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The use of game theoretical techniques has been quite successful in describing routing
in networks, both in road traffic applications as well as in telecommunication networks
applications. We study in this paper a third area of applications of such games, which
is load balancing in distributed computer systems. One of the most important ques-
tions that arise in all applications of routing games is the existence and uniqueness of
equilibrium. Whereas the existence of Nash equilibrium is known for general models of
networks under weak assumptions, uniqueness results are only known for very special
applications, i.e., either for very special cost functions or for very special topologies. We
establish in this paper the uniqueness of an equilibrium for routing games with topolo-
gies that model well distributed computer systems, under quite general assumptions on
the costs.
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1. Introduction

Game theoretic tools have been quite successful in the study of problems in

which several users have to ship some objects in a network between sources and

destinations. Two central application areas of such models are road traffic [see

e.g., Dafermos (1972), Dafermos and Sparrow (1969), Haurie and Marcott (1985),

Patriksson (1994), Wardrop (1952) and references therein] and telecommunication

networks [see e.g., Altman et al. (2002), Altman, Başar and Srikant (1999), La

and Anantharam (1997), Korilis, Lazar and Orda (1997), Orda, Rom and Shimkin

(1993) and references therein]. A third quite new emerging area of application of

routing games is distributed computing [Kameda et al. (2000), Kameda, Altman

and Pourtallier (2000), Kameda and Pourtallier, Kameda et al. (1996), Kameda,

Kozawa and Li (1997), Kameda and Zhang (1995), Kim and Kameda (1990), Li and
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Kameda (1998), Zhang, Kameda and Shimizu (1992)]. There are several different

ways to model the decision making in non-cooperative routing. In the case that the

number of decision makers is very large, and the influence of each decision maker on

the performance of others is negligible, the optimality concept that has been used

is known as the Wardrop equilibrium [Wardrop (1952)] (it is also called individual

optimization, and some people call it user optimization). In contrast, if the number

of decision makers is finite (and decisions of one player have nonnegligible influence

on the performance of other players), the optimality concept that has been used is

that of Nash-equilibrium (it is also called class optimization, and some people call

it user optimization).

A fundamental question in the study of optimality solution concepts is whether

they exist, and if they do, whether they are unique. In the setting of Wardrop equi-

librium, it is well-known under fairly general conditions and for general topologies

(suitable for the study of all the applications mentioned above), the equilibrium

exists and is unique in the sense of global link flows [see e.g., Patriksson (1994) and

references therein, as well as Altman and Kameda (2001) and Kameda and Zhang

(1995)]. In the setting of Nash equilibrium too, the existence of a Nash equilibrium

is known under general conditions. However, the equilibrium may not be unique

(even in the sense of global link flows), as was shown in a simple counterexample

in Orda, Rom and Shimkin (1993). Uniqueness of the Nash equilibrium has been

established for either special cost functions [Altman et al. (2002)], or for very re-

strictive topologies [Orda, Rom and Shimkin (1993)] (the special case of parallel

links), or under other particular assumptions [Altman and Kameda (2001) and

Orda, Rom and Shimkin (1993).] [We note that the classical approach of Rosen

(1965) is only rarely useful in routing games; indeed, even for the simple case of a

network that consists of only two parallel links, it only works for very light traffic,

see Orda, Rom and Shimkin (1993).] Due to these restrictions, we do not have a

general theory that can apply to different application areas. In this paper we shall

investigate routing games in several topologies that model distributed computing.

We shall establish uniqueness of the Nash equilibrium under general assumptions

on the costs.

2. The Model and Assumptions

We consider a model consisting of K nodes (hosts) and a communication means

that connects the nodes. Nodes are numbered i = 1, . . . ,K. Each node consists of

a single server with service rate µi (i = 1, . . . ,K). Let there be K sets of classes:

Ki(i = 1, . . . ,K) where Ki contains Ki (i = 1, . . . ,K) classes of users. The set Ki
corresponds to the users that send flow originally to node i. Each of these users

can decide to route part of his flow to node j, j 6= i through a communication line.

We consider the problem of uniqueness of the equilibrium in which each one of the

classes minimizes its own average delay. Denote K =
⋃K
i=1 Ki.
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We introduce the following notation:

φ(i,r) the input arrival rate of class (i, r).

x
(i,r)
ii the flow originating at node i by class (i, r) that is processed at node i.

x
(i,r)
ij the flow originating at node i by class (i, r) that is processed at node j.

x the set of all flows: x = (x
(i,r)
ij , i = 1, . . . ,K, j = 1, . . . ,K, (i, r) ∈ K).

βi the total load on node i, i.e., βi =
∑K
j=1

∑
(j,r)∈Kj x

(j,r)
ji .

λij the total flow forwarded from node i to node j: λij =
∑

(i,r)∈Ki x
(i,r)
ij .

λ the total network flow, i.e., λ =
∑K
i=1

∑
j 6=i λij .

We have
∑K
j=1 x

(i,r)
ij = φ(i,r), x

(i,r)
ij ≥ 0. We denote the x’s that satisfy the

constraints by C. In Kameda et al. (2000), for example, the expected processing

(including queueing) time of a job that is processed at node i, was taken to be

1/(µi − βi) for βi < µi (otherwise it is infinite).

As to the communication means, we consider two alternatives.

(A) The one is a single-channel communication line that is used commonly in

forwarding and sending back of jobs that arrive at both nodes.

(B) The other consists of two-way communication lines between each two links.

One two-way line ij is used for forwarding of a job that arrives at node i and

is forwarded to node j (and for sending back the processed result of the job).

We define L to be the set of system elements; in case (A), L contains the set of

nodes as well as the communication bus LA = {1, . . . ,K, c} (where c stands for the

communication bus). In case (B), L contains the set of nodes as well as the set of

unidirectional links LB = {1, . . . ,K, (ij), i, j = 1, . . . ,K, j 6= i}.
Associated with each system element l ∈ L and each class (i, r), there is a cost

J
(i,r)
l (x).

Let J(i,r)(x) denote the cost of class (i, r). A typical cost often considered in

the literature is the mean response time, or mean delay. More precisely, we refer

to the length of time between the instant when a job arrives at a node and the

µ µ
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Fig. 1. The system model, case (A) (left) and case (B) (right) for two nodes and two classes.
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instant when a job leaves the node, where it has arrived, after all processing and

communication, if any, are over as the response time for a job arriving at the node.

The mean response time for class (i, r) is then given by averaging the response

time over all the jobs of that class. We make the following assumptions on the cost,

which ensure the existence of an equilibrium.

G1 J(i,r) is the sum of the local processing cost and the communication cost for

class (i, r) where the latter are only functions of their local flow rate, i.e., in

case (A) we have

J(i,r)(x) =
K∑
i=1

J
(i,r)
i (x) + J(i,r)

c (x)

and for case (B) we have for (i, r) ∈ Ki

J(i,r)(x) =
K∑
j=1

J
(i,r)
j (x) +

∑
j 6=i

J
(i,r)
ij (x

(i,r)
ij ) .

G2 J
(i,r)
l are continuous functions whose range is the nonnegative quadrant and

their image is [0,∞].

G3 J
(i,r)
l are convex functions in the rate sent by class (i, r) over the system element

l. For example, if l is the processor i and (i, r) ∈ Ki then J
(i,r)
i is assumed to

be convex in x
(i,r)
ii .

G4 Whenever finite, J
(i,r)
l is continuously differentiable in the flow sent by user

(i, r) to system element l. We denote K
(i,r)
l (x) the partial derivative of J

(i,r)
l (x)

with respect to the flow sent by user (i, r) to system element l.

G5 If not all classes have finite cost and one of the classes has infinite cost then it

can change its own flow to make this cost finite.

G5 ensures that any equilibrium has finite costs for all players.

Lemma 2.1. Under conditions G1–G5 there exists an equilibrium.

Proof. The proof follows from Theorem 1 in Rosen (1965) [see also Orda, Rom

and Shimkin (1993)].

We introduce the following further assumptions on the cost that will be used to

establish uniqueness.

(Π1) K
(i,r)
l is a function of two arguments: (i) the total flow on the system element

l, and (ii) the flow that class (i, r) sends to node element l. K
(i,r)
l is strictly

increasing in each of its two arguments.
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3. Uniqueness for Case (A)

For a fixed assignment of the other class, class (i, r) is faced with a constrained

minimization problem. Its associated Lagrangian is given by

Λ(i,r)(x) = J(i,r)(x)− α(i,r)

 K∑
j=1

x
(i,r)
ij − φ(i,r)

 .

x∗ is thus an equilibrium if and only if it satisfies the Kuhn–Tucker conditions [see

Shapiro (1979), pp. 158–165]: There exist some real numbers α(i,r), (i, r) ∈ K such

that for (i, r) ∈ Ki, i = 1, 2:

K
(i,r)
i (x∗)≥α(i,r) and K

(i,r)
i (x∗)=α(i,r) if x

(i,r)
ii >0 ,

K
(i,r)
c (x∗)+K

(i,r)
j (x∗) ≥ α(i,r) and K

(i,r)
c (x∗)+K

(i,r)
j (x∗)=α(i,r) if x

(i,r)
ij >0 ;

x
(i,r)
ii , x

(i,r)
ij ≥0 ,

K∑
j=1

x
(i,r)
ij =φ(i,r) . (1)

We shall consider in this section only the case of two nodes and a single bidi-

rectional communicating link between them. (We allow for several classes to arrive

at each one of the two nodes.)

Theorem 3.1. The node optimization has a unique solution under assumption

(Π1).

Proof. Let x̂ and x be two equilibria such that

λ̂ ≥ λ . (2)

Let i be such that β̂i ≥ βi. We shall show that for all (j, r) ∈ Kj ,

x̂
(j,r)
jj ≥ x(j,r)

jj , or equivalently, x̂
(j,r)
ji ≤ x(j,r)

ji (3)

(the equivalence follows from the constraint Eq. (1) on the sum of the flows.)

Equation (3) holds trivially if x
(j,r)
jj = 0, so we have to check only the case x

(j,r)
jj > 0.

To do so, fix some (j, r) ∈ Kj and consider the following two subcases. Assume that

(a) α̂(j,r) ≥ α(j,r). Note that β̂i ≥ βi is equivalent to β̂j ≤ βj (the equivalence

follows from the constraint Eq. (1)). Hence

K
(j,r)
j (x̂

(j,r)
jj , β̂j) ≥ α̂(j,r) ≥ α(j,r) = K

(j,r)
j (x

(j,r)
jj , βj) ≥ K(j,r)

j (x
(j,r)
jj , β̂j) . (4)

The equality as well as the second inequality follow from the Kuhn–Tucker con-

ditions, whereas the last inequality follows from the monotonicity assumption

(Π1). Using again the monotonicity assumption (Π1), this time for the first

argument, we conclude from the fact K
(j,r)
j (x̂

(j,r)
jj , β̂j) ≥ K

(j,r)
j (x

(j,r)
jj , β̂j) that

Eq. (3) holds.
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Thus we try instead of (a):

(b) α̂(j,r) ≤ α(j,r). Equation (3) holds trivially if x̂
(j,r)
ji = 0, since in this case

x̂
(j,r)
jj = φ(j,r) ≥ x(j,r)

jj . So it remains to check the case x̂
(j,r)
ji > 0. We then have

for (j, r) ∈ Kj

K(j,r)
c (x

(j,r)
ji , λ) +K

(j,r)
i (x

(j,r)
ji , βi)

≥ α(j,r) ≥ α̂(j,r) = K(j,r)
c (x̂

(j,r)
ji , λ̂) +K

(j,r)
i (x̂

(j,r)
ji , β̂i)

≥ K(j,r)
c (x̂

(j,r)
ji , λ) +K

(j,r)
i (x̂

(j,r)
ji , βi) .

Here, the first inequality and the equality follow from the Kuhn–Tucker con-

ditions, whereas the last inequality follows from the monotonicity of K
(j,r)
l

(property (Π1)). Using again the monotonicity, we conclude that Eq. (3) holds

in case (B) as well.

We conclude that ∑
(j,r)∈Kj

x̂
(j,r)
ji ≤

∑
(j,r)∈Kj

x
(j,r)
ji . (5)

Combining this with β̂i ≥ βi, we conclude that∑
(i,r)∈Ki

x̂
(i,r)
ii ≥

∑
(i,r)∈Ki

x
(i,r)
ii .

But since for (i, r) ∈ Ki, x̂(i,r)
ii + x̂

(i,r)
ij = φ(i,r), it follows that∑

(i,r)∈Ki

x̂
(i,r)
ij ≤

∑
(i,r)∈Ki

x
(i,r)
ij . (6)

Combining this with Eq. (5) we conclude that λ̂ ≤ λ. This contradicts our

assumption Eq. (2), unless we have equality in Eq. (2).

This implies in particular that Eq. (3) holds (as we derived above). Now, if for

some (j, r) ∈ Kj Eq. (3) holds with strict inequality then Eqs. (5) and (6) would

hold with strict inequality, which would imply that λ̂ < λ. But since we established

that Eq. (2) holds with equality, we conclude that Eq. (3) holds with equality. By a

symmetric argument (the one in the paragraph below Eq. (6)) we establish Eq. (3)

also for (i, r) ∈ Ki. We conclude that x = x̂.

An interesting property that can be obtained from the above proof is that not

only the Nash equilibrium is unique, but also:

Lemma 3.1. There are unique Lagrange multipliers for the node optimization

under assumption (Π1).

Proof. Assume that there are two sets of Lagrange multipliers, α and α̂ corre-

sponding to the Nash equilibria x and x̂ (where x = x̂ due to the uniqueness).

Assume that there are some r, j for which α̂(j,r) > α(j,r), (j, r) ∈ Kj . It follows
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that Eq. (4) holds with the first inequality being a strict one. Since K
(j,r)
j is strictly

monotone in both arguments, it follows from Eq. (4) that x̂
(j,r)
jj > x

(j,r)
jj . This

contradicts, however, the uniqueness of the Nash equilibrium.

4. Uniqueness of the Node Optimum for Case (B)

We allow in this section for arbitrary numbers of nodes and classes.

We impose the following restriction on the model:

(Π2) A class (i, r) ∈ Ki that decides to ship some flow to a node j 6= i should do

it using a single hop (a single communication link); it is not possible for it to

use two hops (i to k and then k to j), if there is a link that connect nodes i

and j directly.

Remark 4.1. Assumption (Π2) is frequently used in load balancing in distributed

computer systems. See Kameda et al. (1996).

The proof is done by transforming our problem into the following equivalent

routing problem for which the uniqueness is known.

Consider a network G consisting of two nodes: a and b, and of K parallel directed

links, all from node a to node b. There are K classes of flows Ki, i = 1, . . . ,K, all

having node a as the source and node b as the destination. The total rate of class

(i, r) is φ(i,r).

Let x
(i,r)
l be the rate at which class (i, r) sends over link l (l = 1, 2, . . . ,K). These

quantities satisfy the constraints x
(i,r)
l ≥ 0, l = 1, . . . ,K and

∑
i x

(i,r)
i = φ(i,r).

Class (i, r) determines (x
(i,r)
1 , . . . , x

(i,r)
K ) so as to minimize its cost J̄(i,r)(x̄), where

x̄ = (x
(i,r)
l , l ∈ L, (i, r) ∈ K). Define xl =

∑
(i,r)∈K x

(i,r)
l .

We assume that J̄(i,r) is the sum of the link cost functions:

J̄(i,r)(x̄) =
∑
l

J̄
(i,r)
l (x̄) ,

where J̄
(i,r)
p (x̄) are expressed in terms of the costs (J

(i,r)
l ) defined in Sec. 2 as

follows. For any i and any (i, r) ∈ Ki,

J̄
(i,r)
i (x̄) = J

(i,r)
i (x

(i,r)
i , xi) ,

J̄
(i,r)
j (x̄) = J

(i,r)
ij (x

(i,r)
j , xj) + J

(i,r)
j (x

(i,r)
j , xj) for j 6= i .

If the costs for the original load balancing problem satisfy assumption (Π1), it

follows that the costs for the new routing problem also do. The routing problem

has a unique Nash equilibrium under assumption (Π1). See Theorem 1 in Orda,

Rom and Shimkin (1993) (that theorem states some other assumptions which are

not used in its proof). By identifying the decision variables x̄ in the new routing

problem with the decision variables x in the original load balancing problem, we

see that the minimization problems faced by each class is the same in both cases,
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and therefore we conclude that the node optimum in our original problem exists

and is unique.

5. Some Properties of the Node Equilibrium

We use the model, the notation as well as the assumptions G and (Π1) on the cost,

described in Sec. 2. We further assume (Π2) (introduced in the previous section).

Assume further that the costs J
(i,r)
l of the lth system element are given by the

product of the amount of flow that class (i, r) ships through that element and the

average delay Tl in this element. For example, for (i, r) ∈ Ki we have

J
(i,r)
i (x) = x

(i,r)
ii Ti(βi) .

We further assume that for each l, the partial derivative of Tl with respect to the

total flow through that element is strictly positive. In other words, for every node i,

∂Ti(βi)/∂βi > 0 , (7)

with similar expressions for the communication costs.

Theorem 5.1. Consider either case (A) or case (B). Let φ(i,r) > 0 for all classes.

(i) Assume that at equilibrium, all the traffic of some class (i, r) ∈ Ki arriving to

node i is routed away from that node.

Let j be another node to which some positive flow is routed by class (i, r).

Consider now any (j, s) ∈ Kj . If (j, s) sends some positive amount of flow to

node i then it also processes some positive amount of flow at node j.

(ii) Consider the case of two nodes K = 2, and assume that φ(1,r) ≥ φ(2,s), (1, r) ∈
K1, (2, s) ∈ K2. Assume that (2, s) sends at equilibrium some flow to node 1.

Then at equilibrium, class (1, r) sends some strictly positive flow to be processed

in node 1.

Proof. We shall prove for case (B); the proof for case (A) is the same except that

the Kij below should be replaced by Kc.

(i) Using the Kuhn–Tucker conditions for class 1 we have

K
(i,r)
i (x

(i,r)
ii , βi) = Ti(βi) ≥ α(i,r) = K

(i,r)
ij (x

(i,r)
ij , λij) +K

(i,r)
j (x

(i,r)
ij , βj)

= K
(i,r)
ij (x

(i,r)
ij , λij) + x

(i,r)
ij ∂Tj(βj)/∂βj + Tj(βj) . (8)

Combining this with assumption (7) we conclude that

Ti(βi) > Tj(βj) .

Assume that all traffic of source (j, s) is routed away from some source (j, s)

that sends positive flow to node i. By using the Kuhn–Tucker conditions for

class (j, s) we get by the same arguments as above Ti(βi) < Tj(βj), which gives

a contradiction. This establishes the proof.
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(ii) Assume φ(1,r) ≥ φ(2,s), and assume that class (1, r) sends all its traffic to node

2. We have by Eq. (8)

T1(β1) ≥ α(1,r) ≥ K(1,r)
12 (x

(1,r)
12 , λ12) + φ(1,r)∂T2(β2)/∂β2 + T2(β2)

> K
(1,r)
12 (x

(1,r)
12 , λ12) + x

(2,s)
22 ∂T2(β2)/∂β2 + T2(β2)

= K
(1,r)
12 (x

(1,r)
12 , λ12) +K

(2,s)
2 (x

(2,s)
22 , β2) ≥ K(2,s)

2 (x
(2,s)
22 , β2)

≥ α(2,s) ≥ T1(β1) . (9)

The inequality Eq. (9) follows since φ(1,r) ≥ φ(2,s) > x
(2,s)
22 . The inequality

before the last follows by the Kuhn–Tucker conditions. The last inequality

is obtained similarly to Eq. (8) (and using the fact that class (2, s) sends

nonzero flow to node 1). We thus obtained a contradiction, which establishes

the proof.

6. Concluding Remarks

In this paper, we showed the existence and uniqueness of Nash equilibria for routing

games that arise in load balancing in distributed computing. We considered two

scenarios that differ in the architecture of the communications means between the

processors. Our results were obtained for quite general costs, thus extending the

class of networks for which we know that the equilibrium is unique.
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