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Abstract

I. INTRODUCTION

It is needless to mention the plenitude of research literature available today on Mobile Ad Hoc

Networks (MANETs). Diverse issues about MANETs like medium access scheduling, routing protocols,

transmission power control and performance analysis have been the focus of research in the past few

years. In this paper, we study the optimal next hop distance that maximizes the end-to-end flow throughput

in a mobile multi-hop wireless network environment subject to a network average power constraint. In

our investigation we assume a spatially dense spreadout of nodes and we incorporate channel gain due

to path-loss caused by the mobility of nodes. We consider a periphery limited mobility scenario in

which nodes are restricted to move in their own local, approximately circular periphery and follow the

random waypoint mobility model within this circle. For the calculation of the average throughput with

path-loss, this kind of a mobility model leads us to compute the probability density function (PDF) of

random distance between two nodes moving inside their local circular periphery. Computation of this PDF

constitutes a problem in Geometric Probability Theory and to the best of our knowledge the derivation

of PDF of random distance between two circles has never been investigated before. This is thus the first

main contribution of this paper. The second main contribution of this paper is that, with reference to the

vast literature available on MANETs, ours is the first attempt to derive a throughput maximizing optimal

hop distance in a dense ad hoc network environment with mobility.

II. NETWORK AND MOBILITY MODEL

Consider a multi-hop wireless network with a dense collection of mobile nodes. A contention based

distributed channel access mechanism is employed by nodes to be able to schedule packet transmissions.
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Fig. 1. Periphery limited mobility model

d

Fig. 2. Consecutive relay nodes donot overlap

The CSMA/CA based distributed coordination function (DCF) is such a mechanism that is commonly

used in IEEE 802.11 technology. Assume that for control signalling (such as RTS/CTS in IEEE 802.11),

nodes do not employ power control and hence use constant power. We assume a ”single cell” situation in

which control packets are heard by all nodes constituting the network and only one transmitter-receiver

pair can successfully transmit in any given time slot. It is further assumed that, during control signalling,

channel gain estimation at the transmitter side is possible and each transmitter can select the power level

for transmission of its data packets.

We assume a periphery limited mobility scenario in which the movement of each node is restricted

to an approximate circular periphery around itself. Inside their confined area, the movement of nodes

is in accordance with the famous random waypoint model. Figure 1 shows such a scenario. We could

approximate the periphery by a square or any other shape but a circle is a more natural choice. For the

sake of clarity, the magnified box shows only non-overlapping periphery nodes, but actually there are also

neighbouring nodes with overlapping peripheries, present, as shown in the left box. We further impose

that peripheries of consecutive relay nodes that form a route donot overlap (Figure 2). This kind of a

mobility model can be readily applied to various situations. For example, an urban intra-city MANET

formed by mobile nodes (people) restricted to move inside the buildings. A similar MANET formed

across different rooms of a building by mobile nodes restricted to move in their rooms. Soldiers in a

battlefield moving inside their own troops, a group of sensor robots moving in a mine field or nuclear

establishments restricted to their confined areas, etc are other examples. With such a mobility model, our

goal is to obtain an optimal hop distance d between the periphery centers of two relay nodes (Figure 2)

that maximizes an end-to-end flow throughput measure.
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Since a transmitter can estimate the channel gain to its intended receiver during control signalling (e.g.,

RTS/CTS), channel state information can be used by the transmitter to apply power control during each

transmission oppurtunity. In our model, we assume that power control is applied in order to compensate

for the channel gain due to varying path-loss caused by mobility of nodes. If the channel gain due to

path-loss observed by a transmitter is denoted by h and P (h) denotes the corresponding power control

applied, the achieved transmission rate by Shannon’s formula is then given by

C(h) = Wlog2

(
1 +

P (h)hα

σ2

)

where, W is the RF bandwidth, σ2 is AWGN power and α is a constant depending on the far field reference

distance d0. (MENTION ABOUT d0 and feasible hop distance and Node saturation assumption.)

III. BACKGROUND AND PROBLEM OBJECTIVES

With multi-hop communication between a source and destination taking place in such a scenario, there

is an inherent tradeoff between employing shortest path (in terms of number of hops) routing with high

transmission power and many small hops with low transmission power. Shortest path routing with high

transmission power can account for minuscule end-to-end packet delays but at the same time can easily

result in frequent link failures and fast depletion of battery energy. Instead, use of small hops with low

transmission power can overcome the disadvantages of the former case, but on the other side, floods the

network with relatively much higher number of packets. These arguments clearly illustrate the need for

an optimal power control policy combined with an optimal hop distance choice. Such an optimization

problem for fixed multi-hop networks has been studied by the authors in [1] in which they obtain optimal

power control and hop distance that maximizes an end-to-end flow throughput measure in bit-metres/sec.

In this paper we use a slightly modified version of the results obtained for fixed networks in [1]. Our

network model is similar to the model used in [1] augmented by our mobility model described before in

Section II. For the sake of clarity we briefly re-visit the derivation of results in [1] to deduce a slightly

modified version for our use. In the rest of the paper, when we say that the distance between two nodes

is d, we always actually mean that the distance between the centers of the periphery circles of the two

nodes is d.

A. Objective function with end-to-end flow throughput

Consider a source and a destination that are distance D apart (actually whose periphery circle centers

are distance D apart, as mentioned in the previous paragraph) and engage intermediate relay nodes for
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multi-hop communicaton. By the dense node spreadout assumption, we can always find a multihop path

between a source and destination such that the periphery centers of the relay nodes lie on the straight

line connecting them. We assume that for optimal performance, the distances between consecutive relay

nodes are all equal to d metres. Let Θ(d) denote the aggregate throughput of all source-destination pairs

in the network. We consider the fixed transmission time case [1] along with channel gain due to variable

path loss caused by mobility of nodes. By fixed transmission time it is meant that, upon winning channel

access, a node is allowed to transmit only for a fixed amount of time T irrespective of the channel

condition. If power control is applied during a transmission oppurtunity then the node will be able to

transmit only L(h) := C(h)T amounts of data. Moreover, the data transmission rate in the network

would be given by (see [2], [3])

Θ(d) =
ps

∫
h L(h) gH (h) dh

piTi + pcTc + ps

(
To + ptr

L(h)
C(h)

)
where, pi is the probability that the contention period goes idle, ps is the probability that there is a

successful transmission, pc is the probability that there is a collision, Ti is the average idle time, To

and Tc are fixed overheads associated with a successful transmission and a collision, respectively, and

(1− ptr) corresponds to the fraction of T seconds long transmission oppurtunities that were left idle due

to bad channel condition.

If we suppose that all source-destination pairs are distance D apart then there are approximately D
d hops

for a pair and the end-to-end aggregate flow throughput for the whole network is given by Θ(d)
D

d

= Θ(d)
D d.

However for each flow that is beamed across distance D, the end-to-end flow throughput is given by
Θ(d)

D

d

× D = Θ(d) d in bit-metres/sec. The objective function that is to be maximized can therefore be

defined as φ(P (h), d) Δ= Θ(d) d. Power control P (h) is applied to indemnify the effects of randomly

varying path-loss due to the random distance seperation between consecutive relay nodes. Hence P (h)

depends only on this random distance that we denote by l and not on the distance between the periphery

centers d. Maximizing φ(P (h), d) can therefore be isolated into first maximizing over P (h) and then

maximizing over d. Consequently we seek to solve the following problem

max
d

max
P (h):E[P (h)]≤P̄

φ(P (h), d)

or

max
d

max
P (h):E[P (h)]≤P̄

ps

(∫
h L(h) gH(h) dh

)
d

piTi + pcTc + ps (To + ptrT )
(1)

Consider the ’Channel Left Idle when Bad’ case [1] when the channel is left idle for T seconds if the

power P (h) allocated by the transmitter is 0 for any channel state h or equivalently the case of p tr = 1
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for P (h) = 0. Then we see that the denominator of the objective function φ(P (h), d) in Equation 1 does

not depend on P (h) and d. Thus maximizing φ(P (h), d) over P (h) reduces to maximizing∫
d · L(h) · gH(h) dh =

W T d

ln2

∫
ln

(
1 +

P (h)hα

σ2

)
gH(h) dh

over P (h), subject to an average network power constraint given by
∫

P (h)gH (h) dh ≤ P̄ . This is

however a well known optimization problem that has a water-pouring form solution given by

P (h) =
(

W T d

λ ln2
− σ2

hα

)+

where λ is obtained from
∫

P (h)gH(h) dh = P̄ . For computing λ, in the following section we determine

the path-loss distribution gH(h) that incorporates the effect of path-loss h due to nodes moving randomly

according to our mobility model described previously.

IV. OBTAINING THE PATH-LOSS DISTRIBUTION

In the network model described before in Section II, we assume a spatially dense spreadout of nodes

with the periphery of nodes overlapping with each other. However, according to the feasibility of hop

distance assumption d ≥ do, the circular peripheries of consecutive relay nodes, constituting a route in

a multihop connection, donot overlap. For simplicity, let the radius of circular periphery of all nodes be

same and equal to a meters. Consider two circles C1 and C2 of radius a centered at (0, 0) and (d, 0)

with two consecutive relay nodes moving according to the random waypoint model, one in each one of

them. Packets are beamed between this transmitter-receiver pair after the transmitter wins a transmission

oppurtunity at the end of a contention attempt. At the next transmission oppurtunity, either only the

transmitter or only the receiver or both or none would have moved to another randomly chosen point(s)

in the circle(s). We assume that nodes have relatively large pause times as compared to the average

time interval between two consecutive transmission oppurtunities of a node pair. We also assume that

the period of movement (time interval between initial position and final position) is small as compared

to the pause times. Then, the path-loss between a transmitter and receiver will be random owing to the

random distance seperation phenomenon between the two nodes. In the following part of this section we

first compute fL(l) the PDF of random distance between two circles and then later compute the path-loss

distribution gH(h) from fL(l).

A. PDF of random distance between two circles

Let the distance between two randomly chosen points p1 and p2 in each of the two circles C1 and

C2 shown in Figure ?? be denoted by l. Then the probability density for this random distance l can be
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Fig. 3. Random distance between circular periphery of two consecutive relay nodes

computed as

fL(l) =

∫
C1

d�p1

∫
C2

δ(|�p1 − �p2| − l) d�p2∫
C1

d�p1

∫
C2

d�p2

where δ(·) is Dirac’s delta function. For a fixed l, the term
∫
C2

δ(|�p1 −�p2|− l) d�p2 in the numerator of

the equation above, represents the length of an arc of the circumference of a circle of radius l centered at

�p1, that lies inside C2. Referring to the geometry shown in Figure 3, if k is the distance from the center

of the circle of radius l, centered at p1 = (rcosφ, rsinφ), to the line joining points of its intersection with

C2, then the length of the arc inside C2 is given by 2 l α, where α = arccos
(

k
l

)
. Using polar coordinates

and d�p1 = r dr dφ, the numerator can thus be written as 2 l
∫
C1

arccos
(

k
l

)
r dr dφ. The denominator is

simply the product of the areas of C1 and C2 given by π2a4. For computing k we proceed as follows.

Consider the two circles centered at (rcosφ, rsinφ) and (d, 0) with radii l and a, respectively. Denote

the difference between their x coordinates as e = d − rcosφ, difference between their y coordinates as

f = 0− rsinφ and distance between their centers by p =
√

e2 + f2. Now in �ABC, the cosine formula

for triangles gives a2 = l2 + p2 − 2 l p cos α. But we also have cos α = k
l and this gives the distance

between center of first circle and line joining points of their intersection as

k =
p2 + l2 − a2

2p

Note that l can vary as d− 2a ≤ l ≤ d + 2a. Now, from previous discussion, the distribution fL(l) can
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be written as

fL(l) =
2 l

π2a4

∫ ∫
C1

o

r arccos

[
d2 + r2 − 2 d r cosφ + l2 − a2

2l
√

d2 + r2 − 2 d r cosφ

]
dr dφ (2)

where C1
o is a sub-region of the circle C1 given by cosφ ≥ d2+r2−(l+a)2

2dr for d − 2a ≤ l < d and

cosφ ≤ d2+r2−(l−a)2

2dr for d < l ≤ d + 2a. The sub-regions are derived using the bounds l − a ≤ p and

l + a ≥ p for the two circles to intersect. We have not been able to integrate fL(l) to obtain a closed

form expression and hence we will pursue a numerical analysis in Section V.

B. Path-loss distribution as transformation of fL(l)

The path-loss h for a transmission distance l is given by h = 1
lη . Since l is randomly changing due

to mobility of nodes, the transmissions encounter random path-loss. For mathematical convenience let h

be defined as h =
(

d
l

)η
, then the path-loss distribution gH(h) can be computed as

gH(h) = fL

(
d

h
1
η

) ∣∣∣∣∣ −d

η · h1+ 1
η

∣∣∣∣∣
From Equation 2, gH(h) is thus given by

gH(h) =
2

π2a4

d

h
1
η

∫ ∫
C1

o

r arccos

⎡
⎣d2 + r2 − 2 d r cosφ + d2

h
2
η
− a2

2 d

h
1
η

√
d2 + r2 − 2 d r cosφ

⎤
⎦ dr dφ

where C1
o is the region cosφ ≥ d2+r2−

(
d

h1/η +a
)2

2dr for 1 < h ≤
(

d
d−2a

)η
and cosφ ≤ d2+r2−

(
d

h1/η −a
)2

2dr

for
(

d
d+2a

)η ≤ h < 1.

V. OPTIMAL HOP DISTANCE BY NUMERICAL ANALYSIS

Having obtained the path-loss distribution in the previous section, we now obtain the optimal hop

distance d with the help of numerical analysis since we have not been able to symbolically integrate

gH(h) and obtain a closed form expression.

A. Graphs obtained from numerical analysis

VI. CONCLUSION
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