
A game theoretic approach for delay minimization
in slotted aloha

Eitan Altman1, Dhiman Barman2, Rachid El Azouzi3, Tania Jiménez4

Abstract— This paper studies distributed choice of retrans-
mission probabilities in slotted ALOHA. Both the cooperative
team problem as well as the noncooperative game problem
are considered. In previous work that has focused on the
maximization of throughput, it was shown that in heavy load, this
maximization is obtained at the cost of a huge delay of backlogged
packets. This motivates us to investigate the delay minimization
problem as well as the multicriterion problem of minimizing the
average expected delay (or maximizing the throughput) subject
to constraints on the expected delay of backlogged packets. A
Markov chain analysis is used to obtain optimal and equilibrium
retransmission probabilities and expected delays. analysis.

I. INTRODUCTION

Aloha [2] and slotted Aloha [7] have long been used
as random distributed medium access protocols for radio
channels. They are used in both satellite as well as cellular
telephone networks for the sporadic transfer of data packets. In
these protocols, packets are transmitted sporadically by various
users. If packets are sent simultaneously by more than one user
then they collide. After the end of the transmission of a packet,
the transmitter receives the information if the transmission was
successful. All packets involved in a collision are assumed to
be corrupted and are retransmitted after some random time. We
focus in this paper on the slotted Aloha (which is known to
have a better achievable throughput than the unslotted version,
[3]) in which time is divided into units. At each time unit a
packet may be transmitted, and at the end of the time interval,
the sources get the feedback on whether there was zero, one or
more transmissions (collision) during the time slot. A packet
that arrives at a source is immediately transmitted. Packets that
are involved in a collision are backlogged and are scheduled
for retransmission after a random time.

The determination of the above random time can be conside-
red as a stochastic control problem. The information structure,
however, is not a classical one: sources do not have full
state information as they do not know how many packets are
backlogged. Nor do they know how many packets have been
involved in a collision. We study this control problem in two
different frameworks:
a) as a team problem, i.e. where there is a common goal to
all nodes in the network.
b) as a problem in a noncooperative framework: each node
wishes to maximize its own performance measure. This gives
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rise to a game theoretical formulation.
In a previous paper [1], we have already considered both

these frameworks where the optimization performance ob-
jective was the maximization of throughput. However we
observed that the optimal retransmission probabilities in the
team context in heavy traffic were close to zero, which meant
that during most of the time, either all mobiles or all but one
mobiles were backlogged and remained so during a very long
periods. The expected delay of backlogged packets were very
large. This motivates us to pose the problem of delay minimi-
zation in slotted ALOHA as well as the multicriterion problem
of minimizing the average expected delay (or maximizing the
throughput) subject to constraints on the expected delay of
backlogged packets only.

Previous game formulations of the slotted ALOHA have
been proposed in [4], [5], [6]. In the last two references,
a full information game is considered, in which each user
knows how many backlogged packets there are. Moreover, it
is assumed in [5], [6] that a packet that is to be transmitted
for the first time waits for a random time in the same way as
a backlogged packet. Our goal is to study the slotted Aloha
avoiding these two assumptions; relaxing the assumptions
allows us to model more accurately the original versions of
Aloha, and in particular, relaxing the first assumptions allows
for more distributed implementations of Aloha.

The structure of the paper is as follows. In Section II we
formulate and solve the team problem. This analysis is used
in Section III to numerically study the team solutions. The
multicriterion problem is studied in Section IV, and the game
problem is then introduced and studied in Sections V and VI.

II. MODEL AND PROBLEM FORMULATION

A. Team Problem
We use a Markovian model based on [3, Sec. 4.2.2]. We

assume that there are a finite number of sources without
buffers. The arrival flow of packets to source i follows a
Bernoulli process with parameter qa (i.e. at each time slot,
there is a probability qa of a new arrival at a source, and
all arrivals are independent). As long as there is a packet at
a source (i.e. as long as it is not successfully transmitted)
new packets to that source are blocked and lost. The arrival
processes to different sources are independent. A backlogged
packet at source i is retransmitted with probability qi

r. We
shall restrict in our control and game problems to simple
policies in which qi

r does not change in time. Since sources
are symmetric, we shall further restrict to finding a symmetric
optimal solution, that is retransmission probabilities qi

r that do
not depend on i.

For any choice of values qi
r ∈ (0, 1], we obtain a Markov



chain that contains a single ergodic chain (and possibly tran-
sient states as well). We shall use as the state of the system the
number of backlogged packets at the beginning of a slot, and
denote it frequently with n. Assume that there are n symmetric
backlogged packets using the same value qr as retransmission
probability. Let Qr(i, n) be the probability that i out of the n
backlogged packets retransmit at the slot:

Qr(i, n) = (n
i ) (1 − qr)n−iqi

r (1)

Assume that m is the number of nodes and let Qa(i, n) be
the probability that i unbacklogged nodes transmit packets
in a given slot (i.e. that i arrivals occurred at nodes without
backlogged packets). Then

Qa(i, n) =
(
m−n

i

)
(1 − qa)m−n−iqi

a. (2)

And let Qr(1, 0) = 0 and Qa(1,m) = 0. In case all nodes
use the same value of qr, the transition probabilities of the
Markov chain are given by [3, eq. 4.3]:

Pn,n+i(q) =




Qa(i, n), 2 ≤ i ≤ m − n,

Qa(1, n)[1 − Qr(0, n)], i = 1,

Qa(1, n)Qr(0, n) + Qa(0, n)[1 − Qr(1, n)], i = 0,

Qa(0, n)Qr(1, n), i = −1,

Let us denote by πn(q) the equilibrium probability that the
network is in state n (number of backlogged packets at the
beginning of a slot). Then we have the equilibrium state
equations: 


π(q) = π(q)P (q),

πn(q) ≥ 0, n = 0, ..., m∑m
n=0 πn(q) = 1.

(3)

A solution of (3) can be obtained by computing recursively the
steady state probabilities, as in Problem 4.1 in [3]. The team
problem is therefore given as the solution of the optimization
problem:

min
q

Objective(q) s.t.




π(q) = π(q)P (q),
πn(q) ≥ 0, n = 0, ..., m∑m

n=0 πn(q) = 1.
(4)

When we wish to maximize the throughput, then objective to
minimize is minus the throughput; we considered that in [1]. In
this paper we shall consider two different objectives related to
the expected delay, see Sections II-B-II-C. We shall therefore
exclude qr = 0 and optimize only on the range ε ≤ qr ≤ 1
(see [1]). We choose throughout the paper ε = 10−5. Next we
give the performance measures of interest to optimize, as a
function of the steady state probabilities:
B. Expected delay of transmitted packets (E.D.T.P)

We shall express the expected delay of transmitted packets
of the team problem, as a function of the steady state proba-
bilities. In order to calculate it, first we compute the average
number of backlogged packets which is given by

S(q) =
m∑

n=0

πn(q)n (5)

Second, the system throughput (defined as the sample average
of the number of packets that are successfully transmitted) is
given almost surely by the constant [1]:

thp(q) = qa

m∑
n=0

πn(q)(m − n) = qa(m − S(q))

Last, the expected delay of transmitted packets D, is defined
as the average time, in slots, that a packet takes from its source
to the receiver. Applying Little’s result, this is given by

D(q) = 1 + S(q)/thp(q) (6)

Note that the first term accounts for the first transmission from
the source.
C. Expected delay of backlogged packets (E.D.B.P)

Another relevant quantity in this context is the expected
delay of backlogged packets Dc which is defined as the
average time, in slots, that a backlogged packet takes to go
from the source to receiver. To compute it, we need to calculate
the total throughput of backlogged packets which is defined
as the sample average of the number of new arriving packets
that become backlogged. This is given by

thpc(q) =
m−1∑
n=0

m−n∑
i=1

Pn,n+i(q)iπn(q) (7)

Applying Little’s result, the expected delay of packets that
arrive and become backlogged is given by

Dc(q) = 1 + S(q)/thpc(q) (8)

III. NUMERICAL INVESTIGATION OF THE TEAM PROBLEM
In this section we shall obtain the retransmission proba-

bilities which solve the team problem. We investigate the
dependence of the expected delay of packets that are success-
fully transmitted (i.e., all packets that are not rejected when
arriving at the system) and of packets that upon arrival become
backlogged, on the arrival probabilities qa and on the number
of nodes.
A. Expected Delay of Transmitted packets

We consider the team problem in which the performance to
optimize is the expected delay of packets that are successfully
transmitted (not rejected upon arrival) given by (6) for team
problem. In Figure 1 and 2, the expected delay of transmitted
packets and the optimal retransmission probabilities are plotted
versus the arrival probabilities qa for the team problem.
In Figure 1, we observe that expected delay of transmitted
packets decreases when qa increases after certain value of
qa which depends on number of mobiles, for example, for
m = 2 qa ≈ 0.8. In fact, in heavy traffic or for large number
of mobiles, the optimal retransmission policy is seen to be
ε (see figure 2) : as the system becomes more congested
(larger arrival probability or large number of mobiles ) the
retransmission probability decreases so as to counter increased
expected collisions. Thus, the steady probabilities π are then
close to πm = 1/2, πm−1 = 1/2 and πn = 0, ∀n < m − 1.
Hence the expected delay of transmitted packets is given by:

D = 1 +
m∑

n=0

πnn/

(
qa(m −

m∑
n=0

πnn)

)
≈ 1 +

2m − 1
qa

which depends only on qa and is seen to decrease in qa.
B. Expected Delay of Backlogged packets

Now we consider the team problem in which the per-
formance to optimize is the expected delay of backlogged
packets which given by (8). In Figure 3 and 4, the expected
delay of backlogged packets and the optimal retransmission
probabilities are plotted versus the arrival probabilities qa for
the team problem.
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Fig. 1. Expected delay of packets that are successfully transmitted
for the team case as a function of the arrival probabilities qa for
m = 2, 4, 10, 50.
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Fig. 2. The retransmission probability in the team case as a function
of the arrival probabilities qa for m = 2, 4, 10, 50.
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Fig. 3. Expected delay of backlogged packets for the team case as
a function of the arrival probabilities qa for m = 2, 4, 10, 20, 50.
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Fig. 4. The retransmission probability in the team case as a function
of the arrival probabilities qa for m = 2, 4, 10, 20, 50.

C. Comparison

Now we calculate and compare the performance in team
problem for different scenarios: team problem with E.D.T.P
and team problem with E.D.B.P. In Figure 5, we plot the
throughput at optimal qr for the team problem with E.D.T.P
and E.D.B.P versus the arrival probability qa for m = 10
respectively. As shown in Figure 5, the throughput of the
team problem with E.D.B.P is inefficient for large arrival
probabilities. The retransmission probability remain almost
constant when the arrival probability increases, which explains
the decrease in the system’s throughput. This can be expected
since in the team problem with E.D.B.P objective, we concen-
trate our objective to the delay of backlogged packets only
and not on the average delay. Another interesting observation
that can be made comparing the expected delay of backlogged
packets in E.D.T.P problem and E.D.B.P problem. Figure 6
shows the expected delay of backlogged packets at optimal
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Fig. 5. Throughput at optimal retransmission qr for the team case
for the problem of minimizing E.D.T.P and E.D.B.P, respectively, as
a function of the arrival probabilities qa for m = 10

retransmission qr obtained respectively by E.D.T.P problem
and E.D.B.P problem, as function of the arrival probabilities qa

for m = 10. We observe that minimizing the expected delay of
packets that are successfully transmitted results in a dramatic
increase in the expected delay of backlogged packets when the
arrival probability approaches 1; (recall that we constrained the
retransmission probabilities to be larger than 10−5, otherwise
we may expect the average delay of backlogged packet to
converge to infinity.) This can be expected since in heavy
traffic, the delay of transmitted packets is minimized precisely
at the expense of expected delay of the backlogged packets.
When the number of mobiles increases, we observe that the
expected delay of backlogged packets increases and difference
in performance of E.D.T.P and E.D.B.P is more prominent.
With more mobiles, the increased intensity of new arrivals
of packets which are transmitted at the cost of backlogged
packets leads to even higher delay of backlogged packets.
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Fig. 6. The expected delay of backlogged packets at optimal retrans-
mission qr for the team case with the problems of minimizing E.D.T.P
and E.D.B.P respectively, as a function of the arrival probabilities qa

for m = 10

IV. SEVERAL QOS CRITERIA

As shown in last section, the delay of backlogged packets
become very large in heavy traffic when our objective is to
minimize the average delay of all transmitted packets (or
equivalently, when maximizing the average throughput). Thus
we can distinguish two separate QoS criteria: the total average
delay as well as the delay of backlogged packets only. We
then consider the team problem of minimizing the expected
average delay of transmitted packets subject to a constraint on
the expected delay of backlogged packets. The new problem
that has a new QoS constraint is therefore formulated as

min
q

D(q) s.t. Dc(q) ≤ d (9)

d is some constant. We shall denote by dmax the smallest value
of d that insures that there is a solution to (9) for any value of
qa. (As we shall see, there are indeed values of d for which,



for some qa, there is no solution to (9)).
Note that due to (6), maximizing the throughput is equiva-

lent to minimizing S(q). Hence, we can deduce the fact that
maximizing the throughput is equivalent to minimizing the
expected delay. Therefore the retransmission probabilities that
solve (9) also solve the problem maxq thp(q) s.t. Dc(q) ≤ d.
In Figures 7-8, we plot the expected delay of transmitted
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Fig. 7. Expected delay of packets that are successfully transmitted
for the team case as function of arrival probabilities with/without
delay constraint, m=2, and d=5, dmax=6.7709
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Fig. 8. The expected delay of transmitted packets of transmitted
packets in the team E.D.T.P as function of arrival probabilities
with/without delay constrain for m = 50 and d=180, dmax=220

packets for different values of m (i.e., m = 2, 50) with
and without QoS constraints (9). In all the above figures, we
observe that beyond some value of qa, the expected delay of
transmitted packets without QoS constraint becomes less than
that with QoS constraints. This is indeed expected since we
know that in absence of the constraint, minimizing the average
delay is possible by inducing very large delays of backlogged
packets; the new constraint does not allow us to decrease the
average delay at the expense of the backlogged packets. We
note however that in spite of the QoS constraint, we don’t
observe much performance degradation in the expected delay
of transmitted packets.

Also, we observe that for some values of d, we don’t have
any feasible strategy satisfying the QoS for some values of
qa. For example, for m = 2 and d = 5, the feasible region of
strategies is not empty only for qa ≤ 0.3, but for d = dmax,
there exists a feasible region for all values of qa because dmax

is chosen to be the maximum expected delay of backlogged
packets at optimal retransmission strategy for qa ∈ [ε, 1] which
explains that there exists at least one feasible strategy for every
qa. V. THE GAME PROBLEM

Next, we formulate the game problem. For a given policy
vector qr of retransmission probabilities for all users (whose
jth entry is qj

r), define ([qr]−i, q̂i
r) to be a retransmission

policy where user j retransmits at a slot with probability qj
r

for all j �= i and where user i retransmits with probability q̂i
r.

Each user i seeks to optimize her own objective Objectivei.
The problem we are interested in is then to find a symmetric

equilibrium policy q∗
r = (qr, qr, .., qr) such that for any user

i and any retransmission probability qi
r for that user,

Objectivei(q∗
r) ≤ Objectivei([q∗

r ]
−i, qi

r) (10)

Since we restrict to symmetric q∗
r , we shall also identify it

(with some abuse of notation) with the actual transmission
probability (which is the same for all users). Next we show
how to obtain an equilibrium policy. We first note that due
to symmetry, to see whether q∗

r is an equilibrium it suffices
to check (10) for a single player. We shall thus assume that
there are m + 1 users all together, and that the first m users
retransmit with a given probability qr

−(m+1) = (qo
r , .., qo

r)
and user m + 1 retransmits with probability q

(m+1)
r . Define

the set

Qm+1(qo
r ) = arg min

(
Objectivem+1([qo

r ]−(m+1), q(m+1)
r )

)
(11)

where qo
r denotes (with some abuse of notation) the policy

where all users retransmit with probability qo
r , and where the

maximization is taken with respect to q
(m+1)
r . Then q∗r is a

symmetric equilibrium if

q∗r ∈ Qm+1
r (q∗r ) (12)

To compute Objectivem+1([qo
r ]−i, qi

r), we introduce again a
Markov chain with a two dimensional state. The first state
component corresponds to the number of backlogged packets
among the users 1,...,m, and the second component is the
number of backlogged packets (either 1 or 0) of user m + 1.
We use the transition probabilities P(n,i),(n+k,j)(qo

r , q
(m+1)
r )

as given in ([1], Section 2). In the game problem, the average
number of backlogged packets of source m+1 is given by:

Sm+1(q̂m+1) =
m∑

n=0

πn,1(q̂m+1) (13)

where q̂m+1 = ([qo
r ]−(m+1), q

(m+1)
r ) and the average

throughput of user m + 1 is given by

thpm+1(q̂m+1) = qa

m∑
n=0

πn,0(q̂m+1) (14)

Hence the E.D.T.P of user m + 1, Dm+1, is given by:

Dm+1(q̂m+1) = 1 + Sm+1(q̂m+1)/thpm+1(q̂m+1) (15)

For the game problem, let us denote by thpc
m+1 the throughput

of backlogged packets (i.e. of the packets that arrive and
become backlogged) at source m + 1:

thpc
m+1(q̂m+1) =

m∑
n=0

m∑
n′=0

P(n,0),(n′,1)(q̂m+1)πn,0(q̂m+1)

Thus, the expected delay of backlogged packets at source m+
1, is given by

Dc
m+1(q̂m+1) = 1 + Sm+1(q̂m+1)/thpc

m+1(q̂m+1) (16)



VI. NUMERICAL INVESTIGATION OF THE GAME PROBLEM

In this section we shall obtain the retransmission proba-
bilities which solve the game problem. We investigate the
dependence of the expected delay of packets that are suc-
cessfully transmitted (i.e. all packets that are not rejected
when arriving at the system) and of packets that upon arrival
become backlogged, on the arrival probabilities qa and on the
number of nodes. We consider the game problem in which the
performance to optimize are the expected delay of packets that
are successfully transmitted (not rejected upon arrival) given
by (15) and the the expected delay of backlogged packets .
In Figure 9 ans 10 (resp. 11 and 12), the expected delay
of transmitted packets ( resp. expected delay of backlogged
packets ) and the optimal retransmission probabilities are
plotted versus the arrival probability for the game problem.

Comparing the figures, we see in particular that the game
solution is very inefficient for large arrival probabilities: the
expected delay increases and attains large values, whereas in
the team case, the expected delay is less for each qa. The
inefficiency is seen also through the optimal retransmission
policy: as the system becomes more congested (larger arrival
probabilities) the retransmission probability decreases in the
team case so as to counter expected collisions. The game
scenario gives rise, in contrast, to an equilibrium that becomes
more and more aggressive as the arrival probabilities increase:
the equilibrium retransmission probability is seen to increase
with qa (for qa > 0.2) which explains the dramatic increase
in the system’s delay. In particular, as qa approaches 1, so
does qr at equilibrium! In conclusion, the game solution is
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Fig. 9. Expected delay of transmitted packets in the game case
(E.D.T.P) as a function of the arrival probabilities qa for m =
2, 3, 4, 6.
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Fig. 10. The optimal retransmission probabilities in the game
case (E.D.T.P) as a function of the arrival probabilities qa for
m = 2, 3, 4, 6.

very inefficient for heavy traffic, and even for light traffic it
becomes inefficient when the number of mobiles is larger than
five.

VII. CONCLUSION

To summarize, we present team and non-cooperative game
formulations of slotted ALOHA. We study the distributed
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Fig. 11. Expected delay of backlogged packets for the game case as
(E.D.B.P) a function of the arrival probabilities qa for m = 2, 3, 4, 6.
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Fig. 12. The retransmission probability in the game case (E.D.B.P)
as a function of the arrival probabilities qa for m = 2, 3, 4, 6.

choice of retransmission probabilities so as to minimize ex-
pected delays of transmitted and backlogged packets. We
found that game problem makes the system inefficient by
increasing the delays unduly even under light traffic. There
are still several avenues for further research in this area:
for instance, considering slotted ALOHA with heterogeneous
retransmission probabilties to capture different mobile devices
with different capabilities. Pricing is often opted as a solution
to make an inefficient game problem more efficient. It is inter-
esting to investigate the impact of adding retransmission costs
(which may represent the disutility for power consumption)
on the equilibrium and show how this pricing affects the
equilibrium.
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