = Z Pr,
leEMc k=1penrt) M leEMe

and for k =1,2,...,J,

S @l =6 deDp®, (1.23)
pEHflk)
2 >0, pe ™, (1.24)

where the value of each p; is what an optimal solution x results in. From
the relations (1.22)-(1.24) we see that optimal path flow rates belong to
a convex polyhedron. Then we have the following proposition about the
uniqueness of the optimal solutions.

Corollary 1.3.2 The overall optimal solution is unique if and only if the
total number of elements in x does not exceed the number of linearly inde-
pendent equations in the set of linear equations (1.22)—(1.23).

1.4 Individually optimal solution

By the individually optimal policy we mean that jobs are scheduled so
that each job may feel that its own mean cost is minimum if it knows
the mean cost T,Sk)(x) of each path of O-D pair d,p € Hc(lk), k=1,..,J.
By the individual optimization problem we mean the problem of obtaining
the routing decision that achieves the objective of the individually optimal
policy. We call the solution of the individual optimization problem the
individually optimal solution or the equilibrium. In the equilibrium, no user



1. Equilibria for Multiclass Routing Problems in Multi-Agent Networks 17

has any incentive to make a unilateral decision to change his route. Wardrop
[29] considered this equilibrium for a transportation network and defined
it through two principles: a policy is equilibrium if for each individual of
a class, the delay along paths which are actually used between the source
and destination are (i) the same, and (ii) they are smaller than or equal
to the delays along paths not used. It is well known that the solution of
Wardrop equilibrium can be obtained by a single mathematical problem
that is obtained by a transformation of the cost [23]. This is related to
the fact that this is a special case of potential games (with a continuum
of players) see e.g. [21, 24]. We shall obtain a similar solution approach
through a mathematical program for our setting as well.

We assume that there is a routing decision and that x is the path flow rate
matrix which results from the routing decision. The individually optimal
policy requires that a class £ job of O-D pair d should follow a path p that
satisfies

T (x) = min T (x) (1.25)
pGHék)
forall d € D), k=1,2,...,J. If a routing decision satisfies the above
condition we say the routing decision realizes the individually optimal pol-
icy.

Definition The path flow rate vector x is said to satisfy the equilibrium
conditions for a multi-class open network if the following relations are sat-
isfied for all d € D) | k=1,2,...,.],

TH(x) > AP, 2 =o, (1.26)
TM(x) = AP, 200 >0, (1.27)
2B = ol (1.28)

pen®
2P > 0, peny, (1.29)

where Afik) = min T(k)(x), de D® k=1,...,J

) P
pEIl,

Note that (1.26)-(1.29) are identical to the relations

[T(x)—TA]-x = 0, (1.30)

T(x)-TA > 0, (1.31)

I'x-—9¢ = 0, (1.32)

x > 0, (1.33)

where A = [A1Y AV AP 4D )T e the vector whose elements

are Agc), de D® | =1,2...,J. The above definition is the natural
extension of the notion of Wardrop [29] equilibrium to our setting.
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Theorem 1.4.1 Assume Bl — B4. There exists an individually optimal
solution x which satisfies the relations (1.30)-(1.33).

Proof. Define T(x) by

- 1 P
T(x)= 5[ Z /0 Ti(s)ds + Z psz]7
leMz leMe
(where we recall that p, = Egzl )\gk)/,ul(k) and )\l(k) =D e 6lpx§,k)).
Note that T'(x) is a convex increasing function of x. Then by (1.1),
o -

T9(x) =~ (@)

Introduce the following convex nonlinear program:
minimize T'(x)with respect to x s.t. (1.32)-(1.33).

The Kuhn-Tucker conditions are the same as (1.30)-(1.33). Therefore, the
program should have an optimal solution which must satisfy relations
(1.30)-(1.33). g

We can express the individually optimal solution in the variational in-
equality form by using the same way as that for the overall optimal solution
as follows.

Corollary 1.4.2 Assuming Bl — B4, X is an individually optimal solution
if and only if it is feasible and

T(X) - (x — X) 0, forall x
such that I'Tx = ¢ and x > 0.

v

Proof. Similar to the proof of Lemma 1.2. g
Lemma 1.5. Assume Bl — B4. Whenever finite, the function T(x) is mono-
tone but is not strictly monotone. That is, for arbitrary x and x' (x # x'), if

T(x) are finite or T(x') are finite then

(x = x){T(x) = T()] > 0 if pyy # iy, (1.31)
=0 if py = Py (1.35)

where py; and py; are the utilization vectors that x and x' result in, respectively.

Proof. This Lemma can be proved by the same way as that for the Lemma
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1.4. Assume that p;; # py;. Then

(x —x') - [T(x) = T(x)]

3D M IR

k=1 peﬂ(k) leMt

1
x =5 (Tilpr) = Tu(p})
My

= Z (o0 = p1)(Ti(p1) — Tu(pp)) > 0

leEM1

The last inequality follows since by condition B3, Tj(p;) are strictly mono-
tone for | € Mz. Therefore we have the relations (1.34) and (1.35). g

Theorem 1.4.3 Assume Bl — B4. Then all equilibria, for which all users
have finite cost, have the same utilization on links | € M.

Proof. We can prove this theorem in the same way as Theorem 1.3.1. g

Here again, individually optimal solution may not be unique. The range
of the individually optimal solutions (related to finite costs) is given by the
same set of relations as (1.22)-(1.24) but with possibly different values of
o, 1=1,2,..., M.

Next, we illustrate the uniqueness of the utilization is indeed restricted
to equilibria with finite cost. Consider the following network. There are 4
nodes: {1,2,3,4} and 1 class. The set of links is {(12), (13), (24), (34), (23)}.
There is an amount of flow of ¢ = ¢(!) =1 to ship between the source node
1 and the destination node 4. The cost per link is given by

1
L—p

Ti(pr) =

The strategy in which all the flow goes along the path (1 — 2 — 3 — 4)
is individually optimal. Indeed, given that all users follow this path, no
individual can decrease his cost by choosing another path. This gives rise
to infinite cost for all individuals.

However, there exists another individual optimal strategy: to route half
of the flow along the path 1 — 2 — 4 and the other half through the path
1 — 3 — 4. This is the unique equilibrium that has finite cost for all users.

1.5 Class optimal solution

Our purpose in this section is to present equivalent characterizations of the
class optimal solution and to extend the known uniqueness results to more
general assumptions.
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The question of uniqueness for the class optimal solution has only been
treated for some special cases [1, 16, 22]. A counter example in [22] shows
that different class optimal solutions may exist, with different utilizations.

The following assumption will be made throughout:

G: If not all classes have finite cost then at least one of the classes which
has infinite cost can change its own flow to make this cost finite.

1.5.1  Problem formulation

By the class optimal policy we mean that jobs are scheduled so that the
expected cost of each class may be minimum under the condition that the
scheduling decisions on jobs of the other classes are given and fixed. By the
class optimization problem we mean the problem of obtaining the routing
decision x that achieves the objective of the class optimal policy. We call
the solution of the class optimization problem the class optimal solution or
the Nash equilibrium. In the Nash equilibrium, no class has any incentive
to make a unilateral decision to change the decision on the routes of the
jobs of the class.

Assumption G above implies that in any Nash equilibrium, all classes
have finite costs.

We assume that there is a routing decision and that x is the path flow rate
matrix which results from the routing decision. The class optimal policy

requires that

AR (x(F) x=F) = )I(I’l(llg AR (x'(R) k) (1.36)

for all k = 1,2,...,J (A®)(x'™*) x~*) is the overall mean cost of a job of
class k given that other classes use flow rate x %, and class k uses x'(¥)).
If x satisfies the above condition we say that it realizes the class optimal
policy.

The problem of minimizing the mean cost for jobs of class k is stated as
follows:

minimize: A®) = ﬁ Z Pz(k)Tl(Pl) (1.37)
leM

with respect to x(*) with x—* being fixed subject to
I''x = b, x>0

(where we recall that pl(k) = )\gk)/ugk), pL= Z}{Zl pl(k) and
k k
)‘g )= Epeﬂ(k) 6lpxgl ))'

1.5.2  Variational inequalities and Kuhn-Tucker conditions

As in the previous sections we can get the Kuhn-Tucker conditions and the
variational inequalities form by using the same reasoning as before. First
we define
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fg,k) = B(Qzﬁp(k)A(k))/@x;k), i.e., class k marginal class-cost of path p, p €
o® k=1,2,...,J.

: 1) (1 2) 2

O OO )

o® k=1,2,...,J.

,i.e., the vector whose elements are £§ﬁ ,D €

O O

Lemma 1.6. x is an optimal solution of the problem (1.36) if and only if x is
feasible and it satisfies the following conditions

[t(x) -Ta]-x = 0, (1.38)
t(x)—-Ta > 0, (1.39)
r's—¢ = o0, (1.40)

x > 0. (1.41)

Proof. Since the objective function (1.37) is convex and the feasible region
of its constraints is a convex set, any local solution of the problem is a
global solution point. To obtain the optimal solution of player k given the
policies x~* of other players, we construct the Lagrangian function for
(1.37), k=1,2,...,J,

L®)(x, M) = g AR 4 o). (¢(k) — TR Tx(k)),
where T'®) = incident matrix whose (p,d) element is 71’;5, pel® de

D¥) k=12 ... J.
By the Kuhn-Tucker theorem x is an optimal solution if and only if there

exists some (finite) a and the following relations hold for £k =1,2,...,J

oLk (k)
i _1®qk)
o t (x) —-T'"Wa'® >0 (1.42)

ALk (K

R () B VSN N COPN() (O R

ERORE = [t (x)-T'"Wa'"] -x 0, (1.43)
OL*) T
ZE - pF) k) (k) =
s = o -TO M =0, (1.44)

x> o, (1.45)

where (OL(*)) /(%) denotes the vector whose elements are (BL(k))/(Bxg,k)),
p€ ™, k=1,2...,J (for the finiteness, see [25] Cor. 5.1). We see that
relations (1.42)-(1.45) for £k = 1,2,...,J are the same as relations (1.38)-
(1.41). g

We can express the class optimal solution in the variational inequality
form by using the same way as that for the overall optimal solution as
follows.
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Corollary 1.5.1 Assume Bl — B4.
only if it is feasible anEl

is a class optimal solution if and

b
(x—%) > 0, forallx

such that I'Tx = ¢ and x > 0.

Proof. Similar to the proof of Lemma 1.2. g

1.5.3 All positive flows
We make the following assumptions:

. ,ul(k) can be represented as a®) y;, and 0 < Mz(k) is finite.

e At each node, each class may re-route all the flow that it sends
through that node to any of the out-going links of that node. Thus
the set of paths for class k equals to the set of all possible sequences
of consecutive directed links which originate at a source s and end at
the destination d, sd € D).

e The rate of traffic of class k£ that enters the network at node v is given
by gzﬁg,k); if this quantity is negative this means that traffic of class k
leaves node v at a rate of |¢(vk)|. We assume that ) o = 0.

For each node u and class k, denote by In(u,k) the set of its in-going
links, and denote by Out(u, k) the set of its out-going links.

Due to the second assumption, we may work directly with the decision
variables )\Ek) instead of working with the path flows. For each node v we
can then replace (1.4) by:

oA = 3 AP+l

lEOut(v,k) lEIn(v,k)

We shall use the Kuhn-Tucker condition. To do so, we define the Lagrangian

LB W) =3 p1—
lem

u lEOut(u,k) leln(u k)
Here, S(k) = [5516)755]6)7 cee S\f[)]T is the vector of Lagrange multipliers for

class k.
An assignment A* is class-optimal if and only if the following Kuhn-
Tucker conditions hold. There exists some £€*) = [&(fc)] such that

HLII(A",€W)

oA >0, (1.46)
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OLM (A", ")

=0if , A" > 0; (1.47)
oA :
A0, S A= 3 A 4 b,
leOut(v,k) leIn(v,k)
Define "
. : 90" Tu(p)
K(k)(p(k)7pl) o B ANV
L o)
Then

1 oTy(p
(k)(P( )701) (—k) <P(k) 812 )+T( ))
Hy

Conditions (1.46)-(1.47) can be rewritten as
KM (o ) 2 € — ), (1.48)

with equality if )\Ek) > 0 and [ = (u,v). Note that condition B3 implies
that K(k)( (k ),pl) is strictly monotonically increasing in both arguments.

Lemma 1.7. Assume Bl — B4. Assume that XA and X are two class-optimal

solutions with finite costs. If py = pi for all links | of type Mz (see assumption
B3) then A\ = A b =1,..,J.

Proof: Assume that under the assumptions of the Lemma the conclusions
do not hold. Then there exist some [ € M7 and some k such that

A > A0, (1.49)

We now construct another network with the same nodes and links as the
original one, with the flow on a link I between two points v and v given
by [A® — A its direction is (uv) if and only if AL — AL) > 0 and is
otherwise (vu). In this network there are no inputs and outputs. It follows
from (1.49) that the network contains a cycle C with strictly positive flow.

We now consider any link (uv) € C. Then in the original network either

(uv) is the direction of the flow of class k and 5\82) > )\Ezl), or the direc-

tion is (vu) and S‘Eﬁl) < Agfl). In the first case we have by Kuhn-Tucker
conditions

ER — €0 = K3 (6 ) = K00 (01 pany) = €09 = €05 (1.50)

In the second case, we have

€ — ) = K (0] o) = K0 (1) fy) = €09 = €50 (1.51)
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Due to the strict monotonicity of K for [ € Mz, there is at least one link in
C for which a strict inequality holds in the corresponding inequality among
(1.50) and (1.51). This implies that

Ic] Ic]

0= @ - &5 > e - )

=1
which is a contradiction. Thus the Lemma is established. =

Theorem 1.5.2 Assume Bl — B4. Denote by Mi(\) the sets of links 1
such that )\gk) >0,k =1,...,J for an assignment .

Assume that X and X are two class-optimal solutions with finite costs for all
players. Assume that \*) = 0,VE, VI ¢ My(A), \F) = 0,Vk, VI ¢ M, ()
Then )\l(k) = S\I(k) for alll € Mz (see assumption B3 for the definition of
Mz).

Proof. Denote &, = Z}{Zl a(k)g( 9 where a(® is defined in the beginning
of Subsection 1.5.3, and

oT,
Zu”lxl” 0", 00) = oo al;lpl)JrJTz(m).

Note that the assumption that costs are finite and Lemma 1.3 imply that
S;(pi) are finite and Assumption B3 implies that S;(p;) is strictly monotone.

Let € denote the vector of the Lagrange multipliers corresponding to by
(1.48) implies that

fy Suv (Puv) > & = &, (1.52)

with equality for (u,v) € My (). A similar relation holds for X. We obtain
that

0 < Z (Puv = Puv)(Suv(Puv) = Suv(Puv)) (1.53)
(u,v)EM
S Z :U/uv(puv - ﬁuv) ((gu - éu) - (fv - év)) =0
(u,v)EM

The first inequality follows from the strict monotonicity of S;(p;) for | €
Mz; for I € Mg this relation is trivial. The second inequality holds in
fact for each pair u, v (and not just for the sum). Indeed, for (u,v) €
Mi(A) N M (A) this relation holds with equality due to (1. 52) This is also
the case for (u,v) ¢ M;(A) U M;(X), since in that case pyy = puy = 0.
Consider next the case (u,v) € My (X), (u,v) ¢ M;(X). Then we have

(puv - ﬁuv)(Suv(puv) - Suv(ﬁuv))
= puv(suv (puv) - Suv(ﬁuv))
< Huwv Puv ((gu - éu) - (gv - év)) .
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A symmetric argument establishes the case (u,v) € My (), (u,v) ¢ My(X).
We finally establish the last equality in (1.53).

> unlpur = pu) (6 = &) = (6 = &)

(u,v)EM
= Z(ﬁj — &) (Piw = Piw)ijuw — Z(ﬁj =)D (Puwj = Puoj) s
J
= > (Z(Ej - &) Z(PS-]ZU) - ﬁ;fu))ujw
k= 7 w

oL

(& = ) D0 = 8

w

ﬁ[Z(&—ﬁ})( S A - Y -]

1 J leOut(7,k) leln(j,k)

[
M%

o =

(we used the fact that the sum of ¢S,k) over all nodes v is equal to zero
so that the difference of ingoing and outgoing lambda’s is also zero). We
conclude from (1.53) that p; = p; for all links in Mz. The proof follows
from Lemma 1.7. =

Remark 1.1. The Theorem and its proof are substantial extensions of [22]
who considered the special case where pf do not depend on I and 7, where there
is a single source-destination pair which is the same for all users (all paths and
all classes), and where Mi(A) = M;i(X). Moreover, the costs of all links are

assumed in [22] to be strictly increasing.

Next, we present an example of load balancing [17] that occurs in dis-
tributed computing, in which different classes have different sources and
where our uniqueness result may apply.

Example 1.1. There are two processors and a single communication means
that connects them. Nodes are numbered 1 and 2. We associate a class to each
node (and thus have two players in the game). Node ¢ has the external arrival
of jobs to process with rate ¢; and it has to decide what fraction of the arriving
jobs would be processed locally and what fraction should be forwarded to the
other node. Delay is incurred at each node (processing delay) as well as in the
communication buss (communication delay), and the goal of each class is to
minimize the average delay of jobs of that class. The delay at each network
element (nodes and communication buss) is an increasing function of the total
job rates that use that element (thus the decisions of one class also influence
the cost for the other class). This load balancing problem can be modeled as a
network game that consists of three nodes and three links:
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o Nodes: s1, s2,d, where s; is the source of jobs of class ¢, and d is a common
destination.

e Links: s;d, ¢ = 1,2 represent the processor ¢, and s;s2 represents the com-
munication bus.

e Paths: Class ¢ has two paths, s; — d (corresponding to local processing)
and path s; — s; — d, that corresponds to forwarding jobs to the other
Processor.

This network model is depicted in Fig. 1.1. We conclude that for the above prob-

Proc. 1 Proc. 2

SN

Class 1 arrivals Class 2 arrivals

FIGURE 1.1. A network representation of the load balancing problem

lem, there is at most one equilibrium (under the appropriate assumptions on the
delay functions) at which each class splits its arrival flows: a fraction is processed
locally and a fraction is forwarded. Numerical examples can be found in [17] (in
which the problem of the uniqueness of the equilibrium was not addressed).

1.6 Numerical Examples

Consider a simple example of a network composed of two parallel links
M = {a,b} and J identical classes: Each link can be identified with a

path. We consider for simplicity ,ugk) = l,ul()k) =2,k =1,...,J. Consider
an M/M/1 type cost, i.e.
-1/
Tl = /Ml )
1—p
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l=a,b, k=1,..,J (T) is infinite for p; > 1). Let ¢* = 2/.J. We note that

AW |
== :2-2)@” =2(1 - py).
J

Pa

Hence, p, < 1 implies that p, > 0.5. We have:

n = 3 Tty = Y 2

]_ —
I—ab I—ab P

2(1—py) Db
2pb -1 1-— Pb '

The overall optimal solution is obtained at pj = /1/2, which gives p} =
2 -2 and A(p) = (2v2+1)/J.

In order to obtain the individual optimization, we note that

1
T®) = ey
1—p
This gives

W= o 1 g
C 2p—1 2(1 — p»)

The individual optimum is obtained at p, = 1/4, p, = 3/4, which gives
delays along the two links of Ték) = Tb(k) =2.

In both cases the solution in terms of the p;’s is unique. Any choice of

rates xl(k) that gives the corresponding p; is optimal, and it is clearly not

unique. For example, if J = 2,

xl(k) =wp;/2, l=a,b, k=1,2
is an overall optimal solution and
xl(k) =wp/2, l=a,b, k=1,2
is an individually optimal solution. Another overall optimal solution is
K =0 = gt 1 = 1= 0D, ) =0 =1,
and another individually optimal solution is
xgl) = p((ll) = Da, xgz) =1- xg1)7 x((f) = 07x§2) =1.

Unlike the overall and individually optimal solutions, the class optimal
solution for this problem is indeed unique, as has been shown in [22].
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1.7 Concluding remarks and perspectives

We studied multiclass static routing problems with several types of op-
timization concepts in networks: the overall optimization, individual opti-
mization and class optimization. The routing problem is of the type studied
in [13], where one has to determine the assignment of the flow rates among
different paths. This setting is more general than the one in which routing
decisions may be taken at each node [15, 22]; it is of special importance to
telecommunications networks, in particular ATM networks, in which the
users have to route their traffic through predetermined virtual paths. We
established the uniqueness of the utilization under the optimal solutions
for the different types of optimization problems.

Our flow allocation model is a simplification of the most general ones ex-
pected to be encountered in actual communication networks. In particular,
we considered a single cost per decision maker which is based on addi-
tive link costs. This model covers costs such as expected delays, but may
fall short of covering other types of costs such as loss probabilities or call
rejection rates.

We should mention that in practice network conditions may change fre-
quently; this means that one should update the routing decisions from time
to time. We believe that our static optimization could be a starting point
for the design of future distributed adaptive routing protocol (see e.g. [9]).

References

[1] E. Altman, E. Bagar, T. Jiménez and N. Shimkin, “Competitive rout-
ing in networks with polynomial cost”, IEEE Trans. on Automatic
Control, Vol 47, pp. 92-96, Jan. 2002.

[2] F. Baskett, K.M. Chandy, R.R. Muntz and F. Palacios, “Open, closed,
and mixed networks of queues with different classes of customers”, J.
ACM 22, 248-260, 1975.

[3] L. D. Bennett, “The existence of equivalent mathematical programs
for certain mixed equilibrium traffic assignment problems”, European
J. of Oper. Res. 71, 177-187, 1993.

[4] D. Braess, “Uber ein Paradoxen aus der Verkehrsplanung”, Un-
ternehmensforschung 12, 258-268, 1968.

[5] D.G. Cantor and M. Gerla, “Optimal routing in a packet-switched
computer network,” IEEE Trans. Computers C-23, 1062-1069, 1973.

[6] S. Dafermos, “The traffic assignment problem for multiclass-user
transportation networks”, Transportation Sci. 6, 73-87, 1972.



1. Equilibria for Multiclass Routing Problems in Multi-Agent Networks 29

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Dafermos and F. T. Sparrow, “The traffic assignment problem for
a general network”, Journal of Research of the National Bureau of
Standards-B. Math. Sci., 91-118, 1969.

L. Fratta, M. Gerla and L. Kleinrock, “The flow deviation method—
an approach to the store-and-forward communication network design”,
Networks 3, 97-133 (1973).

P. Gupta and P. R. Kumar, “A system and traffic dependent adaptive
routing algorithm for Ad Hoc networks”, Proceedings of the 37th IEEE
Conference on Decision and Control, Tampa, Florida, USA, Dec. 1998.

A. Haurie and P. Marcott, “On the relationship between Nash-Cournot
and Wardrop equilibria”, Networks 15, 295-308, 1985.

H. Kameda, T. Kozawa and J. Li, “Anomalous relations among various
performance objectives in distributed computer systems”, Proc. World
Congress on Systems Simulation, 459-465, Sept, 1997.

H. Kameda, J. Li, C. Kim and Y. Zhang, Optimal Load Balancing in
Distributed Computer Systems, Springer, 1997.

H. Kameda and Y. Zhang, “Uniqueness of the solution for optimal
static routing in open BCMP queueing networks”, Math. Comput.
Modeling 22, No. 10-12, 119-130, 1995.

L. Kleinrock, Queueing Systems, Vol 2, Wiley, 1976.

Korilis, Y. A., Lazar, A.A. and Orda, A., “Architecting noncooperative
networks”, IEEE JSAC, 13, 1241-1251, 1995.

H. Kameda, E. Altman and T. Kozawa, “A case where a paradox
like Braess’s occurs in the Nash equilibrium but does not occur in
the Wardrop equilibrium - a situation of load balancing in distributed
computer systems”, Proc. of the 38th IEEE Conference on Decision
and Control, Phoenix, Arizona, USA, Dec. 1999.

H. Kameda, E. Altman, T. Kozawa and Y. Hosokawa, “Braess-like
paradoxes of Nash Equilibria for load balancing in distributed com-
puter systems”, IEEE Trans. on Automatic Control, 45, No. 9, 1687-
1691, 2000.

F.P. Kelly, Reversibility and Stochastic Networks, John Wiley & Sons,
Ltd., New York (1979).

R. J. La and V. Anantharam, “Optimal routing control: game theo-
retic approach”, Proc. of the 36th IEEE Conference on Decision and
Control, San Diego, California, Dec. 1997.



30

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Eitan Altman and Hisao Kameda

J. Li and H. Kameda, “Load balancing problems for multiclass jobs
in distributed/parallel computer systems,” IEEE Trans. Compt. 47,
3, 1998, pp.322-1998.

D. Monderer and L. S. Shapley, "Potential games”, Games and Econ.
Behavior, 14:124-143, 1996.

A. Orda, R. Rom and N. Shimkin, “Competitive routing in multi-user
environments”, IEEE/ACM Trans. on Networking, 510-521, 1993.

M. Patriksson The Traffic Assignment Problem: Models and Methods
VSP BV, P.O. Box 346, 3700 AH Zeist, The Netherlands, 1994.

W. H. Sandholm, ”"Potential games with continuous player sets”, sub-
mitted, 2000.

J. F. Shapiro, Mathematical Programming, Structures and Algorithms,
J. Wiley, 1979.

W. Stallings, High Speed Networks: TCP/IP and ATM design princi-
ples, Prentice Hall, 1998.

A.N. Tantawi and D. Towsley, “A general model for optimal static load
balancing in star network configurations”, Proc. of PERFORMANCE’
84, North-Holland, New York, 277-291 (1984).

A. N. Tantawi and D. Towsley, “Optimal static load balancing in dis-
tributed computer systems”, J. ACM 32, 445-465, 1985.

J.G. Wardrop, “Some theoretical aspects of road traffic research”,
Proc. Inst. Civ. Eng. Part 2, 325-378, 1952,



