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Abstract— In many cases, a mobile user has the option of
connecting to one of several IEEE 802.11 access points (APs),
each using an independent channel. User throughput in each
AP is determined by the number of other users as well as the
frame size and physical rate being used. We consider the scenario
where users couldmultihome, i.e., split their traffic amongst all
the available APs, based on the throughput they obtain and
the price charged. Thus, they are involved in a non-cooperative
game against each other. We convert the problem into a fluid
model and show that under a pricing scheme, which we call the
cost price mechanism, the total system throughput is maximized,
i.e., the system suffers no loss of efficiency due to selfish
dynamics. We also study the case where the Internet Service
Provider (ISP) could charge prices greater than that of the cost
price mechanism. We show that even in this case multihoming
outperforms unihoming, both in terms of throughput as well as
profit to the ISP.

I. I NTRODUCTION

The IEEE 802.11x protocol is currently the standard for
wireless LANs (WLANs), with no fundamental difference be-
tween the different flavors. It has been deployed ubiquitously
in airports, coffee shops and homes. Very often there is a
choice of access points (APs) to which a mobile user could
connect to. Users scan the wireless channel in order to find the
AP which shows the highest signal strength and associate to
it. They then transmit at different rates (often called the PHY
rate) based on the signal strength indicated. The algorithm
that selects the PHY rate chooses a higher rate if the signal
strength is good and progressively cuts down the rate as signal
strength decays. The rationale behind such rate selection is
that the lower data rates use more redundant encoding and
also keeps the transmit power level bounded. But this also
means that for a frame transmission of the same size, some
users occupy the channel longer than others. It has also been
observed [1] that all the connections in a single cell receive
the same throughput, leading to inefficient use of the channel.
In such a scenario, the question arises as to whether it might
be better for a user to split his or her traffic among the visible
APs.

Suppose we have a geographical region divided into cells
as shown in Figure 1. Each cell would have an access point.
Transmissions in each cell would be independent of other
cells by using separate channels. For example 802.11 b and
g have three independent channels and we may use them

to tessellate a region into independent cells as shown in
Figure 1. Another possible scenario is when the same region
has multiple independent access points, perhaps provided by
competing service providers. In either case, users might have
the option of connecting to one of several access points based
on where they are located. For instance, in Figure 1, users
in region A might be able to associate to cellsP,Q and
S, whereas users in regionB, might have no choice but to
associate to cellS.
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Fig. 1. Division of a geographical region into non-interfering cells using three
independent channels, indicated by shading. Users could bein a position to
connect to access points in one or more cells.

Users could connect to all the APs available to them,
which would provide diversity from the fact that different
cells may be loaded differently. They could then divide their
traffic among the different APs in order to maximize their
individual throughput. Such traffic splitting in the Internet
among different Internet Service Providers (ISPs) is called
multihoming[2] and we follow the same terminology for the
WLAN case. We call the case where users can associate to
only a single AP asunihoming. Of course, in our case all the
APs might be owned by the same ISP. We assume that users
are aware of the throughput that they would obtain if they
joined one of the APs (they would have to run an estimation
tool using a test sequence of packets or the AP could provide
the current system state). This would tell them the potential
benefit if they sent traffic to that AP. The AP itself might



charge a price for sending packets through it. So the payoff
that the user obtains would be the difference of the two. We
also assume that users do not have the freedom to choose
frame sizes or PHY rates as they wish – they are decided by
the operating system.

Users are selfish and would like to maximize their payoffs.
Thus, they compete with each other in a non-cooperative game.

Related Work

There has recently been much interest in understanding
the behavior of wireless LANs. Since they make use the
distributed coordination function (DCF) with an RTS-CTS
handshake, they cannot directly be modelled in the same
manner as traditional ethernet systems. One intriguing question
has been that of why users using different PHY rates all
obtain the same throughput. This question was studied using
a simulation and experiments in [1], and the inefficiency
of the equilibria was studied in [3]. Bianchi [4] used fixed
point analysis in order to provide an analytical framework
for 802.11 WLANs. The results were extended in [5], to
provide expressions for the throughput of users with disparate
frame sizes and PHY rates. Our work relies heavily on the
expressions obtained in the above. The analytical work has
been further extended in [6] and a simulation based verification
provided.

Another area that has received attention is that of how users
should associate to APs in a WLAN. In [7] a study is made
on fairness issues and how the load should be balanced using
fractional association in a cooperative scenario. Usually, users
have no particular incentive to cooperate with each other and
would be interested in maximizing their individual payoffs.
In [8], the case of non-cooperative users who decide on the
optimal frame size and PHY rate to be used in order to
maximize their individual throughputs is studied. The users are
all assumed to be in a single cell and compete for throughput
within that cell. Another paper on non-cooperative association
is [9], which provides a simulation study of the benefit of
associating to the AP that would provide the best estimated
link rate. Some results on cooperative association of usersto
different APs are provided in [10].

Multihoming is a recent idea that has been proposed to make
use of path diversity in the Internet. The idea is that since
different ISPs use different policy based routing mechanisms,
it is very possible that a user would get a higher bandwidth
by subscribing to multiple ISPs simultaneously and splitting
traffic among them. Another concept which achieves the same
at a finer resolution is that of source routing, wherein the user
chooses the routes by himself, rather than choosing ISPs. A
comparative study of overlay source routing and multihoming
is carried out in [2]. One question which crops up when
multihoming is allowed is that of how users ought to split up
their traffic among the different ISPs. A dynamic programming
algorithm based on how much different ISPs charge is studied
in [11], where it is assumed that the ISPs have sufficient
capacity to handle the traffic at an acceptable throughput for
the users. Analytical work on the stability of a system using

multiple routes is present in [12], [13]. The first studies a
multi-path TCP version, which would split traffic among the
different routes, as a feedback system with delays and finds
the required gain for stability. The second studies a general
class of decentralized algorithms that would optimally split
traffic.

Selfish routing and mutihoming bring issues of system
efficiency with them. A completely centralized scheme could,
in theory, optimize the system throughput. However, this kind
of control is usually not feasible. By providing a choice for
the users, one increases the anarchy of the system. Then the
question immediately arises as to how much efficiency loss
occurs due to this anarchy and whether it can be bounded.
Analytical studies of this sort are available in [14], [15]
and provide bounds on the worst case efficiency. In [16]
measurement traces on the Internet are used to study the effects
of selfish routing.

In most studies of traffic using selfish routing, one would
like to think of users, not as integral values, but as real num-
bers. The reason for this is usually because the number of users
is large (for example, in modelling highways or backbone
Internet fibers). A concept that has been applied successfully
to obtain quantitative results is that of the Wardrop equilibrium
[17]. An comprehensive study of traffic models using the
concept of infinitesimal users is present in [18].

Internet pricing is a topic of considerable interest today.
Clearly, any scheme however efficient cannot be implemented
unless it is worthwhile for the ISPs to do so. One example
of differentiated pricing to provide different perceived QoS is
Paris Metro Pricing (PMP) [19], which is also studied in [20].
Some examples of literature that deals with pricing strategies
and competition on the Internet are [21]–[23].

Our study builds upon and extends the above work. We
study multihoming in an entirely new arena – that of WLANs
– with its own array of attendant issues. Particular to 802.11
is the fact that the throughput of the system is not fixed, but
depends on the distribution of user types. Another interesting
fact is that (assuming that frame sizes are fixed), the through-
put of all the users, regardless of their PHY rates is the same.
Our contributions are detailed in the following subsection.

Main Results

We consider the expressions for the many users regime
obtained in [5], and use it to construct a fluid model of
user masses which can multihome to different APs. We allow
users to use mixed strategies, i.e., they choose alternatives
probabilistically. The deterministic equivalent of this situation
is that user masses would split among the alternatives, with
the mass being proportional to the probability of choosing
that particular option. Thus, the ratio in which the masses
are divided amongst the different APs gives the probabilities
of associating with them. For example, if 3 units of a class
of users are associated to one AP and 1 unit to another
AP, it would mean that the strategy that the class of users
play is [34

1
4 ]. This provides a framework in which selfish

movement of user masses can be studied deterministically. We



thus transform the problem to that of apopulation game, which
is designed for the study of such non-cooperative systems.

In the WLAN scenario, intuitively it seems clear that since
different users send at different PHY rates, their “occupancy”
of the channel is different. We formalize the idea of occupancy,
and propose a pricing mechanism in which users are charged
based on their channel occupancy. We call this “cost price
charging”. The difference of the throughput and the price
charged gives the payoff to the users. We study the game
under the assumption that at a given time users would try to
take that action which is most profitable. Descriptions of two
such dynamics exist in game theoretical literature – replicator
dynamics [24] and Brown-von Neumann-Nash dynamics [25].
Using the theory of Lyapunov functions and potential games
[26], we show that the system is asymptotically stable, i.e., the
division of masses among the APs would converge for both
types of dynamics. We show that the payoffs at equilibrium in
each cell in use by a particular class of users are all equal. The
solution so obtained would be a Wardrop equilibrium [17].

We next turn to characterizing the nature of the equilibrium.
We would like to know how much efficiency loss is suffered
due to decentralized, selfish multihoming. This would tell us
the price of anarchy for the 802.11 WLAN system. We show
that there is no loss of efficiency due to selfish multihoming,
i.e., anarchy is obtained at no cost. This is interesting since
it essentially says that multihoming in WLANs is ideal for
decentralized control. Charging users the cost price of their
occupancy causes them to split their masses optimally.

Finally, we deal with the economics of multihoming –
whether or not it makes sense economically for an ISP to
permit multihoming in its APs. We show that when an ISP
charges differentiated prices above the cost price charge in
the different APs, multihoming achieves at least the same
profit as unihoming. So the ISP suffers no loss by allowing
its customers to multihome. We further show that even in the
case of differentiated pricing, the throughput of the system as
a whole is at least that of unihoming, thus building a strong
case for multihomed IEEE 802.11 wireless LANs.

Organization of the Paper

The paper is organized as follows. In Section II we discuss
the game theoretic concepts used. We then discuss the required
background on 802.11 WLANs in Section III. The section
presents the expressions derived in [5] that are relevant tothis
work. In Section IV, we specify the model of the WLAN
with multiple classes of users and present its fluid equivalent.
We then proceed in Section V, to study the dynamics of the
system in a noncooperative scenario. The idea here is to show
that the system is stable using Lyapunov techniques. We next
study the efficiency of such an equilibrium in Section VI and
show that the Wardrop equilibrium is efficient. We study the
economic impact of multihoming in Section VII. We show
in Section VIII that allowing users to mutihome does not hurt
profits and in Section IX that even under differentiated pricing,
multihoming outperforms unihoming in terms of throughput.

We briefly discuss price selection in Section X and conclude
with pointers to extensions in Section XI.

II. BASIC IDEAS ON POPULATION GAMES

We first introduce the game theoretic concepts that are
used in this paper. A good reference on game theory is [27],
and much of the discussion below may be found in [26].
A population gameF , with Q non-atomic populations of
players is defined by a mass and a strategy set for each
population and a payoff function for each strategy. By a non-
atomic population, we mean that the contribution of each
member of the population is infinitesimal. We denote the set of
populations byQ = {1, ..., Q}, whereQ ≥ 1. The population
q has masŝdq. The set of strategies for populationq is denoted
Sq = {1, ..., Sq}. These strategies can be thought of as the
actions that members ofq could possibly take. A particular
strategy distribution is the way the populationq partitions itself
into the different actions available, i.e., a strategy distribution
for q is vector of the formyq = {y1

q , y2
q , ...y

Sq
q }, where

∑Sq

i=1 yi
q = d̂q. The set of strategy distributions of a population

q ∈ Q, is denoted byYq = {yq ∈ R
Sq

+ :
∑Sq

i=1 yi
q = d̂q}. We

denote the vector of strategy distributions being used by the
entire population byy = {y1, y2, ..., yQ}, whereyi ∈ Yi. The
vectory can be thought of as the state of the system. Let the
space of all strategy distributions beY.

The marginal payoff function (per unit mass) obtained from
strategyi ∈ Sq by users of classq, when the state of the
system isy is denoted byF i

q(y) ∈ R and is assumed to
be continuous and differentiable. Note that the payoffs to a
strategy in populationq can depend on the strategy distribution
within populationq itself. The total payoff to users of class
q is then given by

∑Sq

i=1 F i
q(y)yi

q, where we assume linearity
for exposition. Players may be cooperative or non-cooperative
in behavior.

A commonly used concept in non-cooperative games is
that of the Nash equilibrium. A particular statey is a Nash
equilibrium if no unilateral deviation can allow the deviator to
strictly gain. Whereas the Nash equilibrium is the right concept
for the case of atomic players, in the context of infinitesimal
players, a more appropriate idea is the Wardrop equilibrium
[17]. Consider any strategy distributionyq = [y1

q , ..., y
Sq
q ].

There would be some elements which are non-zero and others
which are zero. We call the strategies corresponding to the
non-zero elements as thestrategies used by populationq.

Definition 1 A state ŷ is a Wardrop equilibrium if for any
populationq ∈ Q, all strategies being used by the members of
q yield the same marginal payoff to each member ofq, whereas
the marginal payoff that would be obtained by members ofq
is lower for all strategies not used by populationq.

Let Ŝq ⊂ Sq be the set of all strategies used by population
q in a strategy distribution̂y. A Wardrop equilibriumŷ is then
characterized by the following relation:

F s
q (ŷ) ≥ F s′

q (ŷ) ∀s ∈ Ŝq ands′ ∈ Sq



One question which is important in identifying such
Wardrop equilibria is that of the population dynamics that
would lead to Wardrop equilibria. If a each populationq
follows some dynamics, then would the stationary points be
Wardrop equilibria? We present a result from [26], which is
useful in this regard. We first need the following definition:

Definition 2 The dynamicṡy = V(y) are said to bepositively
correlated(PC) if

Q
∑

k=1

Sk
∑

i=1

F i
k(y)V i

k (y) > 0 wheneverV (y) 6= 0

Then the result states thatif V(y) satisfies PC, all Wardrop
equilibria of F are the stationary points oḟy = V(y).

Potential gamesare a means of understanding the way
a population of players behave. The theory behind them is
very similar to the theory of Lyapunov functions in control
systems. The idea is to identify a scalar function which is
used to represent the potential of the system. Users would try
to maximize their payoffs at each time instant, thus raising
the potential of the system. Using such a function it may be
possible to show that a system of players, each following his
or her own selfish dynamics, actually converges to a Wardrop
equilibrium.

Definition 3 We call F a potential game if∃ a C1 function
T : Y → R such that ∂T

∂yi
q
(y) = F i

q(y) for all y ∈ Y, i ∈ Sq

andq ∈ Q.

The definition says that the rate of change of potential with
mass of a population is the payoff obtained per unit mass by
that population at a particular state. We then immediately have
that if F is a potential game andV(y) is PC, then the potential
functionT is a Lyapunov function for the systeṁy = V(y).
This means that all the stationary points ofẏ = V(y) would
be asymptotically stable, i.e., the system state would converge
to either a Wardrop equilibrium or a boundary point of the set
Y.

We introduce two expressions, commonly used to model
population dynamics. The first of these is calledReplicator
Dynamics[24]. The rate of increase oḟys

q/ys
q of the strategy

s is a measure of its evolutionary success. Following the
basic tenet of Darwinism, we may express this success as the
difference in fitnessF s

q (y) of the strategys and the average

fitness
∑Sq

i=1 yi
qF

i
q(y)/d̂q of the populationq. Then we obtain

ẏs
q

ys
q

= fitness ofs - average fitness.

Then the dynamics used to describe changes in the mass of
populationq playing strategys is given by

ẏs
q = ys

q



F s
q (y) −

1

d̂q

Sq
∑

i=1

yi
qF

i
q(y)



 . (1)

The above expression thus says that a population would
increase the mass of a successful strategy and decrease the

mass of a less successful one. It is called the replicator
equation after the tenet “like begets like”.

Another commonly used model is calledBrown-von
Neumann-Nash (BNN)dynamics [25], which is somewhat
more complex. Let,

γs
q = max







F s
q −

1

d̂q

Sq
∑

i=1

yi
qF

i
q(y), 0







(2)

denote the excess payoff to strategys relative to the average
payoff in its population. Then BNN dynamics are described
by

ẏs
q = d̂qγ

s
q − ys

q

Sq
∑

j=1

γs
j . (3)

An interpretation of the BNN dynamics is that during any
short time interval, all players in a population are equally
likely to switch strategies, and do so at a rate proportional
to the sum of the excess payoffs in the population. Those
who switch choose strategies with above average payoffs,
choosing each with probability proportional to the strategy’s
excess payoff. The reason for considering BNN dynamics is
that unlike replicator dynamics, it has the property of non-
complacency in that it allows extinct strategies to resurface,
so that its stationary points are always Wardrop equilibria[26].

III. B ACKGROUND ON IEEE 802.11 WLANS

We provide the relevant background on expressions relating
to the throughput of an IEEE 802.11 cell.

The single cell

We begin by recalling uplink throughput expressions for a
single cell obtained in [5], [8]. We use this throughput as a
measure of the payoff derived from associating to a particular
AP. The expressions are for the MAC layer. Let there ben
active users in asingle cell IEEE 802.11 WLAN contending
to transmit data. Each user uses the Distributed Coordination
Function (DCF) protocol with an RTS/CTS frame exchange
before any data-ack frame exchange and has an equal prob-
ability of the channel being allocated to it. It is assumed
that every user has infinitely many packets backlogged in its
transmission buffer. In other words, the transmission buffer of
each user issaturatedin the sense that there are always packets
to transmit when a user gets a chance to do so. It is also
assumed that all the users use the sameback-offparameters.
Let β denote the long run average attempt rate per user per slot
(0 ≤ β ≤ 1) in back-off time1 (Conditions for the existence of
a unique suchβ are given in [6].) We assume thedecoupling
approximationmade by Bianchi in [4] which says that from
the point of view of the given user, the attempts by the other

1If we plot transmission attempts as a function of ”real” time, and thencut
out from the plot the channel activity periods (during which allusers freeze
their back-off), then the new horizontal axis is called the ”back-off time”, see
Section II.A of [5].



users in successive slots are i.i.d. binomial random variables
with parameter(n − 1)β.

Call the cell s. Let the MAC frame size of useri be Li

bits and let the PHY rate used by this user be denoted byCs
i

bits per slot. LetTo be defined as the transmission overhead
in slots related to a frame transmission, which comprises of
the SIFS/DIFS, etc and letTc be defined as the fixed overhead
for an RTS collision in slots. Then it follows from [5] that the
throughput of useri is given by

θ(i, n) =

βe−nβLi

1 + nβe−nβ

(

To − Tc + 1
n

∑n
i=1

Li

Cs
i

)

+ (1 − e−nβ) Tc

,

where β = β(n) (i.e. β is a function ofn) is obtained as
the solution of a fixed point equation that does not depend on
Li’s or Cs

i ’s. As is the case in IEEE 802.11, for all users that
use an RTS/CTS frame exchange before the data-ack frame
transmission, we assume throughout our discussion that

To ≥ Tc

To find the limit asn → ∞, we identify here the asymptotic
aggregate throughput asn → ∞ An appealing feature of the
asymptotic case is that we have anexplicit expression forβ.

Asymptotic throughput

Let p be the exponential back-off multiplier, i.e. ifbk is
the mean back-off duration (in slots) at thekth attempt for
a frame thenbk = pkb0. According to the IEEE 802.11
specificationsp = 2. Each user uses one of theQ distinct
available values of the parameters (Li, C

s
i ) with (Li, C

s
i ) ∈

{(L1, C
s
1), ..., (LQ, Cs

Q)}. We derive the corresponding as-
ymptotic throughput. Assume that there aremq users using
parameters(Lq, C

s
q ). Denote byαq(n) = mq/n the fraction

of the users using(Lq, C
s
q ) among all users in the cell. Then

the throughput of all users using(Lq, C
s
q ) is given by

τ(αq(n)) = (4)

mqβe−nβLq

1 + nβe−nβ

(

To − Tc +
∑Q

i=1
αi(n)Li

Cs
i

)

+ (1 − e−nβ) Tc

It is assumed thatαq(n) converges to a limitαq. Note that
the attempt rateβ = β(n) and the collision probability are
not functions ofLi nor of Cs

i . As in [5], taking the limit as
k → ∞ andn → ∞, it can be observed that

lim
n→∞

nβ(n) ↑ ln

(

p

p − 1

)

, (5)

where β(n) is obtained as the solution of a fixed point
equation corresponding ton users (see Theorem VII.2 in [5]).
Combining (4) and (5) we get asn → ∞ the following
expression for the aggregate throughput of all users using
(Lq, C

s
q ):

τ(αi) =
αiLq

κ +
∑Q

j=1
αjLj

Cs
j

, (6)

where

κ =
p + Tc

(p − 1) ln
(

p
p−1

) + To − Tc (7)

IV. SYSTEM MODEL

Let there beS independent APs, which use different chan-
nels and so do not interfere with each other. We define a class
q of users as the set of all users that have access to the same
APs and common values of[Lq, C

1
q , C2

q , ..., C
Sq
q ]. HereSq is

the number of APs available to users of classq, Lq is the frame
size, andCi

q is the PHY rate that a user of classq would have
if it connected to theith AP. The class is used to model the
fact that users in the same geographical location would face
a similar set of circumstances. For instance, in Figure 1 users
in region A would belong to a different class than users in
region B. Let Q be the number of such classes. Thus, all
users in a classq would have an identical set of options open
to them. Let the users be capable of multihoming. Then their
strategies consist of probability vectors of associating to each
AP available to them.

Fluid Model

We wish to study the effects of the movement of masses of
individuals of each class on their individual payoffs in a deter-
ministic fashion. In order to do this we would like to consider
users as infinitesimally divisible, i.e., consider a fluid model.
Since all the expressions are in terms of integral quantities, we
scale the system by lettingn → ∞. We then have a model,
wherein users can distribute their masses amongst the different
available APs. As before, a particular strategy distribution is
the way the population partitions itself among the different
APs available. As mentioned in the introduction, the ratio in
which the masses are divided amongst the different APs gives
the probabilities of associating with them. Thus, we convert
a probability model with integral players, into a deterministic
fluid model.

Let there bedq users of classq. Of these, assume a fraction
xs

q is connected to APs. The total number of users connected
to AP s is then given by

ns =

Q
∑

q=1

dqx
s
q.

We define

αs
q ,

dqx
s
q

ns
=

dqx
s
q

∑Q
i=1 dixs

i

,

which is understood to be zero if the denominator is zero.
We wish to take the limit asns becomes large simultaneously
for all s as a common parametern goes to infinity. We thus
consider the following scaling:

dq = nd̂q.

n can be interpreted as the sum of all demand, i.e.,n =
∑Q

q=1 dq. As n → ∞, the we get from (6) that the throughput



received by the total mass of users of classq connected to AP
s is

τs
q (xs) =

Lq d̂qxs
qPQ

i=1
d̂ix

s
i

κ +
∑Q

j=1

�
d̂jxs

j
Lj

C
q
j

�PQ
i=1

d̂ixi

(8)

The termd̂qx
s
q gives the mass of users of classq in the cell

s. For ease of notation, we defineys
q , d̂qx

s
q. Thus, the total

mass of users of classq is just
∑Sq

i=1 yi
q = d̂q. Also define

ws
q , Ls

Cs
q
. Under this notation, the throughputper unit mass

is given by

T s
q (ys) ,

Lq

κ
∑Q

j=1 ys
j +

∑Q
j=1 ys

jw
s
j

. (9)

In the above expression,Lq is the frame size in bits for users
of type q. The denominator is the total time in seconds that
the user has to spend in the system in order to successfully
transmit theseLq bits. The ratio thus yields the throughput in
bits per second.

Costs and Payoffs

We now consider the costs and payoffs in the system, which
will all be measured in units of throughput. The total system
throughput is given by

T (y) ,

S
∑

k=1

Q
∑

i=1

τk
i (y) =

S
∑

k=1

Q
∑

i=1

yk
i T k

i (y). (10)

We consider this total to be the cost borne by the ISP. We
assume that the ISP would like to maximize the system
throughput, but would like to recover the cost, i.e., it is
individually rational. Now, all the users in a cell should not
be charged the same amount even if their throughput happens
to be the same. The reason for this discriminatory pricing
is for the following reason. Given a time interval (even if
the throughput is identical), there are some users taking only
a small time share and others who take a large time share.
The time share that a user occupies depends on the PHY rate
and the frame size that he or she uses – clearly, one has to
charge more for those who occupy a larger time share. This
“occupancy factor” per unit mass is given by

δs
q(y) ,

κ + ws
q

κ
∑Q

j=1 ys
j +

∑Q
j=1 ys

jw
s
j

. (11)

The occupancy of all users of a classq in cell s is δs
q(y)ys

q . It
gives the ratio of time occupied by users of classq to the total
amount of time used by all users. Thus, a lower occupancy
means that a class is being more efficient. Hence classes which
have a greater value of occupancy ought to be charged more
than those with a lower one. Since we measure payoffs in
throughput units, we need to convert occupancy to throughput.
In terms of throughput, the cost of supporting users of classq
in cell s, in terms of the effect on throughput is the occupancy
times the total throughput of all users in the cell. Thus, from

the ISP’s perspective, the cost of a unit mass of users of class
q is

Cs
q (y) , δs

q(y)

Q
∑

i=1

τs
i (y) (12)

In effect, the cost is proportionally fair – the more you occupy
the more you must pay.

Now, a user would like to get as many frames of data in
the time that he or she spends in the system. Clearly, users
would like to maximize their individual throughputs for the
price paid so the population would split up in such a way that
this selfish objective is achieved. The payoff function per unit
mass for users of classq in cell s is

F s
q (y) , T s

q (y) − Cs
q (y). (13)

The above expression tells a user the value of associating to
a particular AP. The vectory is the strategy profile of all
the users, which may also be considered as the state of the
system. The strategy of users of a particular classq is the
vector [y1

q , y2
q , ..., y

Sq
q ]. Users would vary their strategies with

time based on the state of the system in a manner that would
give them the maximum payoff.

We illustrate the fact that the price being charged is actually
the “cost-price”. By this we mean that the total revenue
obtained in a cell is identical to the total throughput in thecell
(revenue is measured in the units of throughput). Consider the
total revenue generated in a cell, obtained from (12), whichis
given by

Q
∑

i=1

Cs
i (y)ys

i =

Q
∑

i=1



δs
q(y)

Q
∑

j=1

τs
j (y)ys

i





=

Q
∑

j=1

τs
j (y)

Q
∑

i=1

δs
q(y)ys

i

=

Q
∑

j=1

τs
j (y)

Q
∑

i=1

(κ + ws
q)y

s
i

κ
∑Q

j=1 ys
j +

∑Q
j=1 ys

jw
s
j

=

Q
∑

j=1

τs
j (y),

which is the total throughput in the cell. We have used the
definition of occupancy (11) in the above derivation. Since
the revenue is the same as the throughput in the cell, we have
assumed that service is provided to just try and break even.
The objective is to maximize the total system throughput.

It is clear that there is an inherent tussle between the users
who are interested only in their individual payoffs and the
global objective of trying to maximize efficiency of the system.
The price of allowing users to multihome is the cost that is
borne by the system. We will study this problem in detail in
the next two sections.

V. THE NON-COOPERATIVEMULTIHOMING PROBLEM

As mentioned in the previous section, users behave selfishly
with each user trying to maximize his or her individual payoff



by multihoming. Thus we have a system where populations
partition themselves among the different actions available to
them. Hence the scenario fits into the paradigm of population
games withQ populations of users. We denote the non-
cooperative gameF . We would like to know how this system
of competing users evolves in time. Would it converge to
any particular state? In order to answer this question, we
need to assume something about the dynamics of the users.
As explained in section II, we model user behavior using
dynamics of replicator or BNN type. We first show that the
dynamics are PC, which would mean that the stationary points
are either Wardrop equilibria or boundary values of the setY.
We then identify a potential function using which we show
that the gameF is a potential game.

System Dynamics

As described earlier, there are two standard expressions,
which can be used to model the system dynamics. We will
show below that both of them are positively correlated. We
also show that a combination of the two is PC.

First consider replicator dynamics, repeated here for conve-
nience.

ẏs
q = V(y) = ys

q



F s
q (y) −

1

d̂q

Sq
∑

i=1

yi
qF

i
q(y)



 . (14)

Theorem 1:The system with replicator dynamics is posi-
tively correlated.

Proof:

Q
∑

k=1

Sk
∑

i=1

F i
k(y)V i

k (y) =

Q
∑

k=1

Sk
∑

i=1

F i
k(y)

∂yi
k

∂t

From (14), we have

=

Q
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Sk
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F i
k(y)yi

k



F i
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1

d̂k

Sk
∑
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yj
kF j

k (y)





=

Q
∑
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d̂k





Sk
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k

d̂k

(

F i
k(y)

)2
−

(

Sk
∑
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k

d̂k

F i
k(y)

)2




Now, since
∑Sk

j=1
y

j

k

d̂k

= 1, by Jensen’s inequality we have
that the term in parentheses above is non-negative. Thus the
summation is also non-negative, and the proof follows.

We now move on to the more complex BNN dynamics. We
repeat the dynamics here for convenience.

γs
q = max







F s
q −

1

d̂q

Sq
∑

i=1

yi
qF

i
q(y), 0







(15)

and

ẏs
q = d̂qγ

s
q − ys

q

Sq
∑

j=1

γs
q . (16)

Theorem 2:The system with BNN dynamics is positively
correlated.

Proof: Define F̄q , 1

d̂q

∑nq

i=1 yi
qF

i
q(y). Then we have
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)

=

Q
∑

k=1

d̂k

(

Sk
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(

γi
k

)2

)

> 0.

Hence the proof.
So far we considered a class to be population of users with

the same set of available APs and values of frame size and
PHY rates. We may include the dynamics being followed by
a class of users to be part of the class, i.e., a classq is now
defined as the population of users with the same available
APs, values of frame size and PHY rates and which follow
the same dynamics. This only means that the number of classes
Q has now increased. Now, it is straightforward to prove the
following corollary.

Corollary The system is PC as long as each class follows
either replicator or BNN dynamics.

Proof: The proof is simple. We have

∂T (y(t))

∂t
=

Q
∑

k=1

Sk
∑

i=1

∂T (y(t))

∂yi
k

∂yi
k

∂t

Define

ζk(y) ,

Sk
∑

i=1

∂T (y(t))

∂yi
k

∂yi
k

∂t
.

Then from the proofs of Theorem’s 1 and 2, we immediately
haveζk(y) ≥ 0 for all k ∈ {1, ...Q}, from which the proof
follows.

We have thus shown that under two standard models of
selfish dynamics (or a combination thereof), the system is
positively correlated. We now find a potential function to
show that the system state (i.e., the user strategies) actually
converges to the stationary points of the dynamics.

Potential Function

We find a potential function , which can be used to convert
the population game to the potential game framework. We
show below that the total system throughput is a potential
function for the game.



Theorem 3:The function

T (y) =

S
∑

k=1

Q
∑

i=1

yk
i T k

i (y). (17)

whereyj
i = 0 if AP j is not available to useri is a potential

function for the gameF .
Proof: We have
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j wk
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= T s
q (y) − δs

q(y)

Q
∑

i=1

τs
i (y)

= F s
q (y),

which means thatT (y) satisfies the definition of a potential
function.
The potential function is non-negative, and the strategy space
Y is a compact set. However, it is not a concave function.
Hence, the potential function could have non-unique maxima.

We illustrate the fact that non-uniqueness of Wardrop equi-
libria are reflected in non-unique maxima of the potential
function in the following example.

Example

Consider the simple case where there is only one class of
users. From (13), we have that the payoff to a unit mass
of users isT s

q (y) − T s
q (y) = 0 in all cells s. This means

that all strategy vectorsy yield equal payoffs, i.e., any state
is a Wardrop equilibrium. The potential function is merely
∑Sq

k=1
Lq

κ+wk
q

regardless ofy. Thus, in this case the potential
function is maximum for all states of the system, which is
consistent with the above.

Thus, we have shown in this section that the system state
converges to the stationary points of the dynamics.

VI. T HE PRICE OFANARCHY

Consider the dynamics of the previous section. We would
like to know what the stationary points of the system are
and what it means for the system throughput. Essentially we
would like to know what effect selfish multihoming has on
the efficiency of the system. In most work on selfish routing
(such as [14], [15]), it is found that the Wardrop equilibrium
is inefficient, i.e., system performance suffers in some way
because of users being allowed to take selfish decisions. This
inefficiency is referred to asthe price of anarchy. We show
below that with multihoming, the system is efficient.

For both the replicator (14) as well as the BNN dynamics
(16) , we have thaṫys

q = 0, implies that either

F s
q (ŷ) =

1

d̂q

Sq
∑

i=1

ŷi
qF

i
q(ŷ)

or

ŷs
q = 0, (18)

where we usêy to denote a stationary point. The above
relations mean that users of classq would get identical payoffs
in all APs that they use at equilibrium. The potential payoffin
all the APs not in use would be lower than this value. Thus,
by definition the stationary points are Wardrop equilibria and
there is no incentive to deviate.

Now, consider the stationary point again. We defineF̂q ,
1

d̂q

∑Sq

i=1 ŷi
qF

i
q(ŷ). Then the stationary point conditions look

like Khun-Tucker first order conditions of an optimization
problem. Let us identify the Lagrange dual function associated
with the above expressions. It is seen that the minimization
problem

min
λ

max
y





S
∑

k=1

Q
∑

i=1

yk
i T k

i (y) −

Q
∑

i=1

λi





Si
∑

j=1

yj
i − d̂i







 , (19)

yields (18) as the Khun-Tucker first order conditions withF̂i =
λi ∀i ∈ {1, 2, ..., Q} We then have the following theorem:

Theorem 4:The equilibrium of the non-cooperative game
F is identical to the solution of the constrained optimization
problem

max
y

(

S
∑

k=1

Q
∑

i=1

yk
i T k

i (y)

)

(20)

subject to the constraints

Si
∑

j=1

yj
i = d̂i ∀i ∈ {1, 2, ..., Q} (21)

andyj
i = 0 if AP j is not available to users of classi.

Proof: From the above discussion we have that the non-
cooperative gameF converges to the solution of the Lagrange
dual problem (19). Call the solution obtained asT (ŷ). Also,
call the solution to the primal problem (20) asT (y⋆). Now,
the expression in (20) is not concave and there could exist
multiple maxima. There could also be a duality gap between
the primal and dual problem, i.e.,T (ŷ) ≥ T (y⋆). But it is
physically impossible for the system to converge to a state
whose throughput is greater than the maximum possible, i.e.,
T (ŷ) = T (y⋆)
As mentioned earlier, the set of stationary points containsthe
set of Wardrop equilibria and in the case of BNN dynamics,
they are the same. In the case of replicator dynamics, the
system state might either converge to a Wardrop equilibrium
or get stuck at a boundary point.

The result which we have just seen has interesting con-
sequences. We have just shown that multihoming users with



dissimilar selfish dynamics being charged the cost price of
their occupancy actuallyoptimize the system throughput. In
the language of the above literature, the result states thatthe
price of anarchy using the pricing mechanism suggested is
zero – anarchy is free!

The fundamental difference between our model and the
work on selfish routing is that of multihoming – the fact
that users do not need to choose a single AP, but cansplit
traffic. The result that multihoming is efficient is somewhat
reminiscent of a result in [12], which states that the stability
region of the Internet is increased by allowing multi-path
routing with traffic splitting at source using a suitable TCP
version. In effect we say that “a little choice (selfish routing)
may be bad but a lot of choice (multihoming) is good”. It
would be interesting to see if multihoming would perform
efficiently on the Internet as a whole.

Simulation

We perform a simple experiment using Simulink to verify
that selfish multihoming does indeed maximize the system
throughput. In our simulation we assume that users use repli-
cator dynamics. Consider the scenario where there are two
classes of users. Both users have the same two APs available
to them. Their values of frame size are identical and equal
to unity. However, the values ofκ + L/C are different –
class 1 users have parameters[2, 1.5], while class 2 users
have parameters[1, 5] in the two APs. Under this scenario
the throughput is maximized if all users of class1 use AP1
, while all users of class2 use AP2. The throughput would
then be0.5 in AP 1 and 0.2 in AP 2. We illustrate that the
throughputs do indeed converge to these values in Figures 2–3.
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Fig. 2. Illustrating the convergence of the throughput of users of class1.

VII. E CONOMICS OFMULTIHOMING

We have assumed so far that the ISP is a disinterested player
and that the sole objective is to maximize the throughput of
the system. However, this need not be the case in reality. We
now consider a market model under which an ISP can charge
more than the cost price for subscription. We make assumption
that the potential mass of users in each classq is a fixed value
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Fig. 3. Illustrating the convergence of the throughput of users of class2.

denoted byd̂q. Clearly, even if prices were fixed, in practice
one would expect a variation of user masses over the course
of a day as they move around. However, we can think of this
as the average that we can expect. The actual mass of users
in the system would depend on the prices charged. Let the
subscription price per unit mass charged in APs to all users
be denoted byP s. In addition to the subscription price, we
assume that users are also charged the cost price of traffic
described in the previous sections. We re-iterate that all prices
are in units of throughput. The vectorP , [P 1, P 2, ..., PS ]
would determine

• the total mass of users in the system, and
• the way this mass gets partitioned between the different

APs by multihoming.

To determine the total mass of users of each class, we need
to make some assumptions about user demand. We assume that
each classq is associated with a threshold valueΛq. Users of
classq would connect to an APs if P s ≤ Λq. Once users
connect to an AP, the throughput they obtain is determined by
(9). The payoff per unit mass is then

F s
q (y) , T s

q (y) − Cs
q (y) − P s. (22)

The ISP would like to maximize the profit regardless of the
actual throughput of the system. The profit that the ISP makes
is the difference between the total revenue and the cost (which
we have assumed is equal to the actual throughput). Hence,
the profit function of the ISP is merely

ρmulti(P) ,

S
∑

j=1

P j

Q
∑

i=1

yj
i , (23)

whereyj
i = 0 if users of classi do not connect to APj.

The pricing scheme is somewhat similar to Paris Metro
Pricing (PMP) [19]. In PMP a network is partitioned into
several logically separate classes, with each having a fixed
fraction of the entire network. The fractions handle traffic
using the same protocols and give no formal QoS guarantee
to users. However, users in each fraction are charged different



prices. The idea is that the higher priced fraction would be less
loaded, thus leading to a higher perceived QoS. Like PMP, all
users in a cell are given no QoS guarantee. If multiple APs
are present in the same cell (perhaps owned by different ISPs),
one could have “upper class” and “lower class” APs, which
could charge different prices. However unlike PMP, our pricing
scheme charges based on occupancy as well.

We showed in the previous section that multihoming along
with a simple pricing mechanism maximizes the system
throughput. We would like to know here whether the idea is
economically feasible. If an ISP sets a price vectorP for the
APs in a region, would multihoming

• reduce or increase profit?
• always increase system throughput?

We now compare the profits obtained by the ISP and the
throughput with and without multihoming and thus answer
the question “What is the economic price of multihoming?”.

VIII. E FFECT ONPROFIT

To answer the question regarding ISP profit, we have to
compare the profit when mutihoming is an option and when
it is not. So we need to know what users would do in the
absence of multihoming. We make the assumption that users
would connect only to (available) APs that display the lowest
price. We denote this lowest price available to users of class
i by Pmin(i). Then we have that the mass of users of classi
connecting to APk, under a given pricing vectorP is such
that yk

i = 0 if P k 6= Pmin(i). Under our assumption that
the class as a whole follows the same dynamics, they would
actually pick one of the APs displaying the lowest price. Thus
the profit function under unihoming is

ρuni(P) ,

Q
∑

i=1

Pmin(i)d̂i, (24)

whered̂i = 0 if Pmin(i) > Λi.
We are now ready to compare the two. We have the

following theorem:
Theorem 5:For the same price vectorP, ρmulti(P) ≥

ρuni(P)
Proof: The proof is straightforward once we realize that

under a given price vector, the total user mass in the system
is the same. Thus, we have

ρmulti(P) =

S
∑

j=1

P j

Q
∑

i=1

yj
i

≥
S
∑

j=1

Q
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i=1

Pmin(i) yj
i

=

Q
∑

i=1

Pmin(i)

S
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j=1

yj
i

=

Q
∑

i=1

Pmin(i)d̂i

= ρuni(P)

and we are done.
The result essentially says that there is no reason why an ISP
should not allow users to multihome to its different APs. Any
profit achievable when it allows unihoming can be met or
exceeded by allowing multihoming.

IX. EFFECT ONTHROUGHPUT

We now turn to the question of what effect multihoming has
on the throughput of a system given a price vectorP. From the
discussion of this paper so far, we would expect the throughput
to be higher and here we show that this is indeed the case.
We again have a game among the users. We would like to
know what the equilibrium of the system would look like. As
in the previous sections we identify a potential function for
the system so as to convert it into a potential game.

Theorem 6:The function

Tmulti(y) =
S
∑

k=1

Q
∑

i=1

yk
i

(

T k
i (y) − P k

)

. (25)

where yj
i = 0 if either AP j is not available to useri or

P j > Λi is a potential function for the gameF .
Proof: The proof is identical to that of Theorem 3 and

is omitted.
As before we assume that when multihoming is an option,

the population behavior is described by replicator dynamics,
BNN dynamics or a combination of both. This would ensure
that the stationary point of the system would be a Wardrop
equilibrium (or a boundary value). Then we have the following
theorem:

Theorem 7:The equilibrium of the non-cooperative game
F is the solution of the constrained optimization problem

max
y

(

S
∑

k=1

Q
∑
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yk
i

(

T k
i (y) − P k
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)

(26)

subject to the constraints

Si
∑

j=1

yj
i = d̂i ∀i ∈ {1, 2, ..., Q} (27)

and yj
i = 0 if AP j is not available to users of classi or

P j > Λi.
Proof: Again, the proof is identical to Theorem 4.

We now assume that the users are not allowed to multihome.
As mentioned earlier, they choose one of the APs displaying
the lowest price. Let the AP that users of classq select beχq.
Then the equivalent ofTmulti is given as

Tuni ,

S
∑

k=1

Q
∑

i=1

yk
i

(

T k
i (y) − P k

)

, (28)

where as usual,

yk
i =

{

d̂i if k = χi

0 otherwise

ClearlyTmulti ≥ Tuni. We then have the following theorem
on the throughputs in the two cases.



Theorem 8:Given a price vectorP, the system throughput
when multihoming is permitted is at least that of when it is
not.

Proof: Denote the equilibrium state when multihoming
by ŷ and the state when unihoming byy⋆. We haveTmulti ≥
Tuni

⇒
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i (y⋆),

since from Theorem 5 we haveρmulti(P) ≥ ρuni(P) (and
they are non-negative). Hence the proof.
Thus multihoming would do at least as well as unihoming in
terms of throughput as well.

X. OPTIMIZING THE PROFIT

We have just seen that given any price vector, multihoming
allows an ISP to increase both profit and efficiency. But how
would this price vector be chosen? It is straightforward to
show that the profit is always bounded as the user masses
split within the compact set

∑Sq

j=1 yj
q ≤ d̂q. We show what

the profit might look like for the simple case of a scalar price
in Figure 4.
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Fig. 4. Illustrating the fact that the total profit is bounded.

The vectorP for which the profit is maximum need not
be unique. Among all the maximizingP vectors, the ISP
could choose the one that ensures the highest throughput of
the system. Thus, economically there is a strong case for ISPs
to allow multihoming to their APs.

XI. CONCLUSION

In this paper we have sought to make a convincing case
for ISPs to allow multihoming in IEEE 802.11 WLANs. We
constructed a fluid model of user populations in a WLAN
and understood how their throughputs varied with movement
of user masses. We showed that users charged by a simple
mechanism, using selfish dynamics would actually maximize
the system throughput when allowed the option of multihom-
ing. We thus established that under the multihoming scenario,
anarchy comes at zero price. We also studied the economics of
multihoming as seen by the ISP and showed that the is no loss
of profit or throughput when users are allowed to multihome.

In the future we would like to study the interaction of
different ISPs, who might each a different wireless LAN in
the same region. Their interaction with each other and its
effects on user throughputs would be of interest. We would
also like to understand if results similar to what we have
shown in WLANs applies to the Internet as a whole, i.e., can
multihoming achieve efficiency on the Internet?
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