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Abstract

We study the effect of adding redundancy to an input stream on the losses that occur due to buffer overflow. We consider
several sessions that generate traffic into a finite capacity queue. Using multi-dimensional probability generating functions,
we derive analytical formulas for the loss probabilities and provide asymptotic analysis (for large n and small or large ²). Our
analysis allows us to investigate when does adding redundancy decrease the loss probabilities. In many cases, redundancy is
shown to degrade the performance, as the gain in adding redundancy is not sufficient to compensate the additional losses due
to the increased overhead. We show, however, that it is possible to decrease loss probabilities if a sufficiently large amount of
redundancy is added. Indeed, we show that for an arbitrary stationary ergodic input process, if ² < 1 then redundancy can
reduce loss probabilities to an arbitrarily small value.  1999 Elsevier Science B.V. All rights reserved.

Keywords: Forward error correction; Loss probabilities; Multi-dimensional generating functions; M=M=1=K queue; Stationary
ergodic arrival processes

1. Introduction

An important trend in telecommunications is to integrate different type of traffic in a single network.
The various traffic types typically have different requirements on quality of services, and in particular,
on loss probabilities. Rapid progress in the development of fiber optics allows to achieve a bit error rate
of 10�14; information loss is then essentially due to congested nodes and buffer overflow.

Often, a group of consecutive packets are grouped into a frame, and loss of one packet results in the
loss of the whole frame. This is the case in ATM where a transport layer protocol (known as AAL)
is responsible for this grouping, see e.g. Chapter 5 in [11]. In order to reduce the loss probabilities,
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one may add redundant packets into the frame, so that lost packets can be often reconstructed. Indeed,
there exist erasure recovery codes that, by including additional k redundant packets in a frame, enable
to reconstruct up to k losses (see [5,10,13,4] and references therein). We note, however, that by adding
redundant packets, the workload increases and thus the loss probability of a packet increases.

Adding redundant packets to a frame is quite frequent in networks, especially in the ATM adaptation
layer (AAL), see e.g. [3]. It also plays an important role in several applications on the Internet (see e.g.
[2,12]). If the number of redundant packets j that is to be added to a set of n packets is one, the simplest
way to do it is by letting the kth bit of the redundant packet be the modulo 2 sum of the kth bit of all n
packets. For the case of j ½ 2 there are several known methods, see e.g. [4], or the Reed Solomon code
[6]. The procedure of adding redundancy is known as Forward Error Correction (FEC). (This method is
in contrast with feedback error correction methods based on retransmissions, which may require long
delays due to the retransmission.)

We analyze the tradeoff between the effects of increase of workload and the recovery of lost packets,
and calculate the probability of no more losses than k packets within n consecutive ones in the presence
of k redundant packets. The computations are based on recursive formulas obtained by Cidon, Khamisy
and Sidi [5]. We consider the possibility of multiplexing between several sources so that the packets
of a given source to which redundancy is added may be separated in the queue by packets from other
sources. This type of models (with more general arrival processes) was studied also in Kawahara et al.
[10] who obtain a procedure for the numerical solution. By restricting in this paper to Poisson arrivals,
we are able to obtain exact formulas for the loss probabilities.

In [13], the authors have used an approximation based on an assumption of independence between
consecutive losses, and shown that redundancy results in decrease of loss probabilities by 10% to 100%.
Exact numerical methods based on recursions [5] led to an opposite conclusion, i.e. that redundancy
causes increase in loss probabilities. One of the advantages of our analytical approach, together with
the asymptotic approximations which we present, is that they enable to study both qualitative and
quantitative behavior of the effect of redundancy in a systematic way. As was already shown in [1,9]
for the case of a single source, we show that for both light traffic as well as heavy traffic conditions,
redundancy decreases loss probabilities.

In this paper we identify a fundamental property of losses with redundancy. We show that for any
value ² smaller than one of the traffic load of sessions to which we wish to add redundancy, adding
redundancy in an appropriate way results in arbitrarily small loss probabilities. This property is shown
to hold for any stationary ergodic arrival sequence. For the special case of Poisson arrivals we actually
compute the rate of redundancy that has to be added.

The paper is structured as follows: in Section 2, we describe the model and we set the main results:
probability generating function (etc.), the proofs are given in Section 3. The asymptotic analysis is
presented in Section 4. In Section 5, we show that in light traffic, adding redundancy decreases the
loss probabilities. Numerical examples which illustrate this improvement are given in Section 6. In
Section 7 we show that frame losses can be almost completely eliminated, and we compute the required
rate of redundancy. In Section 8 we extend some of these results to general arrival and service time
distributions. We conclude with some remarks and future work in Section 9.
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2. The model and the main results

We consider an M=M=1 queue with a finite buffer of size K served according to the FIFO (first in
first served) discipline. We assume that packets arrive to the queue from S independent sources, i.e. the
inter-arrival times and the transmission times of packets from each source are mutually independent.
The arrival process from source s, s D 1; 2; : : :; S, is assumed to be Poisson with rate ½s . The overall
arrival process to the system is then Poisson with rate ½ ,

PS
sD1 ½s . Define ps , ½s=½ and pNs , 1� ps ,

² D ½=¼, ²s D ½s=¼ D ps². We summarize the recursive scheme introduced in [5] for computing
Ps. j; n/; s D 1; 2; : : :; S which are the probabilities of j losses among n consecutive ones originating
from source s. For the system with Poisson arrivals with rate ½ and exponential transmission rate ¼,
in steady state, the probability of finding i packets in the system at an arbitrary epoch is given by
Š.i/ D ²i=.

PK
lD0 ²

l/. Define Qi .k/ to be the probability that k packets out of i leave the system during
an inter-arrival epoch. We have

Qi .k/ D ²ÞkC1; 0 � k � i � 1;

Qi .i/ D Þi ; where Þ :D .1C ²/�1:
(1)

Denote by Ps;a
i . j; n/ resp. P Ns;ai . j; n/, i D 0; 1; : : :; K , s D 1; 2; : : :; S, n ½ 1, 0 � j � n, the

probabilities of j losses in a block of n packets coming from source s, given that there are i packets in
the system just before the arrival of the first packet in the block, and just before the arrival of a packet
from any other source (denoted by Ns), respectively. Since the first packet in the block is arbitrary, we
have

Ps. j; n/ D
KX

iD0

Š.i/Ps;a
i . j; n/: (2)

The probability that an arbitrary arrival is from source s is equal to ½s=½. The recursive scheme is

Ps;a
i . j; 1/ D

(
1; j D 0;

0; j ½ 1;
i D 0; 1; : : :; K � 1 (3)

Ps;a
K . j; 1/ D

(
1; j D 1;

0; j D 0; j ½ 2:
(4)

For n ½ 2, we have for 0 � i � K � 1 and for i D K , respectively:

Ps;a
i . j; n/ D

iC1X
kD0

QiC1.k/
h

ps Ps;a
iC1�k. j; n � 1/C pNs P Ns;aiC1�k. j; n � 1/

i
;

Ps;a
K . j; n/ D

KX
kD0

QK .k/
h

ps Ps;a
K�k. j � 1; n � 1/C pNs P Ns;aK�k. j � 1; n � 1/

i
;

(5)
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where P Ns;ai . j; n/ for n ½ 1 is given by

P Ns;ai . j; n/ D
iC1X
kD0

QiC1.k/
h

ps Ps;a
iC1�k. j; n/C pNs P Ns;aiC1�k. j; n/

i
; 0 � i � K � 1;

P Ns;aK . j; n/ D P Ns;aK�1. j; n/:

(6)

The complexity of these recursions is O.K 2nj/ in arithmetic operations and O.K 2/ in memory space.
Next, we state the main results, whose detailed proofs are given in next section. Define:

qs.y; z/ ,
1X
jD0

1X
nD1

y j zn�1 Ps. j; n/:

Let x1.z/ and x2.z/ be the solutions in x of x2 � .1C ²/x C ².pNs C psz/ D 0:

x1.z/ D
�

1C ² C
p
.1C ²/2 � 4².pNs C psz/

�
=2;

x2.z/ D
�

1C ² �
p
.1C ²/2 � 4².pNs C psz/

�
=2:

We shall often write simply x1 and x2 for x1.z/ and x2.z/. Both these functions are analytic in the
disk

ýjzj < �
.1C ²/2 � 4²Ns

Ð
=4²s

	
. Define, for all k, Žk D xk

1 � xk
2 , �k D .pNs C psz/Žk�1 � Žk . Let

RK D
�PK

lD0 ²
l
��1

.

Proposition 1. The probability generating function qs is given by

qs.y; z/ D RK

.1� z/

�
²K�1.1� z/[ŽKC1]2

z�K

�
1

zŽK � ŽKC1 � ²z�K y

½
C R�1

K C
²K�1ŽKC1

z�K

�
: (7)

Once the probability generating function is obtained by Proposition 1, one can obtain the required
probabilities by inverting qs . We focus in the sequel on Ps

² .> j; n/, which is the probability of losing
more than j packets out of n consecutive ones coming from source s. We investigate in particular the
case of j D 0; 1, in order to be able to decide when does including one redundant packet in each frame
results in a decrease of the loss probability.

We shall use the notation [zk] f .z/ to denote the coefficient of zk in the Taylor expansion of the
function f .z/, i.e. if f .z/ DPk fk zk then [zk] f .z/ D fk .

Corollary 2. The probability of losing more than j packets out of n consecutive packets that arrive from
source s is

Ps
² .> j; n/ D RK²

KC j ðzn�1� jŁ 1

z � 1

�
ŽKC1

zŽK � ŽKC1

½�
�K

zŽK � ŽKC1

�j

: (8)

In the following, we obtain a simple recursion on n, for computing the probabilities Ps
² .> j; n/.

Thus, we avoid a recursion on j and a resolution of a set of linear equations of size K for all j and all n
required in [5].
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Define þ,  and � as

 D 1C ²; þ D
p
.1C ²/2 � 4²Ns; � D 4²s

.1C ²/2 � 4²Ns
: (9)

Let G D K=2 for K even and .K C 1/=2 otherwise, and set

an D .��/n
GX

kDn

�
K C 1

2k C 1

��
k

n

�
þ

�
þ



�2k

;

bn D .��/n�1
GX

kDn

�
K C 1

2k C 1

��
k

n

��
4 .2k C 1/n

þ.K C 1/.K C 1� 2k/
C �þ

��
þ



�2k

(we use the convention that
PG

kDn D 0 if n > G).

Corollary 3. For n ½ 1 we have

Ps
² .> 0; n/ D RK²

K C 1

a0

n�1X
kD1

�
bn�k Ps

² .> 0; k/C RK²
K ak

Ð
: (10)

For j < n, n ½ 1, Ps
² .> j; n/ is given by the expression

.�1/ j

A jC1;0

24n�2X
kD j

HjC1;n�1�k Ps
² .> j; k C 1/C RK²

K
n� j�1X

kD0

R j;k

35 ; (11)

where

Hk;n D
kX

rD0

nX
mDr

�
k

r

�
.�1/k�r Ak�r;n�m Br;m�r ;

Rk;n D
kX

rD0

nX
mD0

�
k

r

�
.�1/k�r Ak�rC1;n�m Br;m;

with

Ak;n D
ð
znŁ .ŽKC1/

k D
nX

mD0

kX
rD0

�
k

r

�
.�1/k�r a0r.KC1/;mb0.k�r/.KC1/;n�m;

Bk;n D
ð
znŁ .ŽK /

k D
nX

mD0

kX
rD0

�
k

r

�
.�1/k�r a0r K ;mb0.k�r/K ;n�m;
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where

a0k;n D �n
�

2

�k kX
rD0

�
k

r

��
þ



�r
� .n � r=2/

n!� .�r=2/
;

b0k;n D �n
�

2

�k kX
rD0

�
k

r

���þ


�r
� .n � r=2/

n!� .�r=2/
:

For computing the probabilities Ps
² .> 0; n/, we first compute the terms ak and bk , k D 0; : : :; n

which requires O.K n/ arithmetic operations, then we compute the sum, which is a simple recursion on
n, with complexity of O.n2/ arithmetic operations and O.K n/ in memory space if we consider that all
the values

�k
r

Ð
, 0 � r � n, r � k � K=2 remain in memory (and need not be computed). In the case

j > 0, we proceed in the same manner; we first compute the terms a0k;m , b0k;m, k D K C 1; : : :; j .K C 1/,
m D 0; : : :; n which requires O.K nj2/ arithmetic operations, after this, we compute the terms Ak;m, Bk;m,
k D 1; : : :; j , m D 0; : : :; n with complexity of O. j2n2/, after what, we compute the terms HjC1;m and
R j;m , m D 0; : : :; n which requires O. jn2/. Finally, the probabilities are computed from Eq. (11) with
complexity of O.n2/ arithmetic operations. Thus, the complexity of this procedure is O. j2n2 C K nj2/ in
arithmetic operations and O.K 2 j2/ in memory space if we consider, again, that all values

�k
r

Ð
, 0 � r � k,

K C 1 � k � j .K C 1/ are stored beforehand in the memory and need not be computed.

Remark 4. All the results in [1], who considered a single source, can be obtained as special case of our
results by substituting 1 for ps .

3. Proof of the main results

Proof of Proposition 1. The following derivation is a generalization of the one given in [1] for the case
of no exogenous flow, i.e. pNs D 0. Define

³ s
j;n.x/ ,

KX
iD0

xi Ps;a
i . j; n/;

³ Nsj;n.x/ ,
KX

iD0

xi P Ns;ai . j; n/;

ýs Ns
j;n.x/ ,

KX
iD0

xi
h

ps Ps;a
i . j; n/C pNs P Ns;ai . j; n/

i
; n ½ 1; j ½ 0:

It follows from Eq. (5) that

³ s
j;n.x/ D

K�1X
iD0

xi
iC1X
kD0

QiC1.k/
h

ps Ps;a
iC1�k. j; n � 1/C pNs P Ns;aiC1�k. j; n � 1/

i

C x K
KX

kD0

QK .k/
h

ps Ps;a
K�k. j � 1; n � 1/C pNs P Ns;aK�k. j � 1; n � 1/

i
:
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Next, we substitute Eq. (1) as well as the definition of ýs Ns
j;n.x/ into the last equation. Using the fact

thatýs Ns
j;n.0/ D ps Ps;a

0
. j; n/C pNs P Ns;a0 . j; n/, we obtain for n ½ 2, j ½ 1:

³ s
j;n.x/ D

K�1X
iD0

xi

 
iX

kD0

²ÞkC1
h

ps Ps;a
iC1�k. j; n � 1/C pNs P Ns;aiC1�k. j; n � 1/

i
C ÞiC1

h
ps Ps;a

0
. j; n � 1/C pNs P Ns;a0 . j; n � 1/

i!

C x K

 
K�1X
kD0

²ÞkC1
h

ps Ps;a
K�k
. j � 1; n � 1/C pNs P Ns;aK�k. j � 1; n � 1/

i
C ÞK

h
ps Ps;a

0
. j � 1; n � 1/C pNs P Ns;a0 . j � 1; n � 1/

i!

D ²Þ2

1� Þx

�
1

Þx
ýs Ns

j;n�1.x/� .Þx/Kýs Ns
j;n�1.Þ

�1/

�
� ²Þ2

1� Þx

�
1

Þx
� .Þx/K

�
ýs Ns

j;n�1.0/

C Þ1� .Þx/K

1� Þx
ýs Ns

j;n�1.0/C Þ².Þx/Kýs Ns
j�1;n�1.Þ

�1/C Þ.Þx/Kýs Ns
j�1;n�1.0/: (12)

Proceeding similarly as above, we obtain from Eq. (6) for n ½ 1, j ½ 0:

³ Nsj;n.x/ D
²Þ2

1� Þx

�
1

Þx
ýs Ns

j;n.x/� .Þx/Kýs Ns
j;n.Þ

�1/

�
� ²Þ2

1� Þx

�
1

Þx
� .Þx/K

�
ýs Ns

j;n.0/

C Þ1� .Þx/K

1� Þx
ýs Ns

j;n.0/C Þ².Þx/Kýs Ns
j;n.Þ

�1/C Þ.Þx/Kýs Ns
j;n.0/: (13)

Define, with some abuse of notation, the generating functions of Ps;a
i . j; n/ resp. P Ns;ai . j; n/:

³ s.x; y; z/ ,
1X
jD0

1X
nD1

y j zn�1³ s
j;n.x/; resp. ³ Ns.x; y; z/ ,

1X
jD0

1X
nD1

y j zn�1³ Nsj;n.x/:

Define also, with some abuse of notation, the generating function of ps Ps;a
i . j; n/C pNs P Ns;ai . j; n/:

ýs Ns.x; y; z/ ,
1X
jD0

1X
nD1

y j zn�1ýs Ns
j;n.x/ D ps³

s.x; y; z/C pNs³ Ns.x; y; z/: (14)

When we fix y and jzj < 1, the three generating functions are polynomials in x , and therefore analytic
functions. In order to use Eq. (12), which holds only for n ½ 2 and j ½ 1, we note that

1X
jD1

1X
nD2

y j zn�1³ s
j;n.x/ D ³ s.x; y; z/�

1X
nD1

zn�1³ s
0;n.x/�

1X
jD0

y j³ s
j;1.x/C ³ s

0;1.x/

D ³ s.x; y; z/� ³ s.x; 0; z/� ³ s.x; y; 0/C ³ s.x; 0; 0/:
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From Eqs. (3) and (4) we get

³ s.x; 0; 0/ D 1� x K

1� x
; ³ s.x; y; 0/ D 1� x K

1� x
C yx K : (15)

In Eq. (15), as well as in the rest of the paper, we consider that for x D 1 and for all K ,
.1 � x K /=.1 � x/ D K (in particular, RK D 1=.K C 1/ for ² D 1). From Eq. (12), after substituting
Eq. (14), we obtain

³ s.x; y; z/� ³ s.x; 0; z/ D yx K C ²Þ2

1� Þx

1

Þx
z
ð
ýs Ns.x; y; z/�ýs Ns.x; 0; z/

Ł
� ²Þ2

1� Þx
.Þx/K z

ð
ýs Ns.Þ�1; y; z/�ýs Ns.Þ�1; 0; z/

Ł
� ²Þ2

1� Þx

�
1

Þx
� .Þx/K

�
z
ð
ýs Ns.0; y; z/�ýs Ns.0; 0; z/

Ł
C Þ1� .Þx/K

1� Þx
z
ð
ýs Ns.0; y; z/�ýs Ns.0; 0; z/

Ł
C Þ².Þx/K zy

ð
ýs Ns.Þ�1; y; z/Cýs Ns.0; y; z/

Ł
D yx K C ²Þ2

1� Þx

1

Þx
z
ð
ýs Ns.x; y; z/�ýs Ns.x; 0; z/

Ł
C ²Þ.Þx/K

�
y � Þ

1� Þx

�
z

�
ýs Ns.Þ�1; y; z/C 1

²
ýs Ns.Þ�1; 0; z/

½
C ²Þ

2.Þx/K

1� Þx
z

�
ýs Ns.Þ�1; 0; z/C 1

²
ýs Ns.0; 0; z/

½
C
� �²Þ2

1� Þx

1

Þx
C Þ

1� Þx

�
z
ð
ýs Ns.0; y; z/�ýs Ns.0; 0; z/

Ł
: (16)

Similarly, from Eq. (13) after substituting Eq. (14), we have

³ Ns.x; y; z/ D ²Þ.Þx/K
�

1� Þ

1� Þx

��
ýs Ns.Þ�1; y; z/C 1

²
ýs Ns.Þ�1; 0; z/

½
C ²Þ2

1� Þx

1

Þx
ýs Ns.x; y; z/C Þ2.x � ²/

.1� Þx/Þx
ýs Ns.0; y; z/: (17)

By using the relation Þ C ²Þ D 1, we get from Eq. (17) and Eq. (14)

³ Ns.²; y; z/ D ýs Ns.²; y; z/ D ³ s.²; y; z/: (18)

This means that the distributions of the number of the customers in the queues taken at the arrival
times of the packets from source s are the same when taken at the arrival times of the other packets
(packets coming from other sources Ns). (This is due to the Pasta property.)

We note that in order to establish the proof of Proposition 1, it follows from Eq. (2) that it suffices to
obtain ³ s.x; y; z/ at x D ², since

qs.y; z/ D RK³
s.²; y; z/: (19)
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From Eqs. (16) and (18) we haveð
³ s.²; y; z/� ³ s.²; 0; z/

Ł
.1� z/ D y²K C z.²Þ/KC1 ðýs Ns.Þ�1; 0; z/�ýs Ns.0; 0; z/

Ł
C z.y � 1/.²Þ/KC1 ðýs Ns.Þ�1; y; z/�ýs Ns.0; y; z/

Ł
: (20)

In order to compute the function ³ s.²; y; z/ it suffices to compute the functions in the square brackets
as well as ³ s.²; 0; z/. To do that, we first compute ³ s

0;n by proceeding in the same manner as in Eq. (12).
Since Ps;a

K .0; n/ D 0 we have

³ s
0;n D

²Þ2

1� Þx

1

Þx
ýs Ns

0;n�1.x/�
²Þ2

1� Þx
.Þx/Kýs Ns

0;n�1.Þ
�1/

C Þ1� .Þx/K

1� Þx
ýs Ns

0;n�1.0/�
²Þ2

1� Þx

�
1

Þx
� .Þx/K

�
ýs Ns

0;n�1.0/:

By taking the generating function of both sides of the above equation and substituting Eq. (15), we
can write

.1� Þx/Þx³ s.x; 0; z/ D 1� x K

1� x
.1� Þx/Þx C ²Þ2zýs Ns.x; 0; z/� ²Þ2.Þx/KC1z

ð
�
ýs Ns.Þ�1; 0; z/C 1

²
ýs Ns.0; 0; z/

½
C Þ2.x � ²/zýs Ns.0; 0; z/; (21)

from which we get, for x D ², and after substituting Eq. (18)

.1� z/³ s.²; 0; z/ D R�1
K�1 � .²Þ/KC1z

�
ýs Ns.Þ�1; 0; z/C 1

²
ýs Ns.0; 0; z/

½
: (22)

From Eqs. (14), (16) and (17) we have�
.1� Þx/ Þx � ²Þ2 .pNs C ps z/

Ð ð
ýs Ns.x; y; z/�ýs Ns.x; 0; z/

Ł
D .pNs C psz/

�
Þ2.x � ²/Ð ðýs Ns.0; y; z/�ýs Ns.0; 0; z/

Ł
C ²Þ.Þx/KC1 ðpNsÞ .² � x/C .y .1� Þx/� Þ/ ps z

Ł �
ýs Ns.Þ�1; y; z/C 1

²
ýs Ns.0; y; z/

½
C ps.1� Þx/Þyx KC1 C ²Þ2.Þx/KC1 .pNs.x � ²/C psz/

�
ýs Ns.Þ�1; 0; z/C 1

²
ýs Ns.0; 0; z/

½
:

(23)

Also, from Eqs. (14) and (17) for y D 0 and Eq. (21) we obtain�
.1� Þx/ Þx � ²Þ2 .pNs C ps z/

Ð
ýs Ns.x; 0; z/

D 1� x K

1� x
.1� Þx/Þxps C Þ2.x � ²/ .pNs C psz/ýs Ns.0; 0; z/

C ²Þ2.Þx/KC1 .pNs.x � ²/C psz/

�
ýs Ns.Þ�1; 0; z/C 1

²
ýs Ns.0; 0; z/

½
: (24)
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We now apply the ‘kernel method’ for solving the functional equations Eqs. (23) and (24). For each
i D 1; 2; when x D xi .z/, the term that multiplies ýs Ns.x; 0; z/ in the left-hand side of Eq. (24) (the
kernel) vanishes. Since ýs Ns.x; 0; z/ is polynomial in x and therefore analytic in x , the left-hand side
of Eq. (24) vanishes at x D xi.z/. Thus by substituting xi for x into Eq. (24), we obtain for each
z two equations with two unknowns: ýs Ns.0; 0; z/ and [ýs Ns.Þ�1; 0; z/ C 1

²
ýs Ns.0; 0; z/]. Solving these

equations yields

ýs Ns.Þ�1; 0; z/C 1

²
ýs Ns.0; 0; z/ D ps

Þ�.KC1/.x K
1 � x K

2 /

x K
2 .x2 � ²Ns/.x1 � ²/� x K

1 .x1 � ²Ns/.x2 � ²/
; (25)

ýs Ns.0; 0; z/ D ²s

.x1 � ²/.x2 � ²/
�
�1C x K

1 C
²sx K

1 .x1 � ²Ns/.x2 � ²/.x K
1 � x K

2 /

x K
2 .x2 � ²Ns/.x1 � ²/� x K

1 .x1 � ²Ns/.x2 � ²/
½
:

(26)

We use again the same argument as above, for each i D 1; 2, when x D xi.z/ the term that multiplies
ýs Ns.x; y; z/�ýs Ns.x; 0; z/ in the left-hand side of Eq. (23), vanishes. Sinceýs Ns.x; y; z/ andýs Ns.x; 0; z/
are both analytic in x , after substituting Eqs. (25) and (26) into Eq. (23), for x D xi .z/, we obtain
two equations with two unknowns: [ýs Ns.Þ�1; y; z/ C 1

²
ýs Ns.0; y; z/] and ýs Ns.0; y; z/. Solving these

equations yields

ýs Ns.Þ�1; y; z/C 1

²
ýs Ns.0; y; z/

D psÞ
�.KC1/

�
x K

1 .y.x2 � ²/� 1/� x K
2 .y.x1 � ²/� 1/

Ð
x K

1 .x2 � ²/
ð
x1.1� yx2/� ²Ns.1� y/

Ł� x K
2 .x1 � ²/

ð
x2.1� yx2/� ²Ns.1� y/

Ł : (27)

Finally, by substituting Eqs. (22), (25) and (27) into Eq. (20), we obtain

.1� z/³ s.²; y; z/ D y²K C R�1
K�1 C z.y � 1/.²Þ/KC1

�
ýs Ns.Þ�1; y; z/C 1

²
ýs Ns.0; y; z/

½
D y²K C R�1

K�1

C ps z.y � 1/²KC1
�
x K

1 .y.x2 � ²/� 1/� x K
2 .y.x1 � ²/� 1/

Ð
x K

1 .x2 � ²/
ð
x1.1� yx2/� ²Ns.1� y/

Ł� x K
2 .x1 � ²/

ð
x2.1� yx2/� ²Ns.1� y/

Ł : (28)

In the derivation of the above, we used the following relations: x1x2 D pNs C psz, x1C x2 D 1C ² and
²s.1� z/ D .xi � ²/.xi � 1/, i D 1; 2. Moreover, ²�K D ŽK � ŽKC1 since

ŽKC1 D x KC1
1 � x KC1

2 D x K�1
1 [Þ�1x1 � ².pNs C ps z/]� x K�1

2 [Þ�1x2 � ².pNs C psz/]

D Þ�1ŽK � ².pNs C psz/ŽK�1 D ŽK � ²�K :

The proposition, finally, follows from Eq. (19). �
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Proof of Corollary 2.

Ps
² .> j; n/ D RK

ð
zn�1Ł 1X

kD jC1

ð
ykŁ³ s.²; y; z/

D RK
ð
zn�1Ł ²K�1

z�K

ð
ŽKC1

Ł2ð
zŽK � ŽKC1

Ł 1X
kD jC1

�
²z�K

zŽK � ŽKC1

�k

D RK
ð
zn�1Ł²K

�
ŽKC1

zŽK � ŽKC1

½2 1X
kD jC1

�
²z�K

zŽK � ŽKC1

�k�1

D RK
ð
zn�1Ł²K

�
ŽKC1

zŽK � ŽKC1

½2 �
²z�K

zŽK � ŽKC1

�j 1

1� ²z�K

zŽK � ŽKC1

:

Eq. (8) is obtained by noting that

zŽK � ŽKC1 � ²z�K D z.ŽK � ²�K /� ŽKC1 D zŽKC1 � ŽKC1 D �.1� z/ŽKC1: �

Proof of Corollary 3. From Eq. (8), it follows that

.zŽK � ŽKC1/
jC1

 1X
nD1

zn�1 Ps
² .> j; n/

!
D �RK²

K 1

1� z
ŽKC1 .²z�K /

j : (29)

Particularly, for j D 0, by computing the coefficient of [zn�1] in both sides of Eq. (29), given that
[zn�1] f .z/=.1� z/ DPn

kD0[zk] f .z/, we get

ð
zn�1Ł .zŽK � ŽKC1/

 1X
nD1

zn�1 Ps
² .> 0; n/

!
D

n�1X
kD0

ð
zn�1�kŁ .zŽK � ŽKC1/ Ps

² .> 0; k C 1/

D ðz0Ł .zŽK � ŽKC1/ Ps
² .> 0; n/C

n�1X
kD1

ð
zn�kŁ .zŽK � ŽKC1/ Ps

² .> 0; k/

D �RK²
K ðz0Ł ŽKC1 � RK²

K
n�1X
kD1

ð
zkŁ ŽKC1:

Eq. (10) follows by noting that an and bn defined below Eq. (9) are given by

an D
ð
znŁ �

2

�K 1p
1� �z

ŽKC1;

bn D
ð
znŁ �

2

�K 1p
1� �z

.zŽK � ŽKC1/ ;
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with

ð
z0Ł �

2

�K 1p
1� �z

.zŽK � ŽKC1/ D
ð
z0Ł �

2

�K �1p
1� �az

ŽKC1 D �a0:

By proceeding similarly as above, for j > 0, we have

ð
zn�1Ł .zŽK � ŽKC1/

jC1

 1X
nD1

zn�1 Ps
² .> j; n/

!
D

n�1X
kD0

ð
zn�1�kŁ .zŽK � ŽKC1/

jC1 Ps
² .> j; k C 1/

D .�1/ jC1 ðz0Ł Ž jC1
KC1 Ps

² .> j; n/C
n�2X
kD j

ð
zn�1�kŁ .zŽK � ŽKC1/

jC1 Ps
² .> j; k C 1/

D �RK²
K

n� j�1X
kD0

ð
zkŁ ŽKC1 .ŽK � ŽKC1/

j : (30)

Eq. (11) follows from Eq. (30) by setting

HjC1;n ,
ð
znŁ .zŽK � ŽKC1/

jC1

and

R j;n ,
ð
znŁ ŽKC1 .ŽK � ŽKC1/

j ;

and noting that Ps
² .> j; n/ D 0, for j ½ n. Moreover,

HjC1;n D
jC1X
kD0

nX
mDk

�
j C 1

k

�
.�1/ jC1�k ðzm�kŁ Žk

K

ð
zn�mŁ Ž jC1�k

KC1 :

Thus Hk;n and Rk;n are obtained as functions of Ak;n and Bk;n by using Newton’s binomial, where

Ak;n D
ð
znŁ .ŽKC1/

k D ðznŁ .x KC1
1 � x KC1

2 /k D
kX

rD0

�
k

r

�
.�1/k�r ðznŁ xr.KC1/

1 x .k�r/.KC1/
2

D
kX

rD0

nX
mD0

�
k

r

�
.�1/k�r ðzmŁ xr.KC1/

1

ð
zn�mŁ x .k�r/.KC1/

2 ;

and Bk;n D
ð
zn
Ł
.ŽK /

k , which is obtained in the same way. Finally, a0k;n and b0k;n in Corollary 3 are the
coefficients

ð
zn
Ł

xk
1 and

ð
zn
Ł

xk
2 respectively. �
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4. Asymptotic behavior

In order to reduce the complexity of calculations of Ps
² .> j; n/, we shall approximate it by an

expression QPs
² .> j; n/ which we derive below. From Eq. (8) we have

Ps
² .> j; n/ D �RK²

K ðzn�1Ł 1

1� z

 
x KC1

1

x K
1 .z � x1/

�
zx K

1 .1� x1/

x K
1 .z � x1/

�j

C f j .z/

!

D �RK²
K ðzn�1Ł 1

1� z

 �
²Ns

x1 � ²Ns C
1

1� x1

��
x2 � ²Ns.x1 � ²/

x1 � ²Ns

� j

C f j .z/

!

, QPs
² .> j; n/� RK²

K ðzn�1Ł 1

1� z
f j .z/:

We show in Proposition A.1 that the term
ð
zn�1

Ł
f j .z/ can be neglected for large n and n < K

( j D 0; 1) and hence Ps
² .> j; n/ ¾D QPs

² .> j; n/, which we compute next.
For j D 0; 1, we have

QPs
² .> 0; n/ D RK²

K

2.1� ²Ns/
ð
zn�1Ł � 1

.1� z/2

�
1� ² C

p
.1C ²/2 � 4²Ns � 4²sz

�
� ²Ns

1� ²Ns
1

1� z

�
1C ²s � ²Ns �

p
.1C ²/2 � 4²Ns � 4²s z

�
C ²Ns

1� ²Ns
1

²Ns � z

�
1C ²s � ²Ns �

p
.1C ²/2 � 4²Ns � 4²s z

�½
, RK²

K ðzn�1Ł 0.z/ (31)

and

QPs
² .> 1; n/ D RK²

K

2.1� ²Ns/2
ð
zn�1Ł � ²s

.1� z/2

�
2z � 1� ² C

p
.1C ²/2 � 4²Ns � 4²s z

�
� ²Ns

1� ²Ns
1

1� z

�
.1C ²s/

2 C .²Ns � 1/2 � 1� 2²s z � .1C ²s � ²Ns/
p
.1C ²/2 � 4²Ns � 4²sz

�
C ²s²Ns

1� ²Ns
1

z � ²Ns
�

2z � 1� ² C
p
.1C ²/2 � 4²Ns � 4²s z

�
C ²3

Ns
1� ²Ns

1

z � ²Ns
�
.1C ²s/

2 C .²Ns � 1/2 �1� 2²sz � .1C ²s � ²Ns/
p
.1C ²/2 � 4²Ns � 4²sz

�
C ²3

Ns
.²Ns � z/2

�
.1C ²s/

2 C .²Ns � 1/2 � 1� 2²sz � .1C ²s � ²Ns/
p
.1C ²/2 � 4²Ns � 4²s z

�#

, RK²
K

2.1� ²Ns/2
ð
zn�1Ł	0.z/: (32)
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Proposition 5. For n ½ 1, for ² fixed, and for n < K , QPs
² .> 0; n/ is given by8>>>>>>>>>>>>><>>>>>>>>>>>>>:

RK²
K

1� ²Ns

�
.1� ²/n C

�
²s

1� ² �
²s²Ns

1� ²Ns

�
C �nO

�
n�3=2Ð½ if ² < 1;

1

K C 1

1

ps

��
2
p

ps C pNsp
psn

� p
np
π

�
1CO

�
1

n

��
� pNs

½
if ² D 1;

1�
�

4²2
s

².² � 1/3
� ²s²Ns
².1� ²Ns/

�
1

² � 1
� ² � 1

.1C ²s � ²Ns/2
��

;

ð �n�1 þn�3=2

.1� ²Ns/
p

π
.1C o .1// if ² > 1

(33)

and QPs
² .> 1; n/ is given by8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

RK²
K²s

.1� ²Ns/2
�
.1� ²/n C ²s C ² � 1

1� ² � ²s²Ns
1� ²Ns C �

nO
�
n�3=2Ð½ if ² < 1;

1

K C 1

1

ps

��
2
p

ps C 2pNsp
psn

� p
np
π

�
1CO

�
1

n

��
� .1C pNs/

½
if ² D 1;

1� ²s

1� ²Ns

�
4²2

s

².² � 1/3
C ²Ns.² � 1/

².1� ²Ns/.1C ²s � ²Ns/
�
.1C ²s � ²Ns/2
.² � 1/2

� ²s

.1C ²s � ²Ns/ C ²
2
Ns C

4²s²
2
Ns .1� ²Ns/

.1C ²s � ²Ns/2
!!

�n�1þn�3=2

.1� ²Ns/
p

π
.1C o .1// if ² > 1:

(34)

Proof. From Eq. (31), we get, for ² < 1,

 0.z/ D  1.z/C 1� ²
.1� z/2

 
1C

s
1� 4²s

.1� ²/2 .z � 1/

!

� ²Ns
1� ²Ns

1

1� z

 
1C ²s � ²Ns.1� ²/

s
1� 4²s

.1� ²/2 .z � 1/

!

D 1� ²
.1� z/2

0@2C
1X
jD1

c j

�
4²s

.1� ²/2 .z � 1/

�j
1A

� ²Ns
1� ²Ns

1

1� z

0@2²s � .1� ²/
1X
jD1

c j

�
4²s

.1� ²/2 .z � 1/

�j
1A

C  1.z/ D 2.1� ²/
.1� z/2

C
�

1

1� ² �
²Ns

1� ²Ns

�
2²s

1� z
C  2.z/C  1.z/;
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where

 2.z/ D .1� ²/
1X
jD2

c j

�
4²s

.1� ²/2
�j

.z � 1/ j�2 C ²Ns.1� ²/
1� ²Ns

1X
jD1

c j

�
4²s

.1� ²/2
�j

.z � 1/ j�1:

(35)

 2.z/ is analytic at z D 1 and has a singularity of type
pž at z D zs ,

�
.1C ²/2 � 4²Ns

Ð
=4²s .

Therefore, when z is close to zs ,

 2.z/ D O

0@s.1C ²/2 � 4²Ns
4²s

� z

1A :
It is easily checked that

 1.z/ D ²Ns
1� ²Ns

1

²Ns � z

�
1C ²s � ²Ns �

p
.1C ²/2 � 4²Ns � 4²sz

�
D ²Ns.1C ²s � ²Ns/

1� ²Ns
1

²Ns � z

 
1�

s
1� 4²s

.1C ²s � ²Ns/2 .z � ²Ns/
!

D ²Ns.1C ²s � ²Ns/
1� ²Ns

1X
jD1

c j

�
4²s

.1C ²s � ²Ns/2
� j

.z � ²Ns/ j�1: (36)

 1.z/ is also analytic at z D ²Ns and for the same argument as above, when z is close to�
.1C ²/2 � 4²Ns

Ð
=4²s ,

 1.z/ D O

0@s.1C ²/2 � 4²Ns
4²s

� z

1A :
In addition to this singularity,  0 is seen to have a pole of degree 2 at z D 1. We get

ð
zn�1Ł 0.z/ D 2.1� ²/n C 2²s

�
1

1� ² �
²Ns

1� ²Ns

�
C
�

4²s

.1C ²/2 � 4²Ns

�n

O
�
n�3=2Ð :

This is obtained, by applying Theorem 1 of Flajolet and Odlyzko [8]. This theorem is applicable,
since  0.z/ is analytic in the whole complex plan except the segment along the real axis z 2
[..1C ²/2 � 4²Ns/=4²s;1[.

For ² D 1 we have

 0.z/ D
2
p

ps

.1� z/3=2
C 2pNsp

ps

1

.1� z/1=2
C  1.z/

and

 1.z/ D 2pNs
1X
jD1

c j

�
1

ps

�j

.z � pNs/ j�1
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is analytic at z D pNs and has a singularity o type
pž at z D 1 i.e when z is close to 1,  1.z/ D

O
�p

1� z
Ð
. We get

ð
zn�1Ł 0.z/ D 2

p
ps
� .n C 1=2/

� .3=2/

1

.n � 1/!
C 2pNsp

ps

� .n � 1=2/

� .1=2/

1

.n � 1/!
� 2pNs C O

�
n�3=2Ð ;

we obtain the corresponding equation in Proposition 5, by using Proposition 1 of [8] as well as the fact
that � .3=2/ D 1

2� .1=2/ D
p

π=2:

� .n C 1=2/

� .3=2/

1

.n � 1/!
D 2p

π

p
n

�
1CO

�
1

n

��
:

For ² > 1 we note that

 0.z/ D 2.1� ²Ns/²
² � 1

�
1

1� z

�
�  .z/ (37)

where

 .z/ D � 1� ²
.1� z/2

C ²Ns.1C ²s � ²Ns/
1� ²Ns

1

1� z
� ²Ns.1C ²s � ²Ns/

1� ²Ns
1

²Ns � z

C ²Ns
p
.1C ²/2 � 4²Ns

1� ²Ns
1

²Ns � z

s
1� 4²s

.1C ²/2 � 4²Ns
z � 2.1� ²Ns/²

² � 1

1

1� z

�
p
.1C ²/2� 4²Ns
.1� z/2

s
1� 4²s

.1C ²/2� 4²Ns
z � ²Ns

p
.1C ²/2� 4²Ns

1� ²Ns
1

1� z

s
1� 4²s

.1C ²/2� 4²Ns
z:

When z is close to ..1 C ²/2 � 4²Ns/=4²s , equivalently, as .z � 1/ tends to .1 � ²/2=4²s , also, as
.z � ²Ns/ tends to .1C ²s � ²Ns/2=4²s , we have

 .z/ D C ²Ns
1� ²Ns

4²s

.1C ²s � ²Ns/ �
²Ns.1C ²s � ²Ns/

1� ²Ns
4²s

.1� ²/2 C
2.1� ²Ns/²
² � 1

4²s

.1� ²/2

C .² � 1/.4²s/
2

.1� ²/4 �
�
.4²s/

2

.1� ²/4 �
4²s²Ns
1� ²Ns

�
1

.1� ²/2 �
1

.1C ²s � ²Ns/2
��

ð
p
.1C ²/2 � 4²Ns

s
1� 4²s

.1C ²/2 � 4²Ns
z C o

 s
1� 4²s

.1C ²/2 � 4²Ns
z

!
:

It follows from [2, p. 219 (2.2)] that

ð
zn�1Ł .z/ D � � .4²s/

2

.1� ²/4 �
4²s²Ns
1� ²Ns

�
1

.1� ²/2 �
1

.1C ²s � ²Ns/2
���

4²s

.1C ²/2 � 4²Ns

�n�1

ð
p
.1C ²/2 � 4²Ns.n � 1/�3=2

� .�1=2/

�
1C O

�
1

n

��
: (38)
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Finally, from Eqs. (31), (37) and (38), we get

QPs
² .> 0; n/ D RK²

K

2.1� ²Ns/
ð
zn�1Ł 0.z/ D 1

1� ²�.KC1/

ð
zn�1Ł � 1

1� z
C .1� ²/

2².1� ²Ns/ .z/
�

D �
�

4²2
s

².² � 1/3
� ²s²Ns
².1� ²Ns/

�
1

² � 1
� ² � 1

.1C ²s � ²Ns/2
���

4²s

.1C ²/2 � 4²Ns

�n�1

ð
p
.1C ²/2 � 4²Nsn�3=2

.1� ²Ns/pπ
.1C o .1// :

To obtain QPs
² .> 1; n/, we proceed in the similar way. We shall identify the singularities of 	0.z/.

From Eq. (32) we have

	0.z/ D 	1.z/� 2²s

1� z
� 2²Ns²s

1� ²Ns C
²s.1� ²/
.1� z/2

 
1C

s
1� 4²s

.1� ²/2 .z � 1/

!

� ²Ns
1� ²Ns

1

1� z

 
.²Ns � 1/2 C ²2

s � ..²Ns � 1/2 � ²2
s /

s
1� 4²s

.1� ²/2 .z � 1/

!

D � 2²s

1� z
� 2²Ns²s

1� ²Ns C
²s.1� ²/
.1� z/2

0@2C
1X
jD1

c j

�
4²s

.1� ²/2 .z � 1/

�j
1A

� ²Ns
1� ²Ns

1

1� z

0@2²2
s � ..²Ns � 1/2 � ²2

s /

1X
jD1

c j

�
4²s

.1� ²/2 .z � 1/

�j
1A

C 	1.z/ D 2²s.1� ²/
.1� z/2

C 2²s

�
²s C ² � 1

1� ² � ²s²Ns
1� ²Ns

�
1

1� z
� 2²Ns²s

1� ²Ns C 	2.z/C 	1.z/;

where

	2.z/ D ²s.1� ²/
1X
jD2

c j

�
4²s

.1� ²/2
�j

.z � 1/ j�2

C ²Ns.1� ²/.1C ²s � ²Ns/
1� ²Ns

1X
jD1

c j

�
4²s

.1� ²/2
�j

.z � 1/ j�1: (39)

	2.z/ is analytic at z D 1 and has the same singularities as  2.z/.
It is, also, easy to check that

	1.z/ D 2²Ns²s

1� ²Ns
�
1� ²2

Ns
ÐC �2²s � ²2

Ns .1C ²s � ²Ns/
Ð ²Ns.1C ²s � ²Ns/

1� ²Ns
1X
jD1

c j

�
4²s

.1C ²s � ²Ns/2
�j

ð .z � ²Ns/ j�1 C ²3
Ns .1C ²s � ²Ns/2

1X
jD2

c j

�
4²s

.1C ²s � ²Ns/2
� j

.z � ²Ns/ j�2: (40)
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	1.z/ is analytic at z D ²Ns and has the same singularities as  1.z/. In addition, it has poles at z D 1.
For ² D 1

	0.z/ D
2ps
p

ps

.1� z/3=2
C 2pNs

p
ps

.1� z/1=2
� 2ps.1C pNs/

1� z
� 2pNs C 	1.z/:

When z is close to 1 	1.z/ D O
�p

1� z
Ð
.

We obtain the corresponding equation in Eq. (34) by using the same properties as those used for
getting Eq. (33). The expression for ² > 1 is obtained in similar way as we obtained it for QPs

² .> 0; n/,
which establishes the proof. �

Next, we examine the asymptotics of the loss probabilities for small ². For large ² the probabilities
are close to 1, thus, this last case is of no interest since systems are not supposed to work with such loss
probabilities.

Proposition 6. For n ½ 1, 0 � j < n, we have for small ²

Ps
² .> j; n/ D ²K² j

s .n � j CO.²s//:

Proof. For ² small enough, we have Ps
² .> j; n/ D ²k²

j
s .n � j C O.²//, as ² ! 0. The function O.1/

here depends on ² and z and it is uniformly bounded in the disk jzj � h (h > 0 is a small constant) as
²! 0.

This implies

ŽKC1

zŽK � ŽKC1
D 1

z � 1
C O.²/;

ýK

zŽK � ŽKC1
D ps C O.²/:

By substituting this into Eq. (8), since RK
¾D 1, we can write

Ps
² .> j; n/ D ²K² j

s [zn� j�1]

�
1

.1� z/2
CO.²/

�
D ²K² j

s .n � j C O.²//:

(We used the fact that if the function O.1/ D O.z; ²/ is uniformly bounded in the small disk jzj < h as
²! 0, all its coefficients [zn]O.z; ²/ are also bounded as ² ! 0.)

In particular Ps
² .> 0; n/ D ²k.n C O.²s//, Ps

² .> 1; n/ D ²KC1²s.n � 1C O.²//. �

5. When is it better to add redundancy

In this section we compare the loss probabilities of a whole group of n consecutive packets, which
we call a block, with and without j additional redundant packets. The group of packets that includes
the original block plus the additional redundant packets (if these are added) is called a frame. We still
assume that the process of arrivals of packets is Poisson. If the number of packets of a frame (containing
j C n packets) that reach the destination is at least n then all the packets that have not reached the
destination can be reconstructed. If not, all the packets of the frame are considered to be lost. In this
section we restrict ourselves to the case of j D 0 and j D 1.

Without loss of generality, we may rescale time so that the service rate is one:¼ D 1. We assume that
the rate at which frames arrive is the same for the two cases and is given by x D pNs x C psx D x 0 C x 00.
We distinguish two cases:
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(1) Adding redundancy for all sources. Hence, the rate at which packets arrive is ½ D ² D .n C 1/x .
(2) Adding redundancy only for source s; the workload is then ½ D ² D nx C x 00 and ²Ns stays the

same.
The frame is lost, in both last cases, if and only if more than one packet is lost out of nC1 consecutive

ones coming from source s.
We are thus interested in the difference

∆ D
(

Ps
nx .> 0; n/� Ps

.nC1/x.> 1; n C 1/ if all sources add redundancy;

Ps
nx .> 0; n/� Ps

nxCx 00.> 1; n C 1/ if only source s adds redundancy:

If ∆ > 0 then the redundancy decreases the loss probabilities of frames.

Proposition 7. For any n and K , adding redundancy results in a decrease of the loss probabilities for all
x small enough (light traffic regime).

Proof. We consider case 1. Case 2 follows similarly. From Proposition 6 we have Ps
nx.> 0; n/ D

.nx/K .n CO.nx 00// and

Ps
.nC1/x.> 1; n C 1/ D ..n C 1/x/KC1 ps.n C O.nx 00//:

The proof now follows by noting that

lim
x!0

Ps
.nC1/x.> 1; n C 1/

Ps
nx.> 0; n/

D lim
x!0

�
n C 1

n

�K

.n C 1/psx D 0 < 1: � (41)

6. Numerical examples

We have shown that adding redundancy is profitable in light traffic. A natural question is how small
should the traffic be in order for this conclusion to hold in practice.

Below, we fix ², ps and obtain a set of n and K for which redundancy will lead to better performance
and for which the loss probability of frames is of a given order (e.g.: 10�8). We shall restrict to a family
of n and K that are inter-related by n ¾D �K , where � is a constant to be determined, and we shall
consider n × 1. In fact, the approximations turn out to be quite accurate even for moderate values of n
and K .

In Fig. 1, we display the values of Ps
² .> 0; n/ and its approximations (from Proposition 5):

A0.> 0; n/ , RK²
K

.1� ²Ns/
�
.1� ²/n C ²s

�
1

1� ² �
²Ns

1� ²Ns

��
;

B0.> 0; n/ , RK²
K

.1� ²Ns/.1� ²/n
in the case K D 10, n � 10, ² D 0:4 and ps D 0:6.

In Fig. 2, we make the same comparison for Ps
² .> 1; n/ and

A1.> 1; n/ , RK²
K²s

.1� ²Ns/2
�
.1� ²/n C ² C ²s � 1

1� ² � ²s²Ns
1� ²Ns

�
;
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Fig. 1. Ps
² .> 0; n/ and its approximations ² D 0:4, ps D 0:6 and K D 10.

Fig. 2. Ps
² .> 1; n/ and its approximations ² D 0:4, ps D 0:6 and K D 10.

B1.> 1; n/ , RK²
K²s

.1� ²Ns/2 .1� ²/n:

These approximations are obtained from Proposition 5 (² < 1), by taking the two first and the first
term, respectively, in the asymptotic expansion (in n) of QPs .

6.1. Adding redundancy for all sources

We wish to determine xŁ for which Ps
.nC1/x.> 1; n C 1/ � xŁPs

nx.> 0; n/ D 0. We shall provide a
heuristic approach to obtain the interval [0; xŁ] for which we should use redundancy, and confirm this
by numerical examples. From Eq. (41), we have for large K

xŁ D 1

ps.n C 1/

�
n

n C 1

�K
¾D 1

ps�K

n

n C 1

�
1� 1

�K

�K
¾D n

n C 1

exp.�1=�/

ps�K
:
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Fig. 3. Ps
² .> j;n C j/, j D 0; 1 as function of ps for ² D 0:6, n D 19 and K D 39.

Since ²Łs D psxŁ�K , we have

²Łs ¾D
n

n C 1
exp.�1=�/ ¾D exp.�1=�/: (42)

More generally, for ² j D .n=.n C j//²Ł adding j packets leads to better performance. This heuristic
is quite optimistic and we obtain this experimental result: We fix ² D 0:6 and for ps 2]0; pŁs ] where
pŁs D exp.�1=�/, adding one redundant packet decreases the loss probabilities of frames and for the
same values of ps , for ² D .n=.n C j//0:6, adding j packets leads to better performance than adding
0; : : :; j � 1 packets.

Example 1. Let ² D 0:6, ps D 0:1, we wish to determine n and K for which the loss probability is of
order 10�8 and redundancy leads to better performance. It follows from Eq. (42) that � ½ 0:36. From
Proposition 5, we have

Ps
0:6.> 0; n/ ¾D 1� 0:6

1� 0:6KC1

0:6K

1� 0:54
.1� 0:6/0:36K ¾D 10�8) K ¾D 39; n D �K D 14:04:

The exact calculation for A.²/ , Ps
nx.> 0; n/ and S.²/ , Ps

.nC1/x.> 1; n C 1/ yields that for
n D 14, A.0:6/ D 1:10 ð 10�8 and S.0:6/ D 2:09 ð 10�8. For n D 19, S.0:6/ D 1:42 ð 10�8 and
A.0:6/ D 1:48ð 10�8. We have to take � greater than the value � D 0:36 obtained above.

If we choose � D 0:5 we obtain K D 40 and n D 20; A.0:6/ D 9:39ð10�9 and S.0:6/ D 8:59ð10�9.
In Fig. 3, we display the probability with and without redundancy as a function of ps for ² D 0:6,
K D 39 and n D 19. We note that for the sources whose proportion in the overall arrival stream does not
exceed 10% (ps � 0:1), redundancy decreases their loss probabilities, but not for the others. We note
also, that the loss probability without redundancy decreases in ps contrary to the loss probability with
redundancy which increases in ps .

In Fig. 4 we show the loss probabilities as function of the number of redundant packets for
² D .19=.19C 4//0:6 ¾D 0:5, ps D 0:1, n D 19, K D 39. We remark that adding four packets decreases
the loss probabilities more than adding one up to three, but when we exceed four packets the loss
probabilities begins to increase. It means that adding more redundant packets doesn’t necessary result in
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Fig. 4. Ps
.nC j/²=n.> j; n C j/ as function of j for ² D 0:5, ps D 0:1, n D 19 and K D 39.

a decrease of the loss probabilities. In fact, the adequate number of redundant packets which we should
add in order to decrease, as much as possible, the loss probabilities strongly depends on the workload
and the size of frames.

6.2. Adding redundancy only for source s

We are interested by the case when redundancy is added only for the source s. We assume that the
rate at which frames arrive is the same with and without redundancy. When one redundant packet is
added for source s, we have ½ D ² D nx C psx . We proceed similarly as above, we get for large K

²Łs D exp.�ps=�/: (43)

Example 2. Let ² D 0:8 and ps D 0:1, we wish to determine n and K for which the loss probability is
of order 10�9 and redundancy leads to better performance. From Eq. (43) we have � D 0:04 and from
Proposition 5 we have

Ps
0:8.> 0; n/ ¾D 1� 0:8

1� 0:8KC1

0:8K

1� 0:72
.1� 0:8/0:04K ¾D 10�9) K ¾D 90; n D �K ¾D 4:

Exact calculation for A.²/ , Ps
nx.> 0; n/ and S0.²/ , Ps

nxCps x .> 1; n C 1/ yields that for n D 4
and K D 90, S.0:8/ D 2:67 ð 10�9 and A.²/ D 1:28 ð 10�9 and for n D 7, K D 90 we have
S.0:8/ D 1:86 ð 10�9 and A.²/ D 2:12 ð 10�9, thus for n ½ 7, S.²/ < A.²/. We display in Fig. 5
the loss probabilities as function of the number of redundant packets for n D 8, K D 90, ² D 0:8
and ps D 0:1. We note that the larger size of frames leads to better performance in the presence of
redundancy. For the same example, by taking n D 14, we reduce the loss probabilities of frames by an
order of 10 when we add 4 redundant packets only for source s (Fig. 6). Note that this improvement has
a negative effect on the other sources.

For the example above, if we consider only two sources s and Ns, we have pNs D 0:9 and P Ns0:8 D
2:114ð10�9. When we add 4 redundant packets for s the workload becomes² D 0:8C 4

140:08 D 0:8228,
ps D 18

140:1 D 0:1285 and pNs D 1�0:1285 D 0:8715. For these values, we obtain P Ns0:8228 D 2:305ð10�8.
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Fig. 5. Ps
²C. j=n/²s

.> j; n C j/ as function of j for ² D 0:8, ps D 0:1, n D 8 and K D 90.

Fig. 6. Ps
.²C. j=n/²s /

.> j; n C j/ as function of j for ² D 0:8, ps D 0:1, n D 14 and K D 90.

Finally, we see that the redundancy in source s has an effect of increasing the loss probability for the other
source (by the same order of magnitude as the decrease in the loss probabilities of s).

7. Eliminating frame losses

In this section we show that there exists a way of adding redundancy that yields arbitrarily small
frame loss probabilities as long as ² < 1. We compute the amount of redundancy that has to be added.

Suppose first, there is only one source of packets. We consider a redundancy rate of rate j=n i.e. we
wish to add an amount of j redundant packets per group of n information packets.

However, instead of fixing n and studying the impact of the additional redundant packets, we fix
here the rate j=n, and study the effect of using larger blocks. In other words, we are interested in the
impact of grouping kn information packets together with k j redundant packets into a single frame, for
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large k. We shall show that for any ² < 1, there exist rates j=n such that the frame loss probability is
exponentially small in k. Hence, all the kn packets in a frame are reconstructed with a sufficiently large
probability, which tends to 1 as k !1. We further compute the required rates.

We further show that beginning from some initial large k, one can group consecutively k, .k C 1/,
.k C 2/; : : : groups of n packets together with additional k j , .k C 1/ j , .k C 2/ j; : : : redundant packets
respectively. Then with a large probability all the transmitted frame will be reconstructed.

Fixing the rate of redundancy to j=n results in the rate of arrivals of packets of ².n C j/=n. Let us
turn to the rigorous statements.

Lemma 8. (1) Suppose that

.².n C j/=n/K

KX
lD0

.².n C j/=n/l
<

j

n C j
: (44)

Then there exists a constant h0 D h0.²; n; j/ > 0 such that for all k > 0

P .< k j; k.n C j// ½ 1� exp.�h0k/: (45)

Moreover for some constant h D h.²; n; j/ > 0 and all k > 0

P

 1\
lD0

f< .k C l/ j; .k C l/.n C j/g
!
½ 1� exp.�hk/: (46)

(2) Suppose now that the inequality inverse to Eq. (44) holds. Then there exists a constant h1 D
h1.²; n; j/ > 0 such that for all k > 0.

P .< k j; k.n C j// � exp.�h1k/: (47)

Remark 9. The relation in Eq. (44) has the following interpretation. The left-hand side is the loss
probability of an M=M=1 queue whose load, ².n C j/=n, corresponds to that obtained by adding j
redundant packets for every group of n. The right-hand side is the maximal loss recovery rate that can
be obtained due to the redundancy: as long as the rate of losses is less than j=.n C j/we may expect for
large enough blocks that all losses in the block can be recovered with high probability.

Remark 10. We shall estimate h0 appearing in Eq. (45) at the end of the section for K D 1.

Proof. Let us consider k.n C j/ consecutive arrivals of packets. Let �i be a number of the packets in the
buffer just before the i th arrival of a packet and let ¾i D 1f�i D K g. This means that ¾i D 1 whenever
the i th packet is lost and ¾i D 0 otherwise. Then ¾1 C ¾2 C Ð Ð Ð C ¾k.nC j/ is the number of lost packets
among k.n C j/ consecutive arriving packets and

¾1 C ¾2 C Ð Ð Ð C ¾k.nC j/

k.n C j/
! .².n C j/=n/K

KX
lD0

.².n C j/=n/l
(48)
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in probability as k !1 with exponential rate (see below). In fact, the sequence �i forms an irreducible
aperiodic finite Markov chain on the state space f0; 1; : : :; K g. The fraction in the left-hand side of
Eq. (48) is the empirical measure of the time spent by this chain at the state K . It is well-known that
it converges in probability to a stationary probability of the state K , which is in the right-hand side of
Eq. (48). Assume that Eq. (44) holds. Then we can choose " > 0 such that

.².n C j/=n/K

KX
lD0

.².n C j/=n/l
C " < j

n C j
:

Then for some h0 > 0 (which is a function of ") and all k > 0

P .< k j; k.n C j// D P
�
¾1 C ¾2 C Ð Ð Ð C ¾k.nC j/ < k j

Ð
½ P

0B@¾1 C ¾2 C Ð Ð Ð C ¾k.nC j/

k.n C j/
<

.².n C j/=n/K

KX
lD0

.².n C j/=n/l
C "

1CA
½ 1� exp.�h0k/: (49)

The last inequality follows from standard Large deviation arguments, see e.g. section 3.1 in [7]. Thus
Eq. (45) is proved. The inequality Eq. (47) is derived by the same way from the convergence Eq. (48).

To get Eq. (46) we note that the convergence in Eq. (48) does not depend on an initial distribution,
then for all l > 0

P

 
f< .k C l/ j; .k C l/.n C j/gþþ l�1\

iD0

f< .k C i/ j; .k C i/.n C j/g
!
½ 1� exp.�h0.k C l//:

Then for some h > 0 and all k > 0

P

 1\
lD0

f< .k C l/ j; .k C l/.n C j/g
!
½
1Y

lD0

[1� exp.�h0.k C l//] ½ 1� exp.�hk/:

This establishes the proof. �

In the following lemma we show the way to find j for given K > 0, ² < 1 and n such that the
proposed strategy is valid, i.e. the inequality Eq. (44) is fulfilled.

Lemma 11. Let us fix K > 0 and ² > 0.
If ² ½ 1, the inequality Eq. (44) does not hold for any pair of integers j > 0 and n > 0.
If ² < 1, then for all sufficiently large n, we can find an integer j > 0 such that Eq. (44) holds.

Moreover, the minimal j with this property is such that:

j=n < .1� ²/=²; if K > ²=.1� ²/I j=n > .1� ²/=²; if K < ²=.1� ²/:

Proof. Denote by Þ :D j=n. Then, except when ².1C Þ/ D 1, Eq. (44) can be written as

.².1C Þ//K .².1C Þ/� 1/

.².1C Þ//KC1 � 1
<

Þ

1C Þ : (50)
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This inequality holds for no Þ ½ 0 under the assumption ² ½ 1. If ² < 1, then Eq. (50) implies(
²K .1C Þ/KC1 > Þ=.1� ²/;
².1C Þ/ > 1;

and

(
²K .1C Þ/KC1 < Þ=.1� ²/;
².1C Þ/ < 1:

(51)

Let us introduce the function f .Þ/ D ²K .1 C Þ/KC1 � Þ=.1 � ²/, which equals zero when
Þ D 1=² � 1 D .1� ²/=². The systems (51) mean that

f .Þ/ < 0 if Þ < .1� ²/=²I f .Þ/ > 0 if Þ > .1� ²/=²: (52)

ž Assume that K > ²=.1�²/. This amounts to say that f 0 ..1� ²/=²/ > 0. Then in the neighborhood
of Þ D .1 � ²/=², we have Eq. (52). The elementary analysis of f .Þ/ shows that there exists
Þ0 < .1 � ²/=², such that f .Þ0/ D 0, f .Þ/ > 0 on [0IÞ0/, f .Þ/ < 0 on .Þ0I .1 � ²/=²/ and
f .Þ/ > 0 on ..1� ²/=²I1/. To get Eq. (44), we take Þ 2 .Þ0I1/, or equivalently j 2 .nÞ0I1/.

ž Suppose now that K < ²=.1 � ²/, i.e. in other words f 0 ..1� ²/=²/ < 0. Then Eq. (52) does not
hold in the neighborhood of Þ D .1 � ²/=² neither on [0I .1 � ²/=²]. However, there exists some
Þ0 > .1� ²/=² such that f .Þ/ > 0 on [Þ0I1/. So, to obtain Eq. (44), we take the minimal integer j
on [nÞ0I1/.

Note that for ² > 1 the suggested strategy does not fit at all. �

To complete our investigation, we will also specify the estimation (45) from Lemma 8 in the case
K D 1. The sequence �i forms a Markov chain L on the state space f0; 1g with the matrix of transition
probabilities:0BBB@

1

1C ².n C j/=n

².n C j/=n

1C ².n C j/=n

1

1C ².n C j/=n

².n C j/=n

1C ².n C j/=n

1CCCA :
Let �1; �2; : : : be a sequence of i.i.d. random variables distributed as the time to return to the state

1 starting from it by the chain L. Indeed, E�1 D .1 C ².n C j/=n/.².n C j/=n/�1. Let also �0 be a
random variable distributed as the time to reach the state 1 at the stationary regime. Then, for all Ž > 0
such that E exp.Ž�i / <1, i D 0; 1, and all n, j and k by Chernof inequality we have:

P .> k j; .n C j/k/ D P
�
�0 C �1 C Ð Ð Ð C �k j � k.n C j/

Ð
� E exp.Ž�0/ .E exp Ž.�1 � .n C j/=j//k j

D E exp.Ž�0/ exp
�ð

log.E exp Ž�1/� Ž.n C j/=j
Ł

jk
Ð
: (53)

It is easy to verify that

E exp.Ž�0/ D ².n C j/=n

1C ².n C j/=n � exp Ž
; E exp.Ž�1/ D ².n C j/=n exp Ž

1C ².n C j/=n � exp Ž
:

Let us assume that Eq. (44) holds, i.e.

j

n C j
� ².n C j/=n

1C ².n C j/=n
> 0: (54)
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Then the function f .Ž/ D � log.E exp Ž�1/C Ž.nC j/=j is increasing on [0; Ž0] and is decreasing on
[Ž0; ln.1C ².n C j/=n/], ( f .0/ D 0), where Ž0 D ln .² C n=.n C j//.

The estimation (53) with Ž D Ž0 implies

P .> k j; .n C j/k/ � E exp .Ž0�0/ exp .� j f .Ž0/k/

for all k > 0, where

E exp.Ž0�0/ D ².n C j/=n

1C ².n C j/=n

n C j

j
;

f .Ž0/ D � ln

�
²

n C j

n

�
C n C j

j
ln

�
² C n

n C j

�
:

The constant j f .Ž0/ is a Large deviation constant.
Let us now proceed with the case of many sources of packets. Suppose, we are interested in

decreasing the losses of frames or of packets issued only from one source s. Hence, we add j redundant
packets from n, originated from s, thus the total rate is ²s.n C j/=n C ²Ns . Let as usual ²s D ½s=¼,
²Ns D ½Ns=¼ D .½�½s/=¼. The strategy, that we use, is the same as in the previous case: kn, .kC 1/n; : : :
packets from the source s are grouped together with the redundancy of k j , .k C 1/ j; : : : respectively.
In the case of one source, only for ² < 1, there is a suitable j to render the strategy profitable. In the
case of many sources, to find such a j , the restriction ²s < 1 remains necessary. However, the inequality
² D ²s C ²Ns > 1 is accepted.

Lemma 12. (1) Suppose that

.²s.n C j/=n C ²Ns/K

KX
lD0

.²s.n C j/=n C ²Ns/l
<

j

n C j
: (55)

Then there exists h0 > 0 such that for all k > 0

P .< k j; k.n C j// ½ 1� exp.�h0k/: (56)

Moreover for some h > 0 and all k > 0

P

 1\
lD0

f< k j; k.n C j/g
!
½ 1� exp.�hk/: (57)

(2) Suppose that the inequality inverse to Eq. (55) holds. Then for some h1 > 0 and all k
P .< k j; k.n C j// � exp.�h1k/.

The proof is completely analogous to the proof of Lemma 8.

Lemma 13. Assume that ²s > 0, ²Ns > 0, K and n are fixed. There exists an integer j satisfying Eq. (55)
if and only if ²s < 1.
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Proof. The proof is carried out as the proof of Lemma 11. Without going into details, we will point out
the way to find the minimal integer j satisfying Eq. (55).

Denote by Þ :D j=n, then the inequality Eq. (55) is equivalent to the following:

.²s.1C Þ/C ²Ns/K .²s.1C Þ/C ²Ns � 1/

.²s.1C Þ/C ²Ns/KC1 � 1
<

Þ

1C Þ ; (58)

except when ²s.1C Þ/C ²Ns D 1. It holds for no Þ ½ 0 if ²s ½ 1.
ž Assume that ² D ²s C ²Ns > 1, ²s < 1. Then, to get Eq. (58), we should take Þ satisfying the system8><>:

.²s.1C Þ/C ²Ns/K >
Þ

.1� ²s/Þ C 1� ² ;
Þ >

²Ns
1� ²s

� 1:

There exists minimal Þ0 such that the system holds on .Þ0I1/, i.e. j 2 .nÞ0I1/.
ž Assume that ² D 1. Then we have to take Þ satisfying the inequality .1C Þ²s/

K > 1=.1� ²s/.
ž Assume now that ² < 1. There are two cases.

If K > ²s=.1 � ²/ then there is the minimal Þ0 < .1 � ²Ns/=²s � 1 D .1 � ²/=²s such that on the
segment .Þ0I .1� ²/=²s/ the inequality

.²s.1C Þ/C ²Ns/K <
Þ

.1� ²s/Þ C 1� ²
holds. We take j 2 .nÞ0I n.1� ²/=²s/.
If K < ²s=.1� ²/ then there exists the minimal Þ0 > .1� ²/=²s such that the inequality

.²s.1C Þ/C ²Ns/K >
Þ

.1� ²s/Þ C 1� ²
holds on .Þ0I1/. We take j 2 .nÞ0I1/. �

8. General arrivals and service times

We relax in this section the probabilistic assumptions on the distributions of the arrival and service
processes: we consider a stationary ergodic sequence f¦ng; n 2 Z (where Z D f: : :;�2;�1; 0; 1; 2; : : :g)
of service times, and a stationary ergodic sequence f−ng; n 2 Z, of interarrival times of packets.

We consider a finite queue with capacity K ½ 1. Define ² , E¦1=E−1.

8.1. Basic idea

We present in this subsection the general idea behind the elimination of losses. Assume that the
process f−n; ¦ng is already the one observed after we included the redundancy of rate j : for each
information packet we added j redundant ones. We denote by ½. j C 1/ the input arrival rate of packets.
Assume that this process feeds a finite FIFO queue, and that the joint process of arrivals and queue
length is stationary ergodic.

We call a frame a sequence of . j C 1/k consecutive packets, where k is some parameter. We assume
that all packets from the frame can be recovered if there are no more than jk losses within the frame.
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Assume that the following reasonable property is satisfied: as j !1, the output rate (the expected
number of departures per time unit) from the queue approaches ¼ :D 1=E−1. Fix " > 0 such that
² C " < 1 and let j be such that the output rate from the queue is greater than ¼.1 � "/. Then the
proportion p j of lost packets satisfies

p j D input rate� output rate

input rate

<
. j C 1/½� ¼.1� "/

. j C 1/½
D j

j C 1
C ² C " � 1

. j C 1/²
<

j

j C 1
:

Due to the stationarity and ergodicity assumptions, for any Ž > 0, the number of losses within a frame
is less than k j .p j C Ž/ with probability that approaches 1 as k !1.

Thus with probability arbitrarily close to one, the actual number of losses per frame will be smaller
than k j by choosing j and k sufficiently large, and all losses in the frame can be recovered.

8.2. Actual redundancy scheme

We restrict here to the case where the service times are i.i.d. and are independent of the interarrival
times and K D 1.

We shall assume throughout that ² < 1 before adding redundancy. Under this assumption, we show
that by adding appropriately redundant packets, one can obtain loss probabilities as small as desired. We
assume that the sequence of interarrival times f−ng; n 2 Z of the original information packets (before we
add redundancy) is stationary ergodic.

For some integer k that will be determined later, we call the group of packets number nk C 1; nk C
2; : : :; .n C 1/k the nth block of information packets. We shall add jk redundant packets to the each
block. The . j C 1/k packets which include the original block as well as the additional redundant packets
are called a frame. We assume that the service times of the redundant packets added to a block have the
same distribution as ¦1; ¦n will in fact denote the service time of the nth packet actually served, whether
it is an information packet or a redundant one.

As long as the number of losses in a frame is less than or equal to jk, all the frame (and in particular,
the original information packets) can be retrieved at the destination. Define

r D E−1 C E¦1

2. j C 1/

and consider the following transport protocol:
(1) Blocking phase: Wait till a whole block of k information packets is generated at the source; as long

as the whole block is not generated, we do not transmit any packet of the block.
(2) Framing phase: once all k packets have arrived, we compute the extra jk redundant packets.
(3) Transmission phase: Once the whole frame has been generated, all packets of the frame are put in

a transmission buffer. Packets are transmitted from this buffer at a constant rate 1=r , i.e. the time
between transmission of two consecutive packets is r .

The above protocol requires buffering capability at the source of at least one frame. To make our
protocol realistic we have to assume that
ž The capacity of the transmission buffer at the source is finite.
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This implies that losses may occur also due to buffer overflow at the source, and not only at the
buffer inside the network. We shall show that the above protocol can render the total loss probabilities
arbitrarily small.

Note that congestion at the source occurs typically at periods during which interarrival times are
short. In order to minimize the buffer requirements at the source we shall thus assume that
ž we deliberately drop the nth frame at the source if and only if

Pk
iD1 −nkCi < kr. j C 1/. In that case,

the framing and transmission phase for frame n are not performed.
In case that the computation required in the framing phase takes a negligible amount of time, this

assumption on dropping at the source implies that the total buffering required at the source is exactly of
one frame and is thus minimal.

We shall assume that the above protocol has been used for at least one frame before packet 1 is
transmitted, and that before it was used, the system was empty.

Theorem 14. With ² < 1, the above protocol results in frame loss probabilities that can be made
arbitrarily small by an appropriate choice of k and j .

Proof. Consider an arbitrary frame, say frame 1, and let OT be the time at which the first packet of that
frame arrives to the buffer inside the network. Define


1 ,
 

kX
iD1

¦i C � > jkr

!
; 
2 ,

 
kX

iD1

−i < . j C 1/kr

!
;

where � is the residual service time in the buffer inside the network at OT (the packet that arrives at the
network buffer might find there another packet from some previous frame that is still getting service; the
remaining service time of that packet is called �, and it is considered to be zero if there is no such packet
at time OT ).

Let " > 0 be an arbitrary small number. One can choose j and k such that P.
1/ < " and
P.
2/ < ". That this choice is possible follows since ² < 1, since P � a:s:

lim
k!1

1

k

kX
iD1

¦i D E¦1 < jr; lim
k!1

1

k

kX
iD1

−i D E−1 > . j C 1/r

and since for all Ž > 0 P.� > kŽ/! 0 as k ! 1. This fact needs some additional explanation (note
that the distribution of � might depend on k and on the number of the frame that we consider). Let OS
be the time at which the last successful packet transmission occurred from the buffer inside the network
before time OT . Let An denote the event that the number of packets that were blocked (and thus lost) in
the buffer inside the network during the time interval . OS; OT / was exactly n. n ½ 0. (In the case n D 0
the last packet of the previous frame is served.) Then P.f� > kŽg \ An/ � P.¦1 > nr C kŽ/. Since
E¦1 <1,

P.� > kŽ/ �
1X

nD0

P.¦1 > nr C kŽ/! 0 as k !1: (59)

On the event N
2 (the complement of
2) the new frame is not dropped at the transmission buffer.
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On N
1, the time T till the k first successful transmissions of packets occurs satisfies T � � CPk
iD1 ¦i C kr � . j C 1/kr . Thus the number of packets successfully transmitted on the event N
1 \ N
2

among the first frame is at least k, so that the probability of a successful transmission of the whole first
frame is at least 1� 2". (Indeed, no later than OT C � C r , the first successful transmission in the frame
begins, no later than OT C � C ¦1 C 2r , the 2nd successful transmission begins, etc.).

The same argument holds for any frame; since the bound in Eq. (58) is uniform for all frames, this
establishes the proof. �

9. Discussion

In this paper, we have shown the effect of adding redundancy to losses of packets and of frames due
to overflow in a finite queue. Explicit expressions for the loss probabilities of frames were obtained in
the case of several traffic streams that are multiplexed at the input of a finite buffer. We have obtained
schemes of adding redundancy that may almost eliminate loss probabilities for any given buffer size as
long as the offered load of the traffic to which redundancy is added is lower than 1 (before adding the
redundancy). The price to pay is long delays due to the need to consider redundancy of large blocks. The
analysis of the required delay and the tradeoff between losses and delay are the issue of future work.

Appendix A

We return to the asymptotic behavior of Ps
² .> j; n/ and show that the terms [zn�1] f0.z/ and

[zn�1] f1.z/ can be neglected as n!1, n < K .

Proposition A.1. We have

Ps
² .> 0; n/ D QPs

² .> 0; n/.1C o.1//; as n!1; n < K (A.1)

Ps
² .> 1; n/ D QPs

² .> 1; n/.1C o.1//; as n!1; n < K : (A.2)

Moreover o.1/ is exponentially small in K (there exists 0 < þ < 1: jo.1/j � þK ).

Proof. Let us first prove Eq. (A.1). We have

Ps
² .> 0; n/ D �RK²

K [zn�1]
1

1� z

x1

z � x1

1� .x2=x1/
KC1

1� .x2=x1/
K .z � x2/=.z � x1/

D �RK²
K [zn�1]

1

1� z

x1

z � x1

�
1C .x2=x1/

K ..z � x2/=.z � x1/� x2=x1/

1� .x2=x1/
K .z � x2/=.z � x1/

�
:

Let us denote for shortness

an�1 D [zn�1]
1

z � 1

x1

z � x1
;

bn�1 D [zn�1]
.x2=x1/

K ..z � x2/=.z � x1/� x2=x1/

1� .x2=x1/
K .z � x2/=.z � x1/

;
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cn�1 D [zn�1]
1

1� z

x1

z � x1

.x2=x1/
K ..z � x2/=.z � x1/� x2=x1/

1� .x2=x1/K .z � x2/=.z � x1/
:

Then QPs
² .> 0; n/ D �RK²

K an�1 and by Eq. (33) there are constants C1;C2 > 0 such that

C1 < janj < C2n < C2K : (A.3)

Moreover, Ps
² .> 0; n/ D �RK²

K .an�1 C cn�1/, where cn�1 D
Pn�1

kD0 an�1�kbk . Thus, it suffices to
show that for some 0 < þ < 1

jcnj � janjþK : (A.4)

By virtue of Eq. (A.3)

jcn�1j � C2.K � 1/
n�1X
kD0

jbk j: (A.5)

Let us now estimate bk . The function

g0.z/ D .x2=x1/
K ..z � x2/=.z � x1/� x2=x1/

1� .x2=x1/K .z � x2/=.z � x1/
D x K

2 z.x1 � x2/

x1
�
x K

1 .z � x1/� x K2.z � x2/
Ð

is analytic in the disk jzj < 1C " for sufficiently small " > 0. In fact
ž x1 6D 0 for all z, (² 6D 0);
ž if z � x1 D 0, then x2.z � x2/ 6D 0;
ž the branching point of x1.z/ and x2.z/ is outside the unit disk. The branches x1.z/ and x2.z/ have

been chosen in such a way that jx2.0/j=jx1.0/j < 1. The equality jx2.z/j=jx1.z/j D 1 takes place only
if Re z D 1C .1� ²/2=4²²Ns > 1. The function jx2.z/j=jx1.z/j being continuous,

inf
jzj�1C"

þþþþx2.z/

x1.z/

þþþþ D  < 1:

Hence for sufficiently large K , x K
1 .z � x1/� x K

2 .z � x2/ 6D 0 for all z 2 fz: jzj � 1C "g. In addition
for some C3 > 0, jg0.z/j � C3

K . Then for some C4 > 0,

jbkj D
þþþþ 1

2πi

Z
jzjD1C"

g0.z/

zkC1
dz

þþþþ � C4
K .1C "/�k :

Therefore, taking into account Eq. (A.5), we have for some 0 < 0 < 1, 0 >  ,

jcn�1j � C2.K � 1/ K C4

n�1X
kD0

.1C "/�k �  K
0 :

This estimation together with Eq. (A.3) implies Eq. (A.4) and thus Eq. (A.1) is proved. Let us now
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turn to the case j D 1.

Ps
² .> 1; n/ D �RK²

K [zn�1]
1

1� z

x1

z � x1

z.1� x1/

z � x1

1� .x2=x1/
KC1

1� .x2=x1/K .z � x2/=.z � x1/

ð 1� .x2=x1/
K .1� x2/=.1� x1/

1� .x2=x1/K .z � x2/=.z � x1/

D �RK²
K [zn�1]

1

1� z

x1

z � x1

z.1� x1/

z � x1
.1C g1.z/C g2.z// ;

where

g1.z/ D
x K

2

�
�x K

1 x2.z � x1/
2 C 2x KC1

1 .z � x2/.z � x1/� x1x K
2 .z � x2/

2
�

x1
�
x K

1 .z � x1/� x K
2 .z � x2/

Ð2 ;

g2.z/ D x K
2 .x

KC1
2 � x KC1

1 /.1� x2/.z � x1/
2

x1.1� x1/
�
x K

1 .z � x1/� x K
2 .z � x2/

Ð2 :

The functions g1.z/ and g2.z/ are analytic in the disk jzj < 1 C " due to the same arguments as for
g0.z/. (The point z D 1, where x1.z/ � 1 D 0 can not be a pole of g2.z/ because of .z � x1/

2 in the
numerator.) Further, the proof of Eq. (A.2) is carried out along the same lines as of Eq. (A.1), so the
other details are skipped. �
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