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Slotted Aloha with priorities and random power
Eitan Altman�, Dhiman Barmany, Abderrahim Benslimanez and Rachid El Azouziz

Abstract— This paper studies distributed choice of re-
transmission probabilities in slotted Aloha under power
differentiation schemes. We consider random sets of pos-
sible transmission powers and further study the role of
priorities (through power control) given either to new
arriving packets or to backlogged packets. We study both
the cooperative team problem in which a common objective
is jointly optimized as well as the noncooperative game
problem in which mobiles optimize individually their own
objectives. We consider as objectives both maximizing
throughputs as well as minimizing delays, and study
the tradeoff between these objectives. We show that the
new proposed schemes not only improve the average
performances considerably but are also able in some cases
to eliminate the bi-stable nature of the slotted Aloha.

Keywords: Mathematical Programming, Optimiza-
tion, Nash equilibrium, Economics

I. I NTRODUCTION

Aloha [1] and slotted Aloha [10] have long been
used as random distributed medium access protocols
for radio channels. They are used in satellite networks,
sensor networks and cellular telephone networks for the
sporadic transfer of data packets. In these protocols,
packets are transmitted sporadically by various users.
If packets are sent simultaneously by more than one
user then they collide. After the end of the transmission
of a packet, the transmitter receives the information on
whether there has been a collision (and retransmission
is needed) or whether it was well received. All packets
involved in a collision are assumed to be corrupted and
are retransmitted after some random time. We focus in
this paper on the slotted Aloha (which is known to
have a better achievable throughput than the unslotted
version, [4]) in which time is divided into units. At
each time unit a packet may be transmitted, and at the
end of the time interval, the sources get the feedback
on whether there was zero, one or more transmissions
(collision) during the time slot. A packet that arrives
at a source is immediately transmitted. Packets that are
involved in a collision are backlogged and are scheduled
for retransmission after a random time.
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In this paper we introduce two new schemes in which
multiple power levels are used for transmission. When
several packets are sent simultaneously, one of them
can often be successfully received due to the power
capture effect. We assume that the packet with the largest
received power captures the channel [9], [6], [11]; if two
or more packets are transmitted simultaneously with the
same power, we assume that neither one of them can
be captured. In addition to the power diversity which
had already been proposed in [9], [6], [11] we consider
differentiation between new packets and backlogged
packets and allow for prioritization of one or the other
in terms of transmitted power. We study and compare in
the paper the following schemes:

1) the one with power diversity and without prioriti-
zation,

2) a new packet is transmitted with the lowest power,
and backlogged packets transmit at a random
power selected amongN larger distinct levels.

3) a new packet is transmitted with the highest power,
and backlogged packets transmit at a random
power selected amongN lower distinct levels.

4) standard Aloha: all transmit with the same power.

We first consider the problem of optimal selection of
transmission probabilities for the various schemes so as
to achieve the maximum throughput or the minimum
expected delay. We discover however that in heavy
load, the optimality is obtained at the expense of huge
expected delay of backlogged packets (EDBP). We there-
fore consider the alternative objective of minimizing
the EDBP. We study both the throughput as well as
the delay performance of the global optimal policy.
We also solve the multicriteria problem in which the
objective is a convex combination of the throughput and
the EDBP. This allows, in particular, to compute the
transmission probabilities that maximize the throughput
under a constraint on EDBP, which could be quite useful
for delay-sensitive applications.

We show that the new schemes we propose not only
improve the average performances considerably but are
also able in some cases to eliminate the bi-stable nature
of the slotted Aloha.

In addition to the global optimization problem, we also
study the game problem in which each mobile chooses
its transmission probability selfishly so as to optimize its
individual objective. This gives rise to a game theoretic
model of which we study the equilibrium properties. We
show that the power diversity and the prioritization profit
to mobiles also in this competitive scenario.
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Related work: Various game formulations of the
standard slotted Aloha (with a single power) have been
derived and studied in [3], [2], [7], [8], [5] for the non-
cooperative choice of transmission probabilities. Several
papers study slotted Aloha with power diversities but
without differentiating between transmitted and back-
logged packets, and without the game formulation. In [9]
it is shown that the system capacity could be increased
from 0.37 to 0.53 if one class of terminals always used
high power and the other always used low power level.
In [6], power diversity is studied with the capture model
that we use as well as with another capture model based
on signal to noise ratio. [11] studies power diversity
under three types of power distribution between the
power levels and provides also stability analysis.

The rest of the paper is organized as follows. In
Section II, we describe the problem and the model. In
Section III, we discuss the team formulation of the prob-
lems. In Section IV, we discuss the game formulation of
the problems. We evaluate the performance of different
schemes numerically in Section V. We conclude the
paper in Section VI.

II. M ODEL AND PROBLEM FORMULATION

In this section we describe the new mechanisms of
slotted aloha and associated assumptions used in this
paper. We consider one central receiver andm sources
without buffer. We assume a perfect capture model where
a successful capture of a packet at the receiver occurs
when the power level selected of this packet is greater
than those of all other packets transmitted in the same
slot. A mobile terminal can transmit a packet using a
power fromN different levels.

We use a Markovian model extending [4, Sec. 4.2.2].
The arrival flow of packets to sourcei follows a
Bernoulli process with parameterqa (i.e. at each time
slot, there is a probabilityqa of a new arrival at a source,
and all arrivals are independent). As long as there is a
packet at a source (i.e. as long as it is not successfully
transmitted) new packets to that source are blocked
and lost.1 The arrival processes to different sources
are independent. A backlogged packet at sourcei is
retransmitted with probabilityqir. We shall restrict in our
control and game problems to simple policies in which
qir does not change in time. Since sources are symmetric,
we shall further restrict to finding a symmetric optimal
solution, that is retransmission probabilitiesqir that do
not depend oni.

We shall use as the state of the system the number of
backlogged nodes (or equivalently, of backlogged pack-
ets) at the beginning of a slot, and denote it frequently
with n. For any choice of valuesq ir 2 (0; 1], the state
process is a Markov chain that contains a single ergodic

1In considering the number of packets in the system, this assump-
tion is equivalent to saying that a source does not generate new
packets as long as a previous packet is not successfully transmitted.

chain (and possibly transient states as well). Defineqr to
be the vector of retransmission probabilities for all users
(whosejth entry isqjr). Let �(qr) be the corresponding
vector of steady state probabilities where itsnth entry,
�n(qr), denotes the probability ofn backlogged nodes.
When all entries ofqr are the same, sayq, we shall write
(with some abuse of notation)�(q) instead of�(qr).

We introduce further notation. Assume that there are
n backlogged packets, and all use the same valueq r as
retransmission probability. LetQr(i; n) be the probabil-
ity that i out of then backlogged packets retransmit at
the slot. Then

Qr(i; n) = (ni ) (1� qr)
n�i[qr]

i: (1)

Let Qa(i; n) be the probability thati unbacklogged
nodes transmit packets in a given slot (i.e. thati arrivals
occurred at nodes without backlogged packets). Then

Qa(i; n) =
�
m�n

i

�
(1� qa)

m�n�i[qa]
i: (2)

Let Qr(1; 0) = 0 andQa(1;m) = 0.

III. T EAM PROBLEM

In this section we propose and analyze three different
schemes. We observe that standard slotted Aloha is a
special case of these proposed schemes.

A. Scheme 1 : Random power levels without priority
scheme

In this subsection, we describe the use of a scheme
in which multiple power levels are used at transmitter.
A mobile terminal can transmit a packet (new arrival
packets or backlogged packets) using one ofN distinct
available power levels. In case all nodes use the same
value q and qr, the transmission probabilities of the
Markov chain is given byPn;n+i(q) =
8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

Qa(i; n)[
nP

j=0

Qr(j; n)(1 �Aj+i)]; i = m� n; i � 2

Qa(i; n)[
nP

j=0

Qr(j; n)(1 �Aj+i)]+

Qa(i+ 1; n)[
nP

j=0

Qr(j; n)Aj+i+1]; 2 � i < m� n

Qa(1; n)
nP

j=1

Qr(j; n)(1�Aj+1)+

Qa(2; n)
nP

j=0

Qr(j; n)Aj+2]; i = 1

Qa(0; n)[Qr(0; n) +
nP

j=2

Qr(j; n)(1�Aj)]+

Qa(1; n)[Qr(0; n) +
nP

j=1

Qr(j; n)Aj+1] i = 0

Qa(0; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Aj ]; i = �1

where the probability of a successful transmission
amongk � 2 packets, is denoted and given byAk =

k
N�1P
l=0

XN�k(1 �
NP

i=N�l

Xi)
k�1, A0 = 0; A1 = 1 and

Xi is the probability that a packet (new arrival or
backlogged) will choose power leveli for retransmission.
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B. Scheme 2: Retransmission with more power
In this scheme, a backlogged packet retransmits with

a power fromN different distinct levels. A new arrival
packet uses a lower power than any one theseN levels.
The random power levels are chosen uniformly. Suc-
cessful capture occurs if one of the backlogged packet
transmits with a power level which is larger than that
chosen by all others transmitters or a single new arrival
occurs and there is no retransmission attempt of any
backlogged packet. The transition matrix is given by
Pn;n+i(q) =

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

Qa(i; n)[Qr(0; n) +
nP

j=2

Qr(j; n)(1�Aj)]; i = m� n; i � 2

Qa(i; n)[Qr(0; n) +
nP

j=2

Qr(j; n)(1�Aj)]+

Qa(i+ 1; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Aj ]; 2 � i < m� n

Qa(0; n)[Qr(0; n) +
nP

j=2

Qr(j; n)(1�Aj)]+

Qa(1; n)[Qr(0; n) +Qr(1; n) +
nP

j=2

Qr(j; n)Aj ]; i = 0

Qa(i; n)
nP

j=2

Qr(j; n)(1�Aj)+

Qa(i+ 1; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Aj ]; i = 1

Qa(0; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Aj ]; i = �1

C. Scheme 3 : Retransmission with less power
In this scheme, a new transmitted packet has the

highest power. Backlogged packets attempt retransmis-
sions with a random power choice amongN distinct
lower power levels. The random power levels are chosen
uniformly. The transition matrix is given by:Pn;n+i(q) =
8>>>>>><
>>>>>>:

Qa(i; n) i � 2

0 i = 1

Qa(1; n) +Qa(0; n)[
nP

j=2

Qr(j; n)(1�Bj) +Qr(0; n)] i = 0

Qa(0; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Bj ] i = �1;

where the probability of a successful retransmission

amongj � 2 is given byBj = j
N�1P
k=1

Pk(1 �
kP
i=1

Pi),

j � 2.

D. Performance Metrics

We present the performance measures of interest for
optimization as a function of the steady state probabil-
ities. Denote by�n(q) the equilibrium probability that
the network is in staten (number of backlogged packets
at the beginning of a slot). Then we have the equilibrium
state equations:

8<
:

�(q) = �(q)P (q);
�n(q) � 0; n = 0; :::; mPm

n=0 �n(q) = 1:
(3)

The average number of backlogged packets which is
given by

S(q) =

mX
n=0

�n(q)n (4)

The system throughput (defined as the sample average
of the number of packets that are successfully transmit-
ted) is given almost surely by the constant,thp(q) =

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

mP
n=1

�n(q)[Qa(0; n)(Qr(1; n) +
nP

j=2

Qr(j; n)Aj)+

Qa(1; n)
Pn

j=0Qr(j; n)Aj+1+
m�nP
i=2

Qa(i; n)
Pn

j=0Qr(j; n)Ai+j

i
+

�0(q)Qa(1; 0) scheme 1
mP
n=1

�n(q)
h
Qa(1; n)Qr(0; n) +Qr(1; n)+

Pn

j=2Qr(j; n)Aj

i
+ �0(q)Qa(1; 0) scheme 2

mP
n=0

�n(q)
h
Qa(1; n) +Qr(0; n)(Qr(1; n)+

Pn

j=2Qr(j; n)Aj)
i

scheme 3

The throughput satisfies (and thus can be computed
through)

thp(q) = qa

mX
n=0

�n(q)(m� n) = qa(m� S(q)): (5)

Indeed, the throughput is the expected number of arrivals
at a time slot (which actually enter the system), and this
is expressed in the equation forthp(q) by conditioning
onn. The throughput should equal to the expected num-
ber of departures (and thus the throughput) at stationary
regime, which is expressed in (5).

The expected delay of transmitted packets D, is de-
fined as the average time, in slots, that a packet takes
from its source to the receiver. Applying Little’s result,
this is given by

D(q) = 1 +
S(q)

thp(q)
= 1 +

S(q)

qa(m� S(q))
(6)

Note that the first term accounts for the first transmission
from the source.

Combining the last equality in (5) with (6) it follows
that maximizing the global throughput is equivalent to
minimizing the average delay of transmitted packets.
We shall therefore restrict in our numerical investigation
to maximization of the throughput. However, we shall
consider the delay ofbacklogged packets as yet another
objective to minimize.

Performance measures for backlogged packets. The
throughput of the backlogged packets for each scheme
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is given by:thpc = thp(q)�� where� is given by
8>>>>>><
>>>>>>:

mP
n=0

m�nP
i=1

nP
j=0

( i
i+jQa(i; n)Qr(j; n)Ai+j)�n(q) scheme 1

mP
n=0

Qa(1; n)Qr(0; n)�n(q); scheme 2
mP
n=0

Qa(1; n)�n(q) scheme 3

Another relevant quantity in this context is the ex-
pected delay of backlogged packetsD c which is defined
as the average time, in slots, that a backlogged packet
takes to go from the source to receiver. Applying Little’s
result, the expected delay of packets that arrive and
become backlogged is given by

Dc(q) = 1 + S(q)=thpc(q) (7)

The team problem is therefore given as the solution
of the optimization problem:

max
q

objective(q) s:t:

8<
:

�(q) = �(q)P (q);
�n(q) � 0; n = 0; :::;mPm

n=0 �n(q) = 1:

A solution to the team problem can be obtained by
computing recursively the steady state probabilities, as in
Problem 4.1 in [4], and thus obtain an explicit expression
for thp(q) as a function ofq.

Stability. Another qualitative way to compare schemes
is in the stability characteristics of the protocol. Slotted
Aloha is known to have a bi-stable behavior, and we shall
check whether this is also the case in our new schemes.

Let us define thedrift in staten(Dn) as the expected
change in backlog over one slot time, starting in state
n. Thus, Dn is the expected number of new arrivals
accepted into the system [i.e.,(m � n)qa] less the
expected number of successful transmissions in the slot;
the expected number of successful transmissions is just
the probability of a successful transmission, defined as
Psucc. Thus,

Dn = (m� n)qa � Psucc (8)

wherePsucc is given by

8>>>>>>>>>>><
>>>>>>>>>>>:

Qa(1; n)Qr(0; n) +Qa(0; n)Qr(1; n); same-power
m�nP
i=0

Qa(i; n)
nP

j=0

Qr(j; n)Ai+j Scheme 1

Qa(1; n)Qr(0; n) +Qa(0; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Aj ];

Scheme 2

Qa(1; n) +Qa(0; n)[Qr(1; n) +
nP

j=2

Qr(j; n)Bj ];Scheme 3

For standard slotted Aloha it has been observed (see
[4]) that there are three equilibria, where an equilibrium
is defined as a staten in which the arrival rate(m�n)qa
equals the departure ratePsucc. Moreover, among those

three, the two extreme ones (the one corresponding to the
smallest state and the one corresponding to the largest
one) are stable.2 A bi-stable situation as in the standard
Aloha is undesirable since it means in practice that the
system spends long time in each of the stable equilibria
including in the one with largen corresponding to a
congestion situation (low throughput and large delays).
We shall study numerically the stability behavior of the
various schemes.

Next, we discuss some properties related to the opti-
mization problem.

Singularity at q = 0. The only point whereP does
not have a single stationary distribution is atq = 0,
where it has two absorbing states:n = m andn = m�1.
All other states are transient (for anyqa > 0), and the
probability to end at one of the absorbing states depends
on the initial distribution of the Markov chain. We note
that if the statem � 1 is reached then the throughput
is qa w.p.1, where as if the statem is reached then the
throughput equals 0. It is thus a deadlock state. Forqa >
0 andqr = 0, the deadlock state is reached with positive
probability from any initial state other thanm � 1. We
shall therefore excludeqr = 0 and optimize only on
the range� � qr � 1. We choose throughout the paper
� = 10�4.

Existence of a solution. The steady state probabilities
�(q) are continuous over0 < q � 1. Since this is not a
close interval, a solution need not exist. However, as we
restrict to the closed intervalq 2 [�; 1] where� > 0, an
optimal solution indeed exists. Note also that the limit
limq!0 �(q) exists since�(q) is a rational function ofq
at the neighborhood of zero. Therefore for anyÆ > 0,
there exists someq > 0 which is Æ-optimal. (q� > 0 is
said to beÆ-optimal for the throughput maximization if
it satisfiesthp(q�) � thp(q) � Æ for all q 2 (0; 1]. A
similar definition holds for the EDBP minimization.)

IV. GAME PROBLEM

Next, we formulate the game problem. This for-
mulation is of interest as it is more appropriate in
decentralized scenarios in which mobiles may not be
controllable by a centralized entity (and so the team
approach does not hold any more). The equilibrium
concept then replaces the optimality concept from the
team problem. It possesses a robustness property: at
equilibrium, no mobile has incentive to deviate.

For a given policy vectorqr of retransmission prob-
abilities for all users (whosejth entry is qjr), define
([qr]

�i; q̂ir) to be a retransmission policy where userj

retransmits at a slot with probabilityqjr for all j 6= i
and where useri retransmits with probabilitŷqir. Each

2Recall that an equilibrium is stable if the drift corresponding to a
small deviation (increasing or decreasingn) from the equilibrium is
in the direction opposite to the deviation (e.g. if we taken slightly
larger than the equilibrium then the drift should be negative, tending
to decrease againn).
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user i seeks to maximize his ownobjectivei(q). The
problem we are interested in is then to find a symmetric
equilibrium policyq�

r
= (qr; qr; ::; qr) such that for any

useri and any retransmission probabilityq ir for that user,

objectivei(q
�
r
) � objectivei([q

�
r
]�i; qir) (9)

where the objective function is the throughput or minus
the delay3. Since we restrict to symmetricq�

r
, we shall

also identify it (with some abuse of notation) with the
actual transmission probability (which is the same for
all users). Next we show how to obtain an equilibrium
policy. We first note that due to symmetry, to see whether
q
�
r

is an equilibrium it suffices to check (9) for a single
player. We shall thus assume that there arem+ 1 users
all together, and that the firstm users retransmit with a
given probabilityqr�(m+1) = (qo; ::; qo) and userm+1

retransmits with probabilityq(m+1)
r . Define the set

Qm+1(qo
r
) =

argmax
q
(m+1)
r 2[�;1]

�
objectivem+1([q

o

r
]�(m+1); q(m+1)

r )
�
;

where qo
r

denotes (with some abuse of notation) the
policy where all users retransmit with probabilityqor , and

where the maximization is taken with respect toq(m+1)
r .

Thenq�r is a symmetric equilibrium if

q�r 2 Q
m+1
r (q�r ):

To compute the performance measures of interest
objectivem+1([q

o

r
]�i; qir), we introduce again a Markov

chain with a two dimensional state. The first state com-
ponent corresponds to the number of backlogged packets
among the users 1,...,m, and the second component is
the number of backlogged packets (either 1 or 0) of user
m+ 1.
Scheme 1: Retransmission with more power but with
no priority. We consider the game problem in which
packets are transmitted/retransmitted with random power
uniformly selected fromN levels. There is no priority for
any packet. The transition probabilities when them other
mobiles useqor and a given other mobile usesq(m+1)

r are
given in Appendix VIII.
Scheme 2: Retransmission with more power. We
consider the game problem in which backlogged packets
are retransmitted with random power uniformly selected
from N levels. A new arriving packet is always trans-
mitted with less power than any retransmitted packet.
The transition probabilities when them other mobiles
useqor and a given other mobile usesq(m+1)

r are given
in Appendix VII.
Scheme 3 : Retransmission with less power. We
consider the game problem in which backlogged packets
are retransmitted with a random power from chosen

3Several definitions of delays will be given. In case delay is
optimized, this formulation is equivalent to minimizing delays

amongN distinct levels. Here the new arrival packets are

transmitted with higher power. DefineCj =
N�1P
k=1

Pk(1�

kP
i=1

Pi)
j�1. Then the transition probabilities when the

m other mobiles useqor and a given other mobile uses

q
(m+1)
r are given by (10).

P(n;i);(n+k;j)(q
o
r ; q

(m+1)
r ) =

(10)8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Qa(k; n); i = j = 1
Qa(k; n)(1� qa); i = j = 0
Qa(k; n)qa; i = 0; j = 1

9=
; 2 � k � m� n; k � 2

(1 � q
(m+1)
r )H+

qmr [Qa(0; n)
nP

j=1
Qr(j; n)(1� Cj+1) +Qa(1; n)];

i = j = 1
qaQa(0; n) + (1 � qa)H i = j = 0

q
(m+1)
r Qa(0; n)[Qr(0; n) +

nP
j=1

Qr(j; n)Cj+1];

i = 1; j = 0

9>>>>>>>>>>=
>>>>>>>>>>;

k = 0

Qa(0; n)(1� qm+1
r )[Qr(1; n) +

nP
j=2

Qr(j; n)Cj ];

i = j = 1

Qa(0; n)(1� qa)[Qr(1; n) +
nP

j=2
Qr(j; n)Cj ];

i = j = 0

9>>>>>>=
>>>>>>;

k = �1

Qa(1; n)qa; i = 0; j = 1; k = 1

0 otherwise

where H = Qa(1; n) + Qa(0; n)[Qr(0; n) +
nP

j=2
Q(j; n)(1 � Cj)]

Performance Metrics. In the game problem, the
average number of backlogged packets of sourcem+1
is given by:

Sm+1([q
o

r
]�1(m+1)qm+1

r ) =
mX
n=0

�n;1([q
o

r

�(m+1)]; q
(m+1)
r ) (11)

and the average throughput of userm+ 1 is given by

thpm+1([q
o

r
]�(m+1); q

(m+1)
r ) = qa

mX
n=0

�n;0([q
o
r ]
�(m+1); q

(m+1)
r )

(12)

Hence the expected delay of transmitted packets of
userm+ 1 for both scheme is given by

Dm+1(q
o

r
]�1(m+1); qm+1

r ) = 1 +
Sm+1([qor ]

�1(m+1)q
m+1
r )

thpm+1(qor ]
�1(m+1); q

m+1
r )

(13)

Let us denote bythpcm+1 the throughput of back-
logged packets (i.e. of the packets that arrive and become
backlogged) at sourcem+ 1:

thpcm+1(q̂m+1) =
mX
n=0

mX
n0=0

P(n;0);(n0;1)(q̂m+1)�n;0(q̂m+1)



6

Thus, the expected delay of backlogged packets at source
m+ 1, is given by

Dc
m+1(q̂m+1) = 1 + Sm+1(q̂m+1)=thp

c
m+1(q̂m+1)

(14)

V. NUMERICAL INVESTIGATION

We describe next numerical investigation of the team
and the game problems for the three new schemes as
well as the standard Aloha.

A. Maximizing the global throughput

As already mentioned, we shall not study the min-
imizing of the expected delay as it is equivalent to
maximizing throughput. In Figure 1 (a) and (b), we
plot the throughput and expected delay of backlogged
packets (EDBP) for all schemes under the objective of
maximizing the global throughput form = 4 (and with
N = 5 for schemes 1-3). Throughout we use the notation
mi = x in the figure to indicate that schemei is used
with number of nodesx. When we writem = x (without
subscript) we mean that standard Aloha is used withx
nodes.

We observe that when load is high, scheme 2 per-
forms better than other schemes in terms of throughput.
This is due to the fact that scheme 2 prioritizes the
retransmission of backlogged packets. But when load
is very high: qa > 0:8, the throughput of scheme 3 is
highest. Under low load form = 4, scheme 1 performs
a little better than other schemes because prioritizing
backlogged packets may not result in gain when there
are few backlogged packets. All schemes outperform
standard Aloha.

We next observe the result of maximizing throughput
on the EDBP (Figure 1 (b)). At moderate and high load
scheme 2 performs best, and at very high load scheme
3 performs best. All the schemes perform very bad at
heavy load. Standard Aloha gives the worse performance
at all loads.

We plot the corresponding figures form = 10 in
Figure 2 and observe similar trends.

B. Minimizing EDBP

When maximizing the global throughput we observed
a huge EDBP under all schemes in heavy load. Such
large delay may be very harmful in many applications.
We thus investigate directly the problem of minimizing
EDBP. We shall also investigate the impact of this
optimization on the throughput performance. We shall
show in particular that throughput performance in the
new schemes improves considerably with respect to stan-
dard Aloha even when standard Aloha uses the previous
objective of maximizing throughput (this will correspond
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Fig. 1. (a) and (b) show the throughput and delay of backlogged
packets. The objective under all the schemes is to maximize the
throughput.The number of mobiles is 4 and number of levels is 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arrival Probability, q
a

Th
rou

gh
pu

t

m=10
m

2
=10,N=5

m
3
=10,N=5

m
1
=10,N=5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

Arrival Probability, q
aEx

pec
ted

 de
lay

 of 
bac

klo
gge

d p
ack

ets
, E

DB
P (

slo
ts)

m=10
m

2
=10,N=5

m
3
=10,N=5

m
1
=10,N=5

(b)

Fig. 2. (a) and (b) show the throughput and delay of backlogged
packets. The objective under all the schemes is to maximize the
throughput.The number of mobiles is 10 and the number of levels is
5.

to obj1 in the figures, whereasobj2 will correspond to
minimizing EDBP).

In Figure 3, we plot the performance of the various
schemes form = 4. Part (a) considers the impact on the
throughput while minimizing the EDBP. It is seen that
all three schemes outperform standard Aloha even when
the latter uses throughput maximization as optimization
objective. Scheme 1 is the best in terms of throughput
only at light load, scheme 2 is the best in medium
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load whereas scheme 3 remarkably outperforms the other
schemes at high loads (qa > 0:8). In part (b) of the
figure we see that Scheme 2 outperforms all others in
terms of EDBP for both medium and high load. Part
(c) provides the optimal retransmission probabilities. We
observe the phenomenon of tiny optimal retransmission
probabilities for standard Aloha when throughput is max-
imized, which explains its corresponding huge EDBP.
In contrast, when EDBP is minimized standard Aloha
has optimal retransmission probabilities of around 0.3 in
heavy load whereas all other versions have much higher
retransmission probabilities.

The case of 10 mobiles is presented in Figure 4 which
provides similar trends.

Figure 5 illustrates the effect of all the new schemes as
a function ofN . We observe that performance improves
generally with increasing value ofN and the returns
diminishes with increase inN .

Table I summarizes the performance of the team
problem in terms of throughput and EDBP.
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Fig. 3. (a), (b) and (c) show the throughput, EDBP and retransmis-
sion probabilities. The objective under schemes 1-3 is to minimize
EDBP (obj2). m;m1;m2 andm3 refer to standard Aloha, schemes
1, 2 and 3 respectively. The number of mobiles is 4.obj1 refers to
the objective of maximizing the throughput.
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Fig. 4. (a), (b) and (c) show the throughput, EDBP and retransmis-
sion probabilities. The objective under schemes 1-3 is to minimize
EDBP (obj2). The number of mobiles is 10.

C. Stability

In Figure 6, we illustrate the stability behavior for
qr = 0:15; qa = 0:01;m = 40; N = 5. The drift is the
difference between the curves (representing the departure
rate orPsucc) and the straight line representing the arrival
rate (m � n)qa. Since the drift is the expected change
in state from one slot to the next, the system, although
fluctuating, tends to move in the direction of the drift
and consequently tends to cluster around the two stable
points with rate excursions between the two (for same-
power scheme). We see that slotted Aloha is the only
scheme that suffers from the bi-stability problem.

We see that for standard slotted Aloha, the departure
is at most1=e whereas for different power schemes it is
quite higher.

By choosing a large value of retransmission probabil-
ities, we can obtain situations where schemes 1 and 2
acquire a bi-stable regime, and the scheme 3 remains
stable for all values of retransmission probabilityqr. For
example, with 40 mobiles andqa = 0:15, scheme 1 and
2 suffer from the bi-stable problem whenqr = 0:8 (see
Figure 7). It should be noted that the bi-stability can
occur in all schemes, which is the case when the number
of mobiles becomes large. For example, with 60 mobiles
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Scheme m = 4 m = 10
(delay, throughput) (delay, throughput)

qa = 0:4 qa = 0:9 qa = 0:4 qa = 0:9
same-power,max� (13.15, 0.4219) (1:82 � 103, 0:5141) (40.92, 0.392) (1:83 � 103, 0.473)

same-power,min EDBP (11.78, 0.397) (14.67, 0.384) (35.27, 0.3592) (39.40, 0.3536)
scheme 1,N = 1 (8.617, 0.3972) (10.306, 0.384) (26.35, 0.359) (28.19, 0.353)
scheme 1,N = 5 (4.582, 0.759) (6.40, 0.709) (13.16, 0.703) (15.12, 0.675)
scheme 1,N = 7 (4.24, 0.811) (6.14, 0.755) (12.349, 0.755) (14.24, 0.726)
scheme 2,N = 1 (5.6374, 0.5641) (6.0039, 0.6541) (17.7847, 0.5185) (16.7333, 5937)
scheme 2,N = 5 (3.6385, 0.7916) (4.7153, 0.8288) (11.4713, 0.7709) (12.4741, 0.7946)
scheme 2,N = 7 (3.4276, 0.8265) (4.5284, 0.8622) (10.7758, 0.8146) (11.9088, 0.832)
scheme 3,N = 1 (12.34, 0.5895) (40.904, 0.8574) (42.2731, 0.574) (134.118, 0.8587)
scheme 3,N = 5 (7.3, 0.735) (23.7439, 0.8954) (25.5891, 0.7251) (73.6986, 0.8931)
scheme 3,N = 7 (6.9134, 0.7523) (22.4717, 0.90) (24.2433, 0.7444) (69.0206, 0.8983)

TABLE I

COMPARISON OF THE THROUGHPUTS AND THEEDBPFOR DIFFERENT SCHEMES AT DIFFERENT LOADS FOR TEAM PROBLEMS,m = 4

AND m = 10.
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Fig. 5. (a) and (b) show the throughput and the EDBP when the
objective is to minimize the delay of backlogged packets. The figures
show the diminishing effect of increasing power levels form = 4.

and qa = 0:005, the standard slotted Aloha is bi-stable
already forqr = 0:1, Scheme 1 and 2 are bi-stable with
qr = 0:5 and Scheme 3 becomes bi-stable withqr = 0:95
(see Fig 8). Here, as well as in all other examples (not
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Fig. 6. Stability of slotted Aloha schemes 1, 2, and 3: The arrival
probability qa = 0:01, number of mobilesm = 40, number of levels
N = 5 and retransmission probabilityqr = 0:15
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Fig. 7. Stability and instability of slotted Aloha schemes : The
arrival probabilityqa = 0:01, number of mobilesm = 40, number
of levelsN = 5 and retransmission probabilityqr = 0:8.

reported here) scheme 3 always turned out to have the
largest region of parameters for which a unique stable
point is obtained.

The average number of backlogged packets for dif-
ferent schemes which correspond to their equilibrium
points are given in Table II withm = 60, qa = 0:005
andN = 5. This is compared to the expected number of
backlogged packets. In the case of a single equilibrium, a
good match is seen for schemes 1, 2 and 3, which means
that the simple computation of the stable equilibrium
can be used to approximate the expected number of
backlogged packets. In standard Aloha we see that
the congested stable equilibrium provides a very good
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Fig. 8. Stability and instability of slotted Aloha schemes: The arrival
probabilityqa = 0:005, number of mobilesm = 60, number of levels
N = 5 and retransmission probabilityqr = 0:8 for all schemes

approximation for the expected number of backlogged
packets, which suggests that the system spends most of
the time at that equilibrium.

We observe also that we have same behavior in
scheme 1 and 2 when the retransmission probability
increases (around0:5). Scheme 1 and 2 acquire a bi-
stable with qr = 0:5. But contrary to standard aloha,
we see from Table II that the expected number of back-
logged packets for scheme 1 and 2can be approximated
by the desired stable equilibrium. That means that in
the bi-stability case for scheme 1 and 2, the system
spends most of the time at that equilibrium. Now if the
mobiles becomes aggressive (qr around0:9), we see that
the congested stable equilibrium provides a very good
approximation for the expected number of backlogged
packets in all schemes, which suggests that the system
spends most of the time at that equilibrium.

schemes same-power no-prior more-power less-power
ABP qr = 0:1 56.8 0.71 1.04 1.09
(un)stable eq. 1.51, 25.47 0.67 1.449 1
qr = 0:1 56.88

ABP qr = 0:5 60 0.28 0.28 0.287
(un)stable eq. 1.51, 25.47 0.136, 28.85 0.10, 24.33 0.208
qr = 0:5 56.88 56.83 56.89
ABP qr = 0:9 60 59.98 59.98 57.58
(un)stable eq. 0.16, 1.72 0.07, 12.43 0.16, 10.46 0.11, 26.70
qr = 0:9 60 59.98 59.98 56.99

TABLE II

AVERAGE NUMBER OF BACKLOGGED PACKETS(ABP) AND

EQUILIBRIUM POINT (S)

D. Multi-criteria Objective

So far we have considered the extreme cases of
maximizing the throughput or minimizing the EDBP. In
practice it may be of interest to have a multi-criteria op-
timization in which a combination of both is optimized.
The objective is given by�thp(q)+(1��) 1

Dc ; 0 � � �
1. This allows in particular to handle QoS constraints:
By varying� one can find appropriate tradeoff between
the throughput and delays, so that the throughput be
maximized while keeping the EDBP bounded by some
constant.
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Fig. 9. (a) and (b) show throughput and delay of backlogged packets
when the multi-criteria objective is optimized forN = 2;m = 4.

First we plot the performance whenN = 2 and the
number of mobiles is 4, for all the new power schemes
in Figure 9. We observe that scheme 3 (less-power for
retransmission) is insensitive to the value of� under
different load. The optimal retransmission probabilities
for scheme 3 are very close under both the objectives:
when throughput is maximized and when EDBP is
minimized. When� increases (i.e., gives more weight
to throughput), the throughput of more-power and no-
priority schemes increase with� at higher load. But
the delay also increases for more-power (scheme 2)
and no-priority schemes (scheme 1). Next, we plot the
performance whenN = 5;m = 4 in Figure 10. The
performance for all the schemes improve with increasing
N .

E. Game problem: maximizing individual throughputs

Next, we evaluate the performance of distributed game
version of the team problems mentioned in previous
sections. The notationmi = x in the figures will mean
that the total number of mobiles isx and they use
schemei. We first consider the criterion of throughput
maximization. Form = 3 mobiles, Fig 11 (a), (b)
and (c) show the global equilibrium throughput (i.e. the
expression in Eq. (12) times the number of mobiles), the
equilibrium EDBP and the equilibrium retransmission
probabilities, respectively. We observe that the perfor-
mance of more-power scheme (scheme 2) is the best in
terms of EDBP. But at high load, the throughput of the
less-power scheme (scheme 3) is best. We observe that
the equilibrium retransmission probability is high (close
to 1) and thus most aggressive for schemes 1-3 for any
arrival probability. Standard Aloha at low arrival rates
is less aggressive at equilibrium. A possible explanation
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Fig. 10. (a) and (b) show throughput and delay of backlogged
packets when the multi-criteria objective is optimized forN = 5.

for this behavior is the following. If an individual tagged
mobile were very aggressive in standard Aloha (retrans-
mission probabilities close to 1) then eventually all other
mobiles would become backlogged which could increase
the collision rate and thus decrease the throughput of
the tagged mobile. Hence for some values of arrival
probabilities the equilibrium behavior of standard Aloha
is not very aggressive. In contrast, the new schemes
suffer less from other mobiles becoming backlogged
since they can reduce collisions due to the randomization
and priorities. Hence increasing backlog of other mobiles
does not penalize the tagged station anymore, so it has
incentive to become more aggressive. The equilibrium
transmission probabilities for schemes 1-3 are constants
as function ofqa given by 0.9734 (form = 3; 4).

Similar trends are obtained when increasing the num-
ber of mobiles to 4 in Figure 11. The improved per-
formance of the new schemes with respect to standard
Aloha appears even with a small numberN of levels.
We reduceN to 2 in Figure 12, and observe that the
new schemes still outperform both standard Aloha as
well as scheme 1 for allqa. The equilibrium throughput
of scheme 3 is seen to outperform considerably all other
schemes.

A remarkable feature of the new schemes is that
the equilibrium throughput isincreasing in the arrival
probabilities, which is a similar behavior as we had in the
team problem. In contrast, for high loads the throughput
decreases for Scheme 1 and it also contains a decreasing
behavior in standard Aloha. Thus the competition in
the game formulation does not allow to benefit from
increased input rates for standard Aloha and Scheme 1
(except for low values ofqa) whereas the new schemes
do benefit from that. Finally, we note that schemes 1-

3 all avoid the throughput collapse of standard Aloha
(for which we see in Fig. 11 (a) that the equilibrium
throughput vanishes for bothm = 4 at qa > 0:3 and for
m = 3 at qa > 0:65).
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Fig. 11. (a), (b), and (c) show the throughput, EDBP and retrans-
mission probability when the objective is to maximize the throughput
for all the schemes. for 3 and 4 mobiles.

F. Game problem: Minimizing individual EDBP

Next, we evaluate the performance of the distributed
game problems of minimizing EDBP. We notice again
from Figures 13(a) and 14 (forN = 10 and N = 2
respectively) that the equilibrium throughput decreases
in the arrival rates for Scheme 1 (for arrival probabilities
larger than 0.5) and for standard Aloha (for arrival
probabilities larger than 0.2). In both Schemes 2 and 3 it
increases (for bothN = 10 andN = 2) yet the increase
is much larger in Scheme 3. This scheme outperforms all
others for anyqa. Schemes 1-3 all avoid the throughput
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Fig. 12. (a) (b) and (c) show the throughput, EDBP and retransmis-
sion probability when the objective is to maximize the throughput
for all the schemes for 4 mobiles and 2 levels.

collapse of standard Aloha. We observe the decrease in
throughput for schemes 1-3 whenN decreases from 10
to 2. This is due to the fact that now the number of
mobiles is more than that of power levels and there are
more collision events.

We observe a non-monotonic behavior of the equilib-
rium EDBP for scheme 3 in Figs 13(b) forN = 10.
According to Eq. (14), this means that as the arrival rate
increases, the throughput grows faster than the expected
number of backlogged packets. This nonmonotonicity
does not occur forN = 2 (Fig. 15(a)). Scheme 2 and
3 have very close EDBP which is better than scheme 1
and standard Aloha for allqa.

As in the throughput maximization, we see that
schemes 1-3 are very aggressive in terms of retransmis-
sion probabilities forN = 10 andN = 2 (Figs 13(c)
and 15(b), respectively).

An interesting feature to note is that the throughput
obtained when maximizing the individual throughput is
less than that obtained when minimizing the EDBP. This
is due to the fact that we are in a non-cooperative game
setting, for which the equilibria are known not to be
efficient (as is the case in the famous prisoner’s dilemma
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Fig. 13. (a), (b), (c) show the throughput, EDBP and retransmission
probability when the objective is to minimize the delay of backlogged
packets for all the schemes for 3 and 4 mobiles.
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Fig. 14. Equilibrium throughput when the objective is to minimize
the individual EDBP for all the schemes for 4 mobiles andN = 2
levels.

paradox).
Table III summarizes the performance of the game

problems in terms of throughput and EDBP.

VI. CONCLUSIONS

We have studied in this paper two new schemes that
involve both prioritization as well as power diversity
for increasing the throughput and decreasing the EDBP.
We studied optimal choices of transmission probabilities
both in a cooperative team setting as well as in a non-
cooperative setting modeled using game theory. We saw
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Scheme m = 4 m = 5
(delay, throughput) (delay, throughput)

qa = 0:4 qa = 0:9 qa = 0:4 qa = 0:9
same-power,max� (6:8 � 103; 1:5 � 10�4) (6:9 � 103; 1:4 � 10�4) (1:3 � 105; 7:8 � 10�6) (1:3 � 105; 7:8 � 10�6)
same-power,min EDBP (6:7 � 108; 1:5 � 10�9) (6:7 � 108; 1:5 � 10�9) (5:8 � 1011; 1:7 � 10�12) (5:8 � 1011 ; 1:7 � 10�12)
scheme 1,N = 1 (6:6 � 108; 1:5 � 10�9) (6:6 � 108; 1:5 � 10�9) (5:8 � 1011; 1:7 � 10�12) (5:8 � 1011 ; 1:7 � 10�12)
scheme 1,N = 5 (5.1, 0.18) (7.06, 0.16) (7.34, 0.13) (9.6, 0.11)
scheme 1,N = 7 (4.5, 0.20) (6.27, 0.18) (6.23, 0.14) (8.2, 0.14)
scheme 2,N = 1 (17.75, 0.06) (6:7 � 108; 1:5 � 10�9) (5:81 � 1011; 1:7 � 10�12) (5:8 � 1011 ; 1:7 � 10�12)
scheme 2,N = 5 (2.33, 0.26) (2.47, 0.39) (2.68, 0.359) (2.53, 0.25)
scheme 2,N = 7 (2.21,0.27) (2.29, 0.42) (2.32, 0.26) (2.41, 0.396)
scheme 3,N = 1 (42.86,0.07) (5:6 � 103; 0:09) (4:9 � 103; 0:015) (1:8 � 105; 0:065)
scheme 3,N = 5 (2.96,0.307) (2.6,0.814) (3.18,0.303) (2.8, 0.813)
scheme 3,N = 7 (2.7, 0.31) (2.4,0.82) (2.9, 0.31) (2.5, 0.82)

TABLE III

COMPARISON OF THROUGHPUTS AND THEEDBPDIFFERENT SCHEMES AT DIFFERENT LOADS FOR GAME PROBLEMS,m = 4 AND m = 5
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Fig. 15. (a) and (b) show the EDBP and retransmission probability
when the objective is to minimize the EDBP for all the schemes for
4 mobiles and 2 levels.

that our new Scheme 3 has the best stability properties
and the best throughput performance in the game setting.
The throughput performance of both new schemes 2
and 3 benefit from increasing the arrival rate in the
game scenario, in contrast with the standard Aloha
which suffers a throughput collapse, and with the power
diversity scheme 1 (without priorities) whose equilibrium
throughput decreases in high load. In the team case, our
new Scheme 3 is the best in very high load and Scheme 2
is the best in medium load when maximizing throughput;
Scheme 2 is best for both medium and high load when
minimizing EDBP.

A remarkable feature of our scheme 3 is that it
performs very well in the game setting as compared to
the team problem. In particular, when maximizing the
throughput, we see that in heavy traffic it attains the
maximum achievable throughput as is the case for the

team formulation.
As a part of future work, we would like to study the

impact of pricing on the performance of game problems.
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VII. A PPENDIX: TRANSITION PROBABILITIES FOR THE GAME PROBLEM UNDERSCHEME 2

The transition probabilitiesP(n;a);(n+k;b)(q
o
r ; q

(m+1)
r ) = are given by the following expression:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Qa(k; n)q
m+1
r [Qr(0; n) +

nP
j=1

Qr(j; n)Aj+1]; a = 1; b = 0

Qa(k; n)qa[Qr(0; n) +
nP

j=2
Qr(j; n)(1 �Aj)]; a = 0; b = 1

Qa(k; n)(1� qa)[Qr(0; n) +
nP

j=2
Qr(j; n)(1� Aj)]; a = 0; b = 0

Qa(k; n)[(1� q
m+1
r )(Qr(0; n) +

nP
j=2

Qr(j; n)(1 � Aj))+

q
m+1
r

nP
j=1

Qr(j; n)(1 �Aj+1)]; a = 1; b = 1

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

k = (m � n) � 2

Qa(k; n)q
m+1
r [Qr(0; n) +

nP
j=1

Qr(j; n)Aj+1]; a = 1; b = 0

Qa(k; n)qa[Qr(0; n) +
nP

j=2
Qr(j; n)(1 �Aj)]+

Qa(k + 1; n)qa[Qr(1; n) +
nP

j=2
Qr(j; n)Aj ]; a = 0; b = 1

Qa(k; n)(1� qa)[Qr(0; n) +
nP

j=2
Qr(j; n)(1� Aj)]+

Qa(k + 1; n)(1 � qa)[Qr(1; n) +
nP

j=2
Qr(j; n)Aj ]; a = 0; b = 0

Qa(k + 1; n)(1 � q
m+1
r )[Qr(1; n) +

nP
j=2

Qr(j; n)Aj ] +Qa(k; n)[(1� q
m+1
r )fQr(0; n)+

nP
j=2

Qr(j; n)(1� Aj)g + q
m+1
r

nP
j=1

Qr(j; n)(1 �Aj+1)]; a = 1; b = 1

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

; 2 � k < m � n

qaQa(0; n)Qr(0; n) + (1� qa)[Qa(1; n)fQr(0; n)+

Qr(1; n) +
nP

j=2
Qr(j; n)Ajg+Qa(0; n)fQr(0; n) +

nP
j=2

Qr(j; n)(1 �Aj)g] a = b = 0

(1 � q
(m+1)
r )[Qa(1; n)fQr(0; n) +Qr(1; n) +

nP
j=2

Qr(j; n)Ajg+Qa(0; n)fQr(0; n)+

nP
j=2

Qr(j; n)(1� Aj)g] + q
m+1
r Qa(0; n)[

nP
j=1

Qr(j; n)(1 � Aj+1)]; a = 1; b = 1

qaQa(0; n)[
nP

j=2
Qr(j; n)(1 �Aj)] + qaQa(1; n)[Qr(1; n) +

nP
j=2

Qr(j; n)Aj ]a = 0; b = 1

q
(m+1)
r Qa(0; n)[Qr(0; n) +

nP
j=1

Qr(j; n)Aj+1]; a = 1; b = 0

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

k = 0

(1 � q
(m+1)
r )Qa(2; n)

h
Qr(1; n) +

nP
j=2

Qr(j; n)Aj

i
+

Qa(1; n)
h
q
m+1
r (

nP
j=1

Qr(j; n)(1� Aj+1)) + (1 � q
m+1
r )

nP
j=2

Qr(j; n)(1� Aj)
i
; a = b = 1

Qa(2; n)(1� qa)[Qr(1; n) +
nP

j=2
Qr(j; n)Aj ] +Qa(1; n)(1 � qa)

nP
j=1

Qr(j; n)(1� Aj); a = 0; b = 0

Qa(2; n)qa[Qr(1; n) +
nP

j=2
Qr(j; n)Aj ] +Qa(1; n)qa[Qr(0; n) +

nP
j=2

Qr(j; n)(1 � Aj)]; a = 0; b = 1

Qa(1; n)q
m+1
r [Qr(0; n) +

nP
j=1

Qr(j; n)Aj+1]; a = 1; b = 0;

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

k = 1

qaQa(0; n)[Qr(1; n) +
nP

j=2
Qr(j; n)Aj ]; a = 0; b = 1

Qa(0; n)(1� q
m+1
r )[Qr(1; n) +

nP
j=2

Qr(j; n)Aj ]; a = b = 1

Qa(0; n)(1� qa)[Qr(1; n) +
nP

j=1
Qr(j; n)Aj ]; a = b = 0

9>>>>>>=
>>>>>>;

k = �1

0 otherwise
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VIII. A PPENDIX: TRANSITION PROBABILITIES FOR THE GAME PROBLEM UNDER SCHEME1
The transition probabilities,P(n;a);(n+k;b) are given by the following expression:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Qa(k; n)q
m+1
r

nP
j=0

1
j+k+1

Qr(j; n)Aj+k+1; a = 1; b = 0

Qa(k; n)qa
nP

j=0
Qr(j; n)(1� Aj+k+1); a = 0; b = 1

Qa(k; n)[(1� qa)
nP

j=0
Qr(j; n)(1� Aj+k) + qa

nP
j=0

1
j+k+1

Qr(j; n)Aj+k+1]; a = 0; b = 0

Qa(k; n)[q
m+1
r

nP
j=0

Qr(j; n)(1 � Aj+k+1) + (1 � q
m+1
r )

nP
j=0

Qr(j; n)(1� Aj+k)]; a = 1; b = 1

9>>>>>>>>>>>=
>>>>>>>>>>>;

k = (m� n) � 2

Qa(k; n)q
m+1
r

nP
j=0

Qr(j; n)
Aj+k+1

j+k+1
; a = 1; b = 0

Qa(k; n)qa
nP

j=0
Qr(j; n)(1� Aj+k+1) +Qa(k + 1; n)qa

nP
j=0

Qr(j; n)
(j+k+1)Aj+k+2

j+k+2
; a = 0; b = 1

Qa(k; n)[(1� qa)
nP

j=0
Qr(j; n)(1� Aj+k) + qa

nP
j=0

Qr(j; n)
Aj+k+1

j+k+1
)]+

Qa(k + 1; n)(1 � qa)
nP

j=0
Qr(j; n)Aj+k+1; a = 0; b = 0

Qa(k + 1; n)[(1 � q
m+1
r )

nP
j=0

Qr(j; n)Aj+k+1 + q
m+1
r

nP
j=0

Qr(j; n)
j+k+1
j+k+2

Aj+k+2]+

Qa(k; n)[(1� q
m+1
r )

nP
j=0

Qr(j; n)(1 �Aj+k) + q
m+1
r

nP
j=0

Qr(j; n)(1� Aj+k+1)]; a = 1; b = 1

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

2 � k < m� n

q
m+1
r Qa(0; n)(Qr(0; n) +

nP
j=1

Qr(j; n)
Aj+1

j+1
); a = 1; b = 0

qa[Qa(0; n)
nP

j=1
Qr(j; n)(1 �Aj+1) +Qa(1; n)

nP
j=0

Qr(j; n)
(j+1)Aj+2

j+2
]; a = 0; b = 1

qaQa(0; n)(Qr(0; n) +
nP

j=1

1
j+1

Qr(j; n)Aj+1) + (1� qa)[Qa(1; n)(
nP

j=1
Qr(j; n)Aj+1 +Qr(0; n))+

Qa(0; n)(Qr(0; n) +
nP

j=2
Qr(j; n)(1� Aj))]; a = 0; b = 0

(1 � q
m+1
r )[Qa(1; n)

nP
j=0

Qr(j; n)Aj+1 +Qa(0; n)(
nP

j=2
Qr(j; n)(1 �Aj) +Qr(0; n))]+

q
m+1
r Qa(0; n)

nP
j=1

Qr(j; n)(1� Aj+1); a = 1; b = 1

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

k = 0

(1 � q
m+1
r )Qa(2; n)

nP
j=0

Qr(j; n)Aj+2 +Qa(1; n)[q
m+1
r

nP
j=0

Qr(j; n)(1 �Aj+2)+

(1 � q
m+1
r )

nP
j=1

Qr(j; n)(1 � Aj+1)]i+ q
m+1
r Qa(2; n)

nP
j=0

Qr(j; n)
j+2
j+3

Aj+3; a = 1; b = 1

(1 � qa)[Qa(2; n)
nP

j=0
Qr(j; n)Aj+2 +Qa(1; n)

nP
j=1

Qr(j; n)(1 � Aj+1)]+

qaQa(1; n)
nP

j=0
Qr(j; n)

Aj+2

j+2
; a = 0; b = 0

Qa(2; n)qa
nP

j=0
Qr(j; n)

(j+2)Aj+3

j+3
+Qa(1; n)qa

nP
j=0

Qr(j; n)(1 � Aj+2); a = 0; b = 1

Qa(1; n)q
m+1
r

nP
j=0

Qr(j; n)
Aj+2

j+2
; a = 1; b = 0

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

k = 1

qaQa(0; n)
nP

j=1
Qr(j; n)

jAj+1

j+1
; a = 0; b = 1

(1 � q
m+1
r )Qa(0; n)(Qr(1; n) +

nP
j=2

Qr(j; n)Aj) + q
m+1
r Qa(0; n)

nP
j=1

Qr(j; n)
jAj+1

j+1
; a = 1; b = 1

Qa(0; n)(1� qa)[Qr(1; n) +
nP

j=2
Qr(j; n)Aj ]; a = 0; b = 0

0; a = 1; b = 0

9>>>>>>>>=
>>>>>>>>;

k = �1


