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Abstract

We consider in this paper a continuous time stochastic hybrid sys-
tem with a finite time horizon, controlled by two players with opposite
objectives (zero-sum game). Player one wishes to maximize some linear
function of the expected state trajectory, and player two wishes to mini-
mize it. The state evolves according to a linear dynamics. The parameters
of the state evolution equation may change at discrete times according to
a MDP, i.e. a Markov chain that is directly controlled by both players,
and has a countable state space. Each player has a finite action space. We
use a procedure similar in form to the maximum principle; this determines
a pair of stationary strategies for the players, which is asymptotically a
saddle point, as the number of transitions during the finite time horizon
grows to infinity.

Keywords: Hybrid stochastic systems, stochastic games, asymptotic optimal-
ity, linear dynamics, Markov decision processes, finite horizon.

1 Introduction and statement of the problem.

Consider the following hybrid stochastic controlled system. The state Z; € R"
evolves according to the following linear dynamics:

d

%Zt:AZt‘i—B)/t, tE [07 1]7 Z() =z (1)
where Y; € R" is the “control" and A(n x n) and B(n x k) are matrices of
real numbers. Y; is not chosen directly by the controllers, but is obtained as a
result of controlling the following underlying stochastic discrete event system.



Let € be the basic time unit. Time is discretized, i.e. transitions occur at times
t=mne, n=0,1,2,..., |[e"!], where |z] stands for the greatest integer which is
smaller or equal to z. There is a countable state space X = IN and two players
having finite action spaces A; and A, respectively. Let A = A; X As. If the
state is v and actions a = (a1, as) are chosen by the players, then the next state
is w with probability P,q,. Denote P = {P,qy}. A policy u* = {uf,u},...} in
the set of policies U? for player ¢, i = 1,2 is a sequence of probability measures
on A; conditioned on the history of all previous states and actions of both
players, as well as the current state. More precisely, define the set of histories:
H .= UH;, where

H, = {(xg,a(l),ag,xl,a%,a%, “wxl)}

are the sets of all sequences of 3/ 4+ 1 elements describing the possible samples of
previous states and actions prior to [ as well as the currents state at stage [ (i.e.
at time [€). (The range of [ will be either [ = 0,1, ..., |[¢ '], or, in other contexts,
all nonnegative integers, depending on whether we consider finite or infitine
horizon problems). The policy at stage [ for player i, u}, is a map from H; to the
set of probability measures over the action space A;. (Hence at each time t = [,
player i, observing the history h;, chooses action a; with probability u}(a;|h;)).
Let F; be the discrete o-Algebra of subsets of H;. Each initial distribution £ and
policy pair u for the players uniquely define a probability measure P over the
space of samples H (equiped with the discrete o-algebra), see e.g. [?]. Denote
by E¢ the corresponding expectation operator. On the above probability space
are now defined the random processes X; and 4; = (A}, A?), denoting the state
and actions processes. When the initial distribution is concentrated on a single
state x, we shall denote the corresponding probability measure and expectation
by P} and EY.
Let 4/ : X x A = R, j = 1,..., k be some given bounded functions. Then Y;
in (?7?) is given by
Vi =y(Xeje)s Alr/e))- (2)

Y; and thus Z; are well defined stochastic processes, and are both F|.-1| mea-
surable.

We shall be especially interested in the following classes of policies.

(i) The Markov policies M1, Ma: these are policies where u; depends only
on the current state (at time ¢ = le) and on [, and does not depend on previous
states and actions. If a Markov policy u’ € M; is used by player i, we shall
denote

u}(alz) : the probability under u* of choosing a € A; in state x at stage [.
(3)
Denote M = M x Ms.
(ii) The stationary policies, denoted by Sy, for player 1, and S,, for player 2.
A policy u is called stationary if u; depends only on the current state, and does



not depend on previous states and actions nor on the time. Let S := &1 X Ss.
If a stationary policy f is used, we shall denote by f.(a) the probability under
f of choosing action a when in state z. When stationary policies f = (f*, f?)
are used by the players, we set

Pvfw = Lyflf2e = Z Pvalazwfi(al)fg(a?)?

al,a?

y(v, f) =y(v, 1, f2) = Y ylv,a',a®) fial) f2(a?).
al a2

Let Py = {P,. } be the transition probabilities of the the Markov chain induced
by a stationary policy pair f, and let P} = [P}]Uw} be the [ step transition
probabilities under f.

We make throughout the following assumption, which is a strong version
of the Simultaneous Doeblin Condition, introduced in [?] Section 11.1, with a
communicating condition.
(A1): There exists a state * € X and a positive real number ¢o such that

Pyfa- >0, VYzeXfES.

Let ¢ be an n-dimensional vector representing the (linear) operating cost
related to the process Z;. Define the cost:
JZ(u' u?) = B T 7, Zy==z2

T

when policies u', u? are used by the players, and the initial state of the linear

system is z, and the initial state of the controlled Markov chain is z. In our
dynamic game, player 1 wishes to maximize JZ(u',u?) and player 2 wants to
minimize it. More precisely, define the following problems:

Q15 : find a policy u! € U' that achieves

Ff(z) = sup inf JZ(u',u?)
wleyt u?el?

where Z; is obtained through (??). If such a policy exists, then it is called
optimal for Q1¢. If for some § and u' € U*,
Fi(z) < inf JZ(u',u®)+6
u?eU?
then u! is called 6-optimal for Q1%. One may consider also:
Q14; : find a policy u? € U? that achieves

. 1 2
Fij(x) = inf, Sup, Jo(uu”).



Define similarly optimality and é-optimality of policies for Q1%;. We clearly
have Ff;(z) > F§(x). If there exist some u = (u',u?) and 6 such that

Fi(x)+6> Eé“l’“z)cTZl > Fi(z) =4,

then w is called é-saddle point, or d-equilibrium strategy pair for Q1€ (we need
not specify Q15 or Q15;). If this holds for § = 0, then w is called saddle point
or equilibrium strategy for Q°.

Remarks:

(i) Q15 is equivalent to the problem: find a policy u! € U?! that achieves
supyiepn inf,zepz ¢ Zy, where Z, € R™ is given by

d—= = 2 —

2= A7+ BEM Y,  tel0,1], Zy== (4)
The same holds for Q17%;.

(ii) By solving the problem Q17%, one can also solve a problem with an integral
cost function, i.e. to find a policy u that achieves

1
sup inf Eg(cul’““)/ cl'Z,dt.
uleU?! u?el? 0

This is obtained by using a new variable R; defined by dR;/dt = Tz,

Note that the controllers do not require knowledge of the initial value z of
Zy, which may be assumed to be zero. More precisely, due to the linearity of
the system (?7?), if a control strategy is optimal (or é-optimal) for a given Zj,
then it is optimal (or é-optimal, respectively) for any other value of Z;.

Our model is characterized by the fact that € is supposed to be a small
parameter. We construct a set of Markov policies 7€ = ("¢, 7>) such that 7*
is v(e)-equilibrium for Q1¢ where lim._o~(e) = 0. This implies, in particular,
that the game has the value in the limit as ¢ — 0 and we call the mentioned
above sequence of Markov policies asymptotically saddle-point.

This paper is a continuation and generalization of our previous work [7]
which solves a hybrid problem restricted to a single controller and to a finite
state space. As in [1], the fact that € is small means that the variables Y; can
be considered to be fast with respect to Z;, since, by (2), they may have a finite
(not tending with € to zero) change at each interval of the length e. This along
with the linearity of the system (1) allow to decompose the game into stochastic
subgames on a sequence of intervals which are short with respect to the vari-
ables Z; (in the sense that Z; remain almost unchanged on these intervals) and
which are long enough with respect to Y; (so that the corresponding stochastic
subgames show on these intervals there limit properties).

The type of model which we introduce is natural in the control of inventories
or of production, where we deal with material whose quantity may change in a
continuous (linear) way. Breakdowns, repairs and other control decisions yield



the underlying controlled Markov chain. In particular, repair, or preventive
maintenance decisions are typical actions of a player that minimizes costs. If
there is some unknown parameter (disturbance) of the dynamics of the system
(e.g. the probability of breakdowns) which may change in a way that depends
on the current and past states in a way that is unknown and unpredictable
by the minimizer, we may formulate this situation as a zero-sum game, where
the minimizer wishes to guarantee the best performance (lowest expected cost)
under the worst case behavior of nature. Nature may then be modeled as the
maximizing player. (This yields Q15%;.)

Our model may also be used in the control of highly loaded queueing net-
works for which the fluid approximation holds (see Kleinrock [?] p. 56). The
quantities Z; may then represent the number of customers in the different queues
whereas the underlying controlled Markov chain may correspond to routing, or
flow control of, say, some on-off traffic, with again, nature controlling some
disturbances in quantities such as service rates.

The structure of the paper is as follows. In Section 7?7 we present the main
result; we construct the sequence of non-stationary policy for the hybrid control
problems Q1¢. We prove in Section ?7? that the sequence of policies introduced
in Section ?7? is indeed asymptotically saddle-point as € tends to zero. Proofs
of some technical lemmas are left to the Appendix.

Below, BT will denote the transpose of a matrix (or of a column vector) B,
and ||BJ| will denote the sum of absolute values of the components of B.

2 Construction of e-equilibrium Markov strate-
gies

Consider a family of infinite horizon stochastic games, all with the same state

and action spaces X and A as above, and the same transition probabilities P,

parametrized by a vector A € R". Let r : R" xX x A — IR be the immediate

cost, i.e. r(A,z,a) is the cost in the MDP ), when at state z and the actions
chosen are a. r is given by

r(\,z,a) = N By(z,a).
The definition of policies U = (U, U?) is as in Section ??. Define the following

cost functions. The finite horizon total expected cost:

o™\ & u) = B r(A\, X, A;); (5)

m— oo m



Remark: The results of the paper are unchanged if the liminf is replaced by a
limsup in the definition of the infinite horizon average cost.

A policy pair u* = (ub*,u*?) € U is said to be a saddle point or an
equilibrium policy pair for problem A with infinite horizon expected average
cost criterion, if for all u! € U, u? € U?,

E(A7€7’I’L171’I’27>\) S E(A767"’L17}\7’l’t27)\) S E(>\7£7 u17>\7u2)' (6)

Let fA = (f1, f2), where f1* € S;, f>* € Sy, be some stationary equilibrium
policy pair for the expected average problem. The existence of such stationary
equilibrium policy pair (under assumption (A1l)) is well known, see e.g. [?].

T(A) i=a(NE N 2 (7)

is then defined to be the value of the A stochastic game, and is known to be
independent on ¢ (which we shall thus omit from the notation). It can be
computed using value iteration, see e.g. [?].

Let A(t) € R", t € [0, 1] be the solution of

d
A= —ATN,, M\ =-—c (8)
ie.,

At) = AT (=0,

Define the following:
e A(e):= a function of € such that

A
lim A(e) =0, lim Al9 =00
e—0 e—0 €
A(e) will be the length of sub-intervals of [0,1] during which we shall
use fixed stationary policies. (In each new sub-interval, a new stationary

policy has to be computed).

o 7 :=1[A(e), | =0,1,2,...,|A(e)7], is the instant at which the [th sub-
interval begins.

e M, := |A(e)~!] is the number of sub-intervals.

o Tar4+1 = 1.

o my = [(I+1)A(e)e™t] — [(DA(e)e™t].

€ l,e =2,¢

o U := (u ,u>) is a pair of Markov policies defined by the players as
follows: each player i = 1,2 defines @>¢ by applying f>M™), i = 1,2
during n = |7 /€], [m/€] +1,..., [741/€] —1;1=0,1, ..., M., where f> (70
is defined in the paragraph above (??), and by choosing an arbitrary action
at [e71].



Theorem 2.1 u° is an asymptotically saddle point, i.e. for every € there exists

some Y(e) with lim._qy(e) = 0, such that u is vy(e)-equilibrium for problem

Q1<

Ti(uh, w>) () < Jp@bewnt) < Jp (@ ut) +ole),  Vul € UM u® € U
(9)

Moreover,

JZ(@h e, 7)) = AT(0)z + /0 g(A(t))dt + O(v(e)), (10)
where T(\) was defined in (77).

Remark: As follows from the proof below, one can choose

10 =0 (max{at. 5 1),

so taking A(e) = €'/2, one obtains y(e) = O(e'/?).

3 Proof of main result

The proof is based on the following Lemmas, whose proof is provided in the
appendix.

Lemma 3.1 There exists some constant L such that for any initial distributions
&, C and m on the initial state Xo, and any m,

o™\ PN =L < oG Y (11)
< oA PR+ L, Val e U WP e UP(12)

and
o™ (A&, ) —ma(V)| < L, (13)

where f* are defined below (??), and X belongs to a bounded set containing \(t),
t €[0,1].

Lemma 3.2 The value functions &, defined in (??), are continuous functions

of \.

Proof of Theorem ?7: We first note that for each fixed ¢, the hybrid dynamic
game problem can be formulated as a finite-horizon non-stationary zero-sum
stochastic game (see e.g. Nowak [?, ?]), with bounded immediate cost, a count-
able state space and a finite number of actions. Although we do not pursue
this direction, we conclude, that both players may restrict to Markov policies,
so that it suffices in (??) to restrict to Markov policies u' and u? (this follows
e.g. from Remark 2.1 in [?] or Lemma 3.5 in [?]).



Due to the linearity of the system, for any u € M, one can write the value
of the hybrid game

JZ(u) = AT(0)z + /1 M ()BE'Y (t)dt

which implies the inequality

M.—1

T (u) = NT(0)z— Y B {)\T(TZ)B /+ Y(t)dt}

=0 !

S LIA(G)v (14)

where L; is some constant (that does not depend on u, x and z). By (??) we
have,

T [ri41e ] -1

141

B )\T(TZ)B/ Y(tdt—c S AT(m)By(X,,Aj)| < Lee  (15)
i i=|1e 1]

where L» is some constant (that does not depend on u, z and 2).
- We define for any Markov policy u" for player ¢ the s-step shifted strategy
67 u* by o
(07u’), (alz) = uji(alz), Vi,z,a € A;
(we used (?7?) for the notation of a Markov policy). When both players use

Markov policies u = (u!, u?), we shall use the notation §7u = (§7u',#7u?). For
any Markov policy pair u,

[r41e t]—1
By X0 ATmBuA) o = B {o™ (M), X(Lme )01 hu) )
i=|7me 1]
(16)
(where ¢™ is defined in (?7?). Notice that by definition of the policies u*,
B [T1pre ] -1
EELY A TmBy(XaA) ¢ o= B2 {om (Am). X (et ), ) |
i=|me 1]
(17)

By (?7), for any distributions £, ¢ and n on the state space, and Yu! € U, u? €
U2,
o™ (Am), &0 ) — 1
o™ ()‘(Tl)v Cv fLAv f2’>\)
g ()\(n),n,fl’A,HL”f—lJuz) + L, Yule Mi,u? € M,.

IN

IN



which, along with (??)-(??) implies that

i=|me 1]

\_‘rl+157 J—l
B { > )\T(Tz)By(Xi,Ai)} - L

[T141€” 7] —1
< w o [ )

i=|1e 1]

LT1+1€_1J71

< BT { > )‘T(Tl)By(XiaAi)} +L

i=|71e" 1]

This, in turn, leads via (??) to
1 —2,e Ti+1
Bl ))\T(T[)B/ Y (t)dt — (L + Ly)e
Tl

(El‘g 52‘6) T Tl+1
< BECTNT (B / Y (t)dt
Ti
(—1‘6 2) T Ti+1
< E* I\ (m)B Y(t)dt + (L + La)e

I

and this, via (?7?), to

This proves (??) with
v(€) = L1A(e) + (L + La)eM,. = LiA(e) + (L + Lg)[A(e)_l].

Now, from (??) and (??) it follows that

|_Tl+1€7 J—l
fgg6 { Z AT(Tl)By(X“AI)} — mﬁ(/\(n)) S L.
i:|_'rl€*1J
This, with (??) and (??), imply that
M.—1
Tr@hewe) = AT (0)z = > F(A(m))emy
=0

S LlA(G) + (L + L2)6M€.

By definition of m;, we have

lem; — A(e)| < 2e.

(18)

(19)



On the other hand, since by Lemma ??, the function @()\) is continuous, it
follows that it is uniformly continuous (since we need only consider a compact
set of \), so that

Mc—1 1
> am)AE - [ T©)E| = 0a(),
1=0 0
This, along with (??) and (??) establishs (?7). [ ]

4 Appendix

Before proving Lemma, 77, we introduce some definitions and quote some re-
sults from dynamic programming. Define the matrices II,D : X x X — R
parametrized by the stationary policies f = (f!, f?):

o0

l
17 (vw) := lim 1%1 S P D,0) =3 ([PHow = Tlu)
1=0

l—o0
=0

Define the vector h{ = D'/r(), f). Consider a bounded vector of “terminating
cost" @ : X — IR, and define the finite horizon expected average cost corre-
sponding to « by

oo (A& u) = Ef
=0

(nlz_: T()\7Xi,Ai)> + a(Xm)] .

Define the optimal cost against policy f2*:

U;”()\,:r,fQ’A) = sup U;”()\,x,ul,fQ’)‘).
uwleU?!

Lemma 4.1 (i) Under any stationary policy pair f, 117 is well defined and has
identical rows equal to the unique steady state probability under f. Moreover,

O\ ) =7\, f) =Y T (vw)r(Aw, f),

weX

and is independent of v € X.

(ii) D is well defined and Y., ox |D(v,w)| are bounded by some constant D,
uniformly over all states v and all stationary policies of both players. Hence
|h’;(v)| are bounded by some constant h, uniformly in all stationary policies f,
all states v and all A in some compact set that contains A(t), t € [0, 1].

10



(11i) The pair (E(A,fA),h{) is the unique bounded solution (the uniqueness of
h{ is up to an additive constant) of the dynamic programming equation

h(v)+g= max {r(\,at, f22) + Py o, h(w) }
a €A,

(iv) o™ (X, v, f2*) satisfies the following dynamic programming equation.:

ao (X, f2r) = alv)
m 2, _ 2, m—1 2,
Oq ()‘vvvf ) = arlneagi {T()\,’U,al,f ) + Z Pvalfz'xwo—a (Avwvf )}
weX
for all v € X.

Proof: The proof of (i), (ii) and (iii) are given in Proposition 5.1 in [?] (by
choosing 1 = 1 there). (iv) are well known, see e.g. [?] (Note that when player
two restricts to a stationary policy, i.e. to f>*, then player 1 is faced with a
standard Markov decision process (MDP)). [ ]

Proof of Lemma ??7: We prove the inequality

O—m(A7€7u17 f2’>\) - L S mE()\7£7 fl’A, f27A)'

The proof of the other one is the same. Consider the following terminating

costs: .
a(v) = h’;(v) + h, v EX,

where I is defined in Lemma ?? (ii). It follows from Lemma ?? (i) that o > 0.
This implies that for any m,

aa (A, f21) > o™ (N z, f2). (20)

We now compute o™ (), z, f>*) by Lemma ?? (iv):

ga(\z, f2Y) = a(z)
0'&()\7567]’12’)\) = arlneali(l {T(Avxvalvjﬂ)\ z;( zal f2 A w 0 >‘ w fQA)}
we

= max {'r()\,x,al,f2k Z al f2 A hf )} +fAL

a1 €A,
weX
= hi(@)+7(\ ) +h

where the last equality follows from Lemma ?? (iii). We can now establish by
recursion that

o™\, f2) = hi(z) + ma(\, ) + mw(\, f) + 2h. (21)

11



Combining (??) with (??), we obtain
o™\ & ut, 2 = 2h < mE(\)
for any £. The reverse inequality
ma(A) < o™\ & ut, ) + 2h
is obtained similarly. This implies both (??) and (??). [ ]
Proof of Lemma ??: From Lemma ?? (i), we have for any f € §; x Ss,

O\ f) =D T (vw)r(A, w, f)

(which in fact does not depend on v), so for any \;, Ay and any initial distribution

3

|E()‘17€7f)_6()‘27€7f)| < Zzg(v)nf(vw”r()‘lvwvf)_T()‘vavf”
< sup|r(A,w,a) — r(Ag, w,a)
<

[Ar = Azl sup || By(w, )

Hence, for any initial distribution &,

F) ) = TSN~ T, € 2, )
E()‘lv ‘fv fLAl ) fz’kz) - E()‘Zv ‘fv fLAlv f2’>\2)
A = Az||sup || By(w, )

w,a

IN A

and, in the same way we obtain

7(A2) =a(A1) < A = Aef[sup [ By(w, )| -

Since y is bounded, we conclude that (A) is continuous in A. [ |
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