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Abstract—We study in this paper optimal stochastic control a message, while satisfying specific energy constraints. Th
issues in delay tolerant networks. We first derive the struatre of  main contributions of our work summarizes as follows:
optimal two-hop forwarding policies. In order to be implemented,
such policies require the knowledge of some system paramese  « We introduce a discrete—time framework to model mes-
such as the number of mobiles or the rate of contacts between sage diffusion in DTNs; within such framework, we
mobiles, but these could be unknown at system design time  characterize analytically the structure of optimal pelgci

or may change over time. To address this problem, we design . h .
adaptive policies combining estimation and control that dbw to for routing control using sample path techniques. In

achieve optimal performance in spite of the lack of informaton. parti_cular, threshqld poli_cies_ are proyed optimal.
We then study interactions that may occur in the presence of e« We introduce online estimation algorithms so that nodes
several competing classes of mobiles and formulate this ascast- can learn online optimal policies in a-priori unkwon net-

coupled stochastic game. We show that this game has a unique
Nash equilibrium where each class adopts the optimal forwating
policy determined for the single class problem.

work scenarios. These algorithms are based on stochastic
approximation theory. Convergence to the optimal control

Index Terms—Stochastic Control, Game Theory, Delay Toler- policies, under suitable conditions, is analytically ded.
ant Networks o We extend the problem of optimal control to the case
of several competing classes of mobile terminals. The
. INTRODUCTION framework, in this case, is that of cost—coupled stochastic

games [8], [9]. We prove that the game has a unique Nash
equilibrium where each class adopts the optimal forward-
ing policy determined for the single class problem.

Delay—Tolerant Networks (DTNs) are sparse and/or highly
mobile wireless ad hoc networks where no continuous connec-
tivity guarantee can be assumed [1], [2]. One central proble
in DTNs is related to the routing of packets towards th&mulations confirm analytical results and provide further
intended destination. Protocols developed in the mobillecad insights.
networks field, indeed, fail since a complete route to theéides The control of forwarding schemes has been addressed in
nation may not exist most of the time. One common techniq@& Ns literature before. In [10], the authors propose an epi-
for overcoming such problem is to disseminate multiple espidemic forwarding protocol based on the Susceptible-lefdct
of the message in the network, enhancing the probability ttRemoved (SIR) model [11] and show that it is possible
at least one of them will reach, within a suitable time-framéo increase the message delivery probability by tuning the
the destination node [3]. This is referred to as epidemjtest parameters of the underlying SIR model. In [12] a detailed
forwarding [4]. Alike the spread of infectious diseases;hea general framework is proposed in order to capture the velati
time a message-carrying node encounters a new node petformances of different adaptive strategies. None o$ehe
having a copy thereof, it maipfectthis new node by passingtwo papers formalize a specific optimization problem. In [5]
on a message copy; newly infected nodes, in turn, may behavel its follow-up [6], the authors assume the presence of a se
similarly. The destination receives the message when nagetof special mobile nodes, the ferries, whose mobility can be
infected node. controlled. Algorithms to design ferry routes are proposed

In this paper we consider the zero knowledge scenario [Bfder to optimize network performance. Works more similar
[6], where mobile nodes have rapriori information on the to ours are [13], [14], [15]. In [13] the authors considerfbuf
encounter pattern. Moreover we constrain the analysisdo ttonstraints and derive, based on some approximationsrbuff
case when the source of the message can copy it, while goheduling policies in order to minimize the delivery tirfide
other infected nodes can only forward it to the destinationptimization goal in [14] can be considered a relaxed versio
This is referred to as two-hop forwarding [7]. We invest@atof our problem (e.g., the weighted sum of delivery time and
the problem of optimal stochastic control of such routingnergy consumption), also in this case the optimal policy is
protocol. The control variable is the probability of traridimg  threshold one. Also, under a fluid model approximation, the
a message upon a suitable transmission opportunity (ixgrk in [15] provides a general framework for the optimal
contact). The goal is to optimize the probability to delivecontrol of a broad class of so called monotone relay strasegi



Apart from the differences in the optimization functionggsh source has a copy of the message then it transfers it only to
of the above works do not address the problem of onlike destination.
estimation of optimal policies; an attempt is done in [12B] We adopt a discrete time model, considering a time slot
based on some heuristics for the estimation. durationA. The n—th slot corresponds to intervatA, (n +
Finally, to the best of our knowledge, this is the firsi)A) and the number of slots is equal tH = [7/A].
formulation of a game with competing nodes in a DTNn this discrete time model, we assume that a mobile that
scenario. receives a copy during a time slot can forward it startingnfro
The remainder of the paper is organized as follows. Tliee following time slot. Moreover the forwarding probatyili
system model is introduced in Sec. Il. The structure of oatimduring [rA, (n + 1)A) is a constant and it is denoted hy;.
control policies is derived in Sec. Ill. Methods for optiraton Let X,, be the number of mobiles, not including the desti-
in the presence of unknown system’s parameters are presermation, that have a copy of the message at time(i.e. at the
in Sec. IV. The multiclass case is introduced in Sec. \beginning of then—th slot), X, = 1. Under the assumptions
Numerical results are presented in Sec. VI. Sec. VII coresudabove, X, is a Markov chains with possible states2, - - - N.

the paper. The transition rates depend on the forwarding probability
used by the source in each time slot, so a natural way to
Il. SYSTEM MODEL optimize performance system is to control such forwarding

Consider a network ofV 4+ 1 mobile nodes, each equippqurObabi“ties'

with some form of proximity wireless communications. The The _p_roblem we address in this paper |smax_|m|ze the
?bablhty to deliver the messagby the K-th time slot,

network is assumed to be sparse, so that, at any time inst& ) _
nodes are isolated with high probability. Communication o nder a constraint on the expected number of infected nodes

portunities arise whenever, due to mobility patterns, te@des he number of infected nodes is related to the total energy

get within mutual communication range. We refer to Suc?lonsumption. In particular they are simply proportional if
events as “contacts” we assume that i) for each transmission a constant amount

. . c?f energy is consumed, ii) all the other activities require a
The time between subsequent contacts of any pair of nodes . - . .
negligible amount of energy. We want to determine optimal

is assumed to follow an exponential distribution with pa{an{ime-dependant forwarding policies the source can impleme

eter A\ > 0. The validity of this model for synthetic mobility . . . .
X . -7 More formally we define a forwarding policy (control policy)
models (including, e.g., Random Walk, Random Direction, .
Random Waypoint) has been discussed in [16]. There ex?sstla functiory. : {0,1,2, - K — 1} — U,
n what follows a key role will be played by two types of

studies based on traces collected from real-life mobillty][ forwarding policies,static and thresholdpolicies, defined as
that argue that inter-contact times may follow a power-la lows- 9p ' P '

distribution. Recently, the authors of [18] have shown th Definition 2.1: A poli . taticoolicy if 1 tant
these traces and many others exhibit exponential tails afte efinition 2.2 Apolicy 1115 astalicpolicy I 111 a constan
a cutoff point. For this reason, we choose to stick wit unctlon, e.pu(n) =PE U, for n - 0,1,2, K'—1. A policy
the exponential meeting time assumption, which makes oé?lfls athresholdpolicy, if there existh € {0,1,2,--- K — 1}
analysis tractable. e threshold) such that

There can be multiple source-destination pairs, but we as- Umax. if n<h
sume that at a given time there is a single message, eventuall p(n) = { 1)
with many copies, spreading in the netwhrEor simplicity
we consider a message originated at titme 0. We assume Observe that static and threshold policies are identifiec by
that the message that is transmitted is relevant during sofee parameters: the contrplfor static policies, and the thresh-
time 7. This applies, e.g., to environmental information or datald & and the corresponding valugh) for dynamic policies,
referring to events of transient nature (e.g., happening® which leads to a simple implementation. With static pobcie
message contains a time stamp reporting its generationsiomeat each communication opportunity, the message is forwarde
that it can be deleted at all nodes when it becomes irrelevanith a constant probabilityp. Conversely, with threshold
We do not assume any feedback that allows the source or otpelicies, each time a mobile has a forwarding opportunity,
mobiles to know whether the message has been successfillihecks the time elapsed since the message generation time
delivered to the destination within the time and it forwards the message with some probability), i.e.

We focus on a set of relaying strategies that can be defirié@y require a dynamic approgch
as probabilistic two-hop routing strategies. At each enteu It is worth noticing that static and threshold policies are
between the source and a mobile that does not have thefined based on few parameters only, i.e., the comptriolr
message, the message is relayed with some probabilitygtakétatic policies, and the threshold and the corresponding
values iNU = [umin, Umax]. If @ mobile different from the value x(h) for dynamic policies, which leads to a simple

implementation.

1Results in sections Il and IV are valid even for multiple seges at the
same time, but we assume that the bandwidth and the bufféarges enough 2Incidentally, timet can be traced just summing up the time elapsed at
to assure that the different propagation processes arpendent. each node with no need for nodes’ synchronization.

Umin, if n>h



Symbol | Meaning
N+1 number of nodes

where @),, , is then the probability that a mobile does not

A pairwise intermeeting intensity receive the message in time slaisn + 1,...,n + m — 1.

T t'meAOUt value We observe that,, ., (j) are stochastically increasing in the
- control actionsu,, (see or definition and properties o

KAl trol act 19] for definition and ties of

Xn number of nodes having a copy of the message at tite usual stochastic order). More formally, given a poligy

% ) maﬁ'”;)l_ll_m eﬁpecrt]ed number of lgf?Cteddn%d%m consider the policyy’ such thaty’(n) = p(n) for n # k

n probability that the message is delivered by ti . N

u0) control policy and /(k) > p(k), and denote ag;, ,,(j), X;, and Fp()

Un, value taken by the control variable (i.e., forwarding piaba| respectively the indicator variables, the number of irddct
ity) at time nA _ o nodes and the delivery probability function when policyis

P value taken by the control variable under static policy applied. then

h time threshold pplied,

0 = Zé{;)l Uk / . .

Jé] 9 value for the optimal policy Cn,m(]) >t Cnm(J) Y < k andm > k.

Cn,m(j) | indicator that thej—th mobile, among theV — X, ones that . .
do not have the message at time\, receives it during thel Moreover being that the number of infected nodés (X))

o nextt)ng_lslotsh bie e th oot can be obtained as sum of the indicator variabfgs ()
n,m probability that a mobile does not receive the message gliufin ! . H
time slotsn,n + 1,..,n+m — 1 (CO,n(.])) (Eg. (2)), it holds

Vi) | Caphes tmies vnstom ox X > Ko ¥ &

(s aplace-Stieltjes transform oX,, n ~s n; :
Xm estimate of at the m-th round of the stochastig . . s . .

appmximaﬂoﬁgﬂ)rithm This formalizes the intuition that the higher the forwaglin

Iy (u) | projection of the value: on the intervalt! probability the higher the number of infected nodes (theesam

{}® supslrscritdindicates that the quantity refers to#tle class of conclusion can be reached through a simple sample path
mobile nodes

Y,Si) number of classi infected nodes that can transmit to the reasomng)' . . . .
destination during the:-th time slot From the previous equations we can easily derive the
Sn total number of infected nodes that can transmit to the desti expected value of,,, that will be used in the next section:
_ nation during then-th time slot
SS9 | total number of infected nodes that can transmit to the -desti E[X,] =Xo+ (N —X0)(1—-Qon) (4)
nation during then-th time slot but class ones
TABLE | Using the Laplace Stieltjes Transform of,,, X7 (s) :=
NOTATION USED THROUGHOUT THE PAPER E[exp(—sX,,)], we can derive the following useful formula
for Fp(n):
n—1
_ _ _ _ _ Fp(n) =1- ] X;(A\A). (5)
In the following section we characterize optimal static and i—0

threshold policies. Then in Sec. IV we show how the source
can learn online the optimal policy. In Table | the notation
used throughout the paper is reported.

In order to prove (5), let us defin@(n) = 1 — Fp(nA),
then it follows

[1l. CHARACTERIZATION OF OPTIMAL POLICIES G(n +1)= G(n) P{no delivery in the n-th sl¢i,, }

We defineF),(n) the probability that a message generated =G(n) E[Pr{no delivery in the n-th Sk')Kn}}
at time0 is received befora A, i.e. Fp(-) is the CDF of the B B .
message delay (considering the messages not delivered by =G(n) E[GXP(_/\AX”)} =G(n) X, (A4

as delivered at = o0). e
We want to derive policies that maximize (K), while = [[xr0n) (6)
satisfying the following constraint on the expected nuntfer =0

mf\?\gef?rgogﬁasr:a%g]izi i‘e evolution df,,. Let ¢y (j) be From Eqg. (5), and above considerations on stochastic or-
" mm\J derings, it follows that the delivery probability and thedin

the indicator that thg—th mobile among thév — X,, mobiles . . L .
. . number of infected nodes are increasing in the control astio
that do not have the message at time, receives the message

. ug. Formally,
during (nA, (n +m)A]. Then we have Proposition 3.1: Given two policiesy and 1/, defined as
N—Xn above, it holdsFp(K) < Fj,(K), E[Xk] < E[X].
Xngm = Xn + Z Cnom (J)- @ A consequence of this proposition is the following corgltar
i=1 Corollary 3.1: If an optimal policy exists, either it is the
Variables(, ., (j) are i.i.d. Bernoulli random variables withstatic policy timaz With fimaz (1) = Umaz, ¥n, OF it Saturates
expected value: the constraint, i.e. (k] = V.

me1 The proofs of the above statements are reported in [20].
E[Com(§)] = 1 — exp(—AA Z ) =1=Qum, () We observe that th_g set of ad_missible poI_icies could pe
empty. It can be verified that this happens if and only if

k=n



the static policypmin(n) = wuminVn, does not satisfy the In the particular case of,,;, = 0, this reduces ta* = []
constraint. andv(h*) =6 — |8].

In what follows we are going to assume that admissible The same reasoning can be applied to determine the best
policies exist and we are going to characterize policy ogtim static policy. In particular it iSt,qz, if ftmae. Satisfies the
ity. To this purpose it is useful to derive an explicit forraul constraint (and in such case the best static policy is also th

for the Laplace Stieltjes transform. Let us introduce optimal one), otherwise Eq. (9) holds, and imposing= p*
for all &, we obtainp* = /K.
u(s) = Elexp(=sGon(1))] = (1~ Qo) exp(—s) + Qo.n p* =0/
IV. STOCHASTIC APPROXIMATIONS FORADAPTIVE
= (1—e*)exp ( AA Z“k> () OPTIMIZATION

In this section we introduce methods for achieving the opti-

Then X*(s) can be expressed as a function 9f(s) a T
mal control policies in the case where some parametersii.e.

follows:
Nox and\) are unknown. We show that simple iterative algorithms
. - X1 _  ~ , may be implemented at each node, allowing them to discover
Xals) = Ee I= EleXp< 5 <X0 + Z; CO“”))] the optimal policy in spite of the lack of information on such
oxe Nexo parameters
- ¢ (Elexp(—Co.n(1))]) - Our approach is based on stochastic approximation theory

675X0 ( )N Xo

TnlS (8)[22]. This framework generalizes Newton’s method to de-

We can now introduce the main result of this section. termine the root of a real-valued function when only noisy
observations of such function are available.

Theorem 3.1:There exists an optimal threshold policy. A

non threshold policy is not optimal. We consider the two optimization problems:
Proof: The existence of an optimal policy follows from e Static control: find the constamt’ € [umin, Umax] SUCh

elementary properties of Markov decision processes (see fo that the policyu = p* has the best performance among
example [21]). We need simply to prove that a non threshold all static policies.
policy cannot be optimal. « Dynamic control: find the threshole* € {0,1,---, K —

Let us consider a non threshold poligythat satisfies the 1} andy(h*) characterizing the optimal policy.
constraint (EX x| < W), then there exists some timie< K We can approach online estimation of static and dynamic
and some > 0 such thatuy, < tmax—€ andugi1 > umin+¢.  control in the same way. Let us denate= "1 ' uy, the

Let u’ be the policy obtained from by settingu), = ur,+€¢  sum of the controls used over ttétime slots.d is univocally
andw; ., = ux4+1 — € (the other components are the same aetermined from the policy, but it also identifies univocally
those ofp). We denote withX,, +/,(s), X', (s) and F},(-) a static or a threshold policy. In fact for the static policy
the quantities corresponding d. is u(n) = p = 6/K, while for the threshold policy it is

We notice thaty, (s) = ya(s) for n # k andv.(s) = h =max{h € N: v(h) = h - Umax + (N — h) - Umin < 0},
Yk (s) exp(—AAe) < vk (s). Then from Eq. (8), it follows that and (k) = 6 — v(h). Note that if § = 3, then the two
X'7(s) = X (s) for n # k, while X’;.(s) < X (s), which policies are the best static policy and the optimal (thré&gho
in turn brings F;,(nA) > Fp(nA) for n > k. Moreover policy determined in the previous section. Then in both sase
X'"%(s) = Xj(s) implies that EX}] = E[Xx] < V¥, our policy estimation problem comes down to estimate
then the new policy satisfies the constraint and improves thgain mobiles do not know quantities such as N, etc.,
delivery probability. Hence a non threshold poligycannot so that they can not comput@ a priori using Eq. (9). The
be optimal. B stochastic approximation algorithm will estimatdooking for

Let us now determine the optimal threshold policy. Dughe unique solution of a certain function 6fin the interval
to Corollary 3.1, the optimal policy 9,4, If it satisfies H = [0,in, Omax] = [K - Umin, K - Umax]-
the constraint. Otherwise, the constraint has to be satlirat The algorithm works in rounds. Each round corresponds
and we can obtain the threshold value from Eq. (4), imposing the delivery of a set of messages. During a given round, a

E[Xk] = W: policy is used. Let us denote hy,, the policy adopted at round
Qo = N-" m andé,, Zk o ' 1 (k) the corresponding value. At the
N - X, end of each round an estimate dgf¥g¢] can be evaluated by
Hence averaging the total number of copies made during the round
Kl N-U for each different message. L&t,, denote such averagé.,,
kzo Uk = (N _ Xo) =:p (9) s used to updaté, according to the following formula:
This directly yields the thresholtd* of the optimal policy, Omsr1 =1y (Om + (¥ — Ym)), (20)
by considering thati,, = uq, for n < A* andwu,, = tmn
for n > h* while satisfying Eq. (9). Then” = max{h eN: SNote that the estimation oV and X is per se non-trivial in the lack of

v(h) = h-tumax + (K —h) - umin < 8}, anduy- = f—ov(h*). persistent connectivity.



where slower guarantee a faster convergence to the ODE trajectory

. it 0> 0 because the seriés a,, diverges faster and thep in Eq. (14)
My0) =14 6 if O < u < . is larger. At the same time the corresponding estimation is
O,in i 9; 0,in noisier since they have weaker filtering capabilities in the

iterates equation (10).

Is the projection of on the intervalfl. As discussed above,  pemark 4.2:After some cumbersome derivation, the closed
the new policy .11 is univocally determined frond,, . form solution of Eq. (12) is:

Note that the length of a round affects the variability of the

estimatesX,,, and hence of,,,, but the following convergence o(t) = il { NA(W=N)E+6(0)]
results holds independently from round length. (t) = A E
Theorem 4.1:If the sequenc€{a,,} is chosen such that N - X
oo qu e{a’ }Jrloo u + 0 [1 _ ekA(‘I’—N)t}} (15)
am > 0 Vm, > a, = +oco and > a2, < +oo, the N-¥

=0 =0 . . . . .
sequence of p(;nlicie/am converges to the optimal policy with In Section VI we W!|| prowdg numerical evidence of the
probability one. convergence of the “tail” of the iterates to the ODE dynamics

Proof: On the basis of the considerations at the begin of I the description of the algorithm above we have suggested
this section we only need to prove th@t, converges with that the online estimation of the optimal control is obtaine
probability one tos. The proof is divided in two parts. FirstPy using in Eq. (10) the estimatioX,, obtained from
we prove that the sequenég, converges to some limit set of real message transmission. However, in the case of two-hop

the following Ordinary Differential Equation (ODE) routing, we may circumvent this constraint by using a sort
) of “virtual messages”: indeed, the stochastic approxiomati
0=V — E[Xkl6]. (11)  technique works also if the source simply keeps track of the

For this reason the Eq. (10) is said to be the stochasfi#mber of mobiles itvouldinfect during the a time window of
approximation of Eq. (11). The convergence is a consequer%gatiom if it hada message to tran_smit. Then the source can
of Theorem 2.1 in [22] (page 127). In [20] we show that affimply register the contacts and “virtually” apply the pgli

the hypotheses of that theorem hold in our case. keeping track of the nodes it would have infected if it had a
In the second part we show that the solution of such ODBeSsage. If a real message has to be transmitted, the current
converges tg3 as time diverges. policy estimation can be used.
We observe that from Eq. (4) and Eq. (3) A. Choice of the Sequende,,}
E[Xm|0m] = E[Xk|0m] = N — (N = Xg)e 230 The performance of the stochastic approximation algorithm
so that Eq. (11) can be written as (10) is known to depend heavily on the choice of the sequence
. {an} [23].
0 =T —N+(N—Xg)e 20m, (12) A standard choice isz,, = <; the optimal value of

We now need to show that the ODE (12) converges as tithe thagtE%?ar%ntees the smallest asymptotic variance is [22]
diverges to an asymptotically global fixed point and thigis % __ .- In general, howeve( is unknown (as

First, it is easy to check thadt = 3 is an equilibrium point it depends on the unknown functidii[X (7)|¢]) and cannot
of (12). be set a priori.

Second, afZ[ X k6] is strictly monotonic ind, the equilib- Another possible approach to improve the performance of
rium point is unique. In order to demonstrate the stability d10) is to use techniques such as Polyak’s averages [27], [24
the estimator, we use the Lyapunov functio(¥) = (#—60*)2. The idea is to use slower decreasing sequences to let the

Then, we have: iterates converge faster, while using averages to smoatialac
1 N_T estimates.
V() =20—-6%)-6=2 {9 + 35 log <ﬁ)] : In Polyak’s method, we may use a sequeage= O(n~!),
— X "

and in particular one that satisfies the conditigrya,, 11
TN+ (N=Xo)e ] <0for6#6* (13) 1+ o(a,) and use as estimation of

Asymptotic global stability follows in both cases from Lya- 1

punov’s theorem. n On = — > O (16)
Remark 4.1:Roughly speaking, Theorem 2.1 in [22] shows k=1

that thed,, converges to the solutiofi(z) of Eq. (11) for  In Section VI we will show that using Polyak’s averaging

t ~t,, where{t,},>o is the sequence defined as follows: techniques may obtain advantages in terms of convergence
to =0, ty =ty 1 +ap, form > 0. (14) time to the optimal control.

By comparing Eq. (10) and Eq. (14), we can observe thBt Constant Step Approximations

a trade-off arises, typicale of stochastic approximatityjoa In a real DTN implementation, we may be interested in
rithms in the form (10). In fact, sequencés,,} vanishing tracking changing conditions. This can be done through by



considering constant step approximations, i.e., iterafehie can infect mobile of its own class independently from the
form: other sources and the only coupling derives from collisions
00 =1y (egT +a(V — 7;)), (17) when transmitting to the destination. The possibility ofing
_ ~ collisions affects the delivery probability.
In this way, the system does not “get stuck” at a given a itferent problem is a classless model where a relay
6 but keeps on modifying its behaviour, in an open-endefhqe can be infected by all the available source nodes. In
fashion. Also for such case, results on convergence can (R case the state needs in general to specify which message
derived [20]. In particulaf for small enough step sizethe 5.6 carried by each node. Nevertheless if we consider the
limit process is, with arbitrary high probability, conceated gy nchronous traffic generation model and performance osetri

in an arbitrary small neighbourhood of the optimal conétal o}y depending on the delivery of the first message among the
This is important in ensuring that the approximation oledin competing ones, the problem can be addressed in the same
is close to the optimal control policy. framework [20].

V. THE MULTICLASS CASE

In this section we model the decentralized stochastic obntB. A Weakly Coupled Markov Game Formulation
problem in the presence of several competing DTNs as a

weakly coupled stochastic game, introduced in [8], [9].  Let X be the number of mobiles of classthat are
infected at timenA. We consider the following discrete time
A. The model stochastic game.

Consider a network that contain® classes of mobiles. e The p|ayers: the M classes of mobiles that act indepen-
There areN,,, mobile nodes in class:. In each class there is dently.

a source and a mobile of clagsstores and forwards only , The actions. If at time nA classi source encounters

messages originating from the source of that class. Nodes g mobile, it attempts transmission with probabilityf’.

adopt two-hop routing. All sources generate messages éor th 19 is the time-dependant policy of classsource. In
same destination. Here we assume that message transmissionthis game theoretical framework we refer 6 also as

time is equal to a time slot duration and meetings occur at the the strategy of class- while u(~? denotes the set of
begin of a time slot. The transmission technique uses receiv  strategies adopted by the other classes.

based codes, and an arbitration procedure can avoid oollisi , The performance index.The utility of each player/class
among the members of the same class, so that collisions occur s the probability of successful deliver(”) (K'A). Each

if and only if two or more nodes from different classes are  class has also a constraint on the expected number of
trying to deliver their messages to the destination at tineesa infected nodes, i.eE[X%)] < pl),

time. We also study the case when the arbitration procedure i |
coherently applied from all nodes, so that when many nodes
have the possibility to transmit a message to the destimatio
one of them is successful.

We consider two different traffic generation models. In
both cases each source has a single relevant message at
given time instant. In the first traffic generation model segr _
synchronously generate messages with lifetime equal ta Let us definey,\") as the number of infected nodes of class
the second one, after a message is delivered or tin@as ¢ that can transmit to the destination during theth time slot
elapsed since its generation, the source can stay idle fof0a< Y,\” < X"y, SS9 = > V¥ and S, = >, Yy —
random amount of time after which a new message will bg(®) | g(=%)

generated. Hence sources operate asynchronously. A recurrence law analogous to Eq. (6) can be derived for

As in the previous section, it may not be desirable for @o cpF of the delivery time of messages of each class. For
source to transmit a copy of its message at each opportinityjmnje when inter-class collisions at destination careot
has since this consumes expensive network resources such Asjed. for each classit holds [20]:

energy, hence the source can decide to forward the message
with a given probability. Due to interactions among diffietre
mobile _c_lgsses_, a problem of non-cooperative control osﬁehoG(i)(n 1) = G(i)(n) HXfij)*(/\A) 1= HXfij)*(/\A)
probabilities arises. ; oy

Our problem falls into a category of stochastic games that ' '
was recently introduced in [8], [9], in which each player
control an independent Markov chain and knows only the stateFor the case of a cross-class arbitration procedure, then on
of that Markov chain. The interaction between the players feeds to take into account the possibility that a node okélas
due to their utilities or costs which depend on the states asdcceeds even in presence of other nodes. In a fair arbitrati
actions of all players. Indeed in our framework each sourseheme this will happen with probabiliu\j,gz)/(Y,gz)+Y,§_Z)).

Information. Sourcei is assumed to know onb}(ff) and

not know X’ for j # 4. But it knows its statistics. The

precise knowledge oﬁ(,(f) is possible since the source

1 knows exactly to how many mobiles it transmitted the

message for relay. Note that it is not assumed to know if
4he message was delivered to the destination.
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Fig. 1. Delay CDF in the case of a) optimal control policy (ued line) b) Fig. 2. The dynamics of the stochastic approximation aloriapplied to
static control (dot-dashed line) and g)= 1 (dotted line). the static forwarding policies.

We can then derive the following expression @) (n) [20]:  Equilibrium is also Pareto optimal, i.e. if it is also a glbba
optimum in the sense that there is no other set of strategies

a® (n+ 1):G(i) (n) <Pr{Sn =0} + that can guarantee at least the same performance to all the
classes and strictly better performance to at least one.clas
5= Our simulation results in Sec. VI show that this is not the
(1-PHsS, =0})E [ 5 | Sn > 01) : case.

We observe thaf'(*) (n+ 1) depends on the vectors of control VI. NUMERICAL RESULTS

actions(u!”, u{?, .. u*), for k < n—1. Before stating our Numerical results have been obtained simulating the
main results we introduce the following observation (thegir discrete-time system with Matlab.

is in [20]). The intensity\ of the pairwise meeting process has been
Proposition 5.1: For both the arbitration procedures,), Selected considering a standard Random Waypoint (RWP)
is decreasing in the control actimﬁf)l. mobility scenario. In fact it is known [16], that for the

H 8wRv
Theorem 5.1:f ¥n G (n+1) is decreasing in the control RWP where nodes move with constant veloclty= =75,

action ugfll then the optimal threshold policy for the singlewhereL 's the playground sizeff the communication range,

| ‘s also the best o all th osible w = 1.3683 is a constant and is the scalar speed of nodes.
class case Is aiso the best response fo all the po ere, we have choseh = 5000 m, N = 200, R = 15 m and
Proof: The proof follows the same steps of that o

Theorem 3.1: given a non-threshold poliaf? v = 5 m/s. The corresponding valuels= 1.0453x 107 s~ 1.

) o, we build in Unless otherwise specified, results have been obtained with
the same way a new poligy*" . In fact equations (3), (4) and A =108, T = 20000, ¥ = 20, 1,5, = 0 and g, = 1.
(8) hold also for each specific clagsand the hypothesis on
el permits to conclude that’(i) has better performanca  A. Discrete control policies
Remark 5.1:We observe that the result above applies 0 | the first set of experiments, we simulated the discrete con
both the arbitration schemes and the traffic generation taodgo| policies in order to evaluate their relative perforraes. In
considered. In fact the different traffic models, for a gictass Fig. 1 we reported the comparison of the optimal controlgyoli
i, only have an effect on the probability distributions®f " and the best static control policy. For the consideredragtti
andY,: ", but they not change the best response strategy {ge obtainh* = 911 for the optimal threshold policy, and
classi. p* = 0.46 for the static policy. It can be noticed that the static
From the theorem above the following result follows:  policy attains a much lower success probability, whereas, a
Corollary 5.1: The considered game has a unique Nasfxpected, the delay CDFs under the optimal control and under

equilibrium. This Nash equilibrium is obtained when eacthe policy ;(n) = 1 coincide at times smaller thai* A.
class adopts its optimal singleclass threshold policy.

Proof: The optimal threshold policies are mutual bedd- Stochastic Approximation

responses, so they are a Nash Equilibrium. Moreover whiateveln the following we consider the stochastic approximation
a different set of strategies cannot be a Nash equilibriumigorithm described in Sec. IV and we show that it is able to
because at least one class can improve its performanceldsrn the optimal control both for static and dynamic calstro
adopting the optimal singleclass threshold policy. B The setting is similar to what described above, but in this
In some sense this corollary shows how the single clasase several rounds are performed (see Sec. IV). Basically,
optimal policy is also “robust” towards competition withhet the source performs for each round a sample measurement of
classes of nodes. An interesting question is if this Nash,,, based or30 different estimates of the number of infected
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Fig. 3. The dynamics of the stochastic approximation afgorviapplied to Fig. 4. The convergence of the dynamics of the control végialgainst the

the optimal forwarding policies. reference ODE; at the time scalg and averaged ove0 sample trajectories
in the case of static control. Thin dash-dotted lines d¢ltime maximum and
minimum values attained by the estimate trajectories.

nodes at timer. At the end of the round, a novel policy N
is generated and is employed in the following run. Unless 1
otherwise specified, results in this section have been rodxdali ,
with a,, = 1/(10 - m).

Fig 2 illustrates a specific run for the case when the source
estimates the parametgf of the best static policy. The figure
shows that the estimate¥,, evaluated by the source are
noisy, due to the limited number of samples per estimate.
Nevertheless, the convergence of the algorithm is evident b)
from the dynamics of the contrgl, i.e. the static forwarding
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probability, which stabilizes after about 20 rounds around I

the optimal valuep* (the horizontal line). For the sake of ST Rondingex 0 %
completeness, we also reported the time evolutioAofK ),

obtained during the run of the algorithm (Fig 2b)). Fig. 5. Algorithm employing Polyak’s averages applied tosttic and b)

We repeated the same experiment in the case of the optinhadshold forwarding policies.
threshold policies. In this case, the source tries to eséima
the optimal threshold*, and the dynamics of the estimated
parameter is depicted in Fig 3c). We observe that the convef-the Polyak-like averaging technique, as we choose ardarge
gence time is similar to that measured in the case of thest&gquenceq,, = 1/(10 - n*/?), from which we expect faster
policies. This is due to the fact that in both cases the s&iitha convergence but a more noisy estimate.
approximation algorithm estimates the same parametand Again, in Fig. 5 we reported the results of the stochastic ap-
even if the distribution ofX,, (but not its expected value) proximation procedure: we superimposed the plain stoithast
is different for static and threshold policies, the seqeeot estimation of6,,, based on the chosen, coefficients, and
estimates converges with probability one to the solutiothef the output, obtained using the control from (16). We note
same ODE, as mentioned in Sec. IV. the smoothing performed by the Polyak averaging over the
Concerning this issue, Fig. 4 shows the dynamics of a progstimated optimal control values, both in the case of static
erly rescaled version (according to considerations in Remapolicies and in the case of threshold policies. Although thi
4.1) of the controlled variable for the static control cagaiast a particular case, it shows, as anticipated in Sec. IV thit it
the solutions of the ODE (Eg. (15)). We averaged the trajgctapossible to increase the speed of convergence of the digorit
over10 runs of the algorithm. It can be observed that, after &5y means of faster sequences, i.e. approaching fasterithe ta
initial transient phase, the trajectory of the control nisnthe of the ODE dynamics, while reducing at the same time the
original ODE; we superimposed the maximum and minimugstimation noise by averaging.
values of the trajectories for the sake of completenesss Thi 2) Nash Equilibrium:In the game theoretical framework,
pictorial representation confirms that the convergencedpdhe result on the existence of a Nash equilibrium poses the
of the algorithm is basically dictated by the dynamics of thguestion whether such equilibrium is Pareto optimal. The
related ODE solutions. answer is not straightforward since the success probabilit
1) Polyak’s averagesAs mentioned in Sec. IV, a slowly depends on the number of nodes involved, on the number of
decayingu,, obtains a fast convergence to the ODE asymptotitasses and on the underlying encounter process.
value, i.e. in our case t8. The price to pay is a lower rejection For such reason, we resorted to numerical simulations in
to noise, with larger oscillations. Here, we show the benebitder to get better insight. In particular, we considered/a t
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Fig. 6. Performance at the Nash equilibrium compared todbkalicase and
to a static strategyr =200 s, ¥ = N — 1.

(7]
player game where each DTN ha§ = N, = 5,6, 7 nodes,
and we rescaled the reference playground sidé te 100  [g]
m. Also, 7 = 200 s in this experiments. We repeated game
rounds in order to measure the impact of the different sifese
under the collision model. As depicted in Fig. 6, at the Nasly
equilibrium, the success probability is smaller than the on
experienced in isolation by single players using the optim%o]
threshold policy. This was expected, due to the effect of
collisions. But, as shown in Fig. 6, if each class adopts th¥]
best static policy, the social outcome can be improved. We
observe that this is not an equilibrium, because a classdvogiz]
find more convenient to switch to its optimal threshold pglic
but it provides numerical evidence that the Nash equilihriu[ls]
is not Pareto optimal.

[14]

VII. CONCLUSIONS [15]

In this paper we introduced a discrete time model for
the control of mobile ad hoc DTNs. We provided closeH®
form expressions for static and dynamic policies for tw@-hqga7)
routing. Based on such results, we provided an algorithm,
based on the theory of stochastic approximations, thatlesa
all nodes in the DTN to tune independently and optimally the
parameters of static and dynamic optimal forwarding pe$ici
adapting to the current operating conditions of the systeHﬁ
This algorithm does not require message exchanges to epefza
and, more important, it guarantees convergence to optimal
policies without the need to estimate global parameters of
the DTN, such as the number of nodes or the intermeetipg;
intensities. We believe that these features are very aingeal
for DTNs scenarios, where the estimation of global parametézz]
is extremely challenging due to the absence of persistepy
connectivity.

Finally, the discrete model has been applied to the case[g‘]
competing DTNs: we studied a class of cost coupled Markov
games where players are different groups of mobiles, and
the coupling occurs because of interference at a common
destination node. We have shown that the single class ojptima
policy supports the only possible Nash Equilibrium of this
game.
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