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Abstract—We study in this paper optimal stochastic control
issues in delay tolerant networks. We first derive the structure of
optimal two-hop forwarding policies. In order to be implemented,
such policies require the knowledge of some system parameters
such as the number of mobiles or the rate of contacts between
mobiles, but these could be unknown at system design time
or may change over time. To address this problem, we design
adaptive policies combining estimation and control that allow to
achieve optimal performance in spite of the lack of information.
We then study interactions that may occur in the presence of
several competing classes of mobiles and formulate this as acost-
coupled stochastic game. We show that this game has a unique
Nash equilibrium where each class adopts the optimal forwarding
policy determined for the single class problem.

Index Terms—Stochastic Control, Game Theory, Delay Toler-
ant Networks

I. I NTRODUCTION

Delay–Tolerant Networks (DTNs) are sparse and/or highly
mobile wireless ad hoc networks where no continuous connec-
tivity guarantee can be assumed [1], [2]. One central problem
in DTNs is related to the routing of packets towards the
intended destination. Protocols developed in the mobile adhoc
networks field, indeed, fail since a complete route to the desti-
nation may not exist most of the time. One common technique
for overcoming such problem is to disseminate multiple copies
of the message in the network, enhancing the probability that
at least one of them will reach, within a suitable time-frame,
the destination node [3]. This is referred to as epidemic-style
forwarding [4]. Alike the spread of infectious diseases, each
time a message-carrying node encounters a new node not
having a copy thereof, it mayinfect this new node by passing
on a message copy; newly infected nodes, in turn, may behave
similarly. The destination receives the message when meetsan
infected node.

In this paper we consider the zero knowledge scenario [5],
[6], where mobile nodes have noa priori information on the
encounter pattern. Moreover we constrain the analysis to the
case when the source of the message can copy it, while the
other infected nodes can only forward it to the destination.
This is referred to as two-hop forwarding [7]. We investigate
the problem of optimal stochastic control of such routing
protocol. The control variable is the probability of transmitting
a message upon a suitable transmission opportunity (i.e.,
contact). The goal is to optimize the probability to deliver

a message, while satisfying specific energy constraints. The
main contributions of our work summarizes as follows:

• We introduce a discrete–time framework to model mes-
sage diffusion in DTNs; within such framework, we
characterize analytically the structure of optimal policies
for routing control using sample path techniques. In
particular, threshold policies are proved optimal.

• We introduce online estimation algorithms so that nodes
can learn online optimal policies in a-priori unkwon net-
work scenarios. These algorithms are based on stochastic
approximation theory. Convergence to the optimal control
policies, under suitable conditions, is analytically derived.

• We extend the problem of optimal control to the case
of several competing classes of mobile terminals. The
framework, in this case, is that of cost–coupled stochastic
games [8], [9]. We prove that the game has a unique Nash
equilibrium where each class adopts the optimal forward-
ing policy determined for the single class problem.

Simulations confirm analytical results and provide further
insights.

The control of forwarding schemes has been addressed in
DTNs literature before. In [10], the authors propose an epi-
demic forwarding protocol based on the Susceptible-Infected-
Removed (SIR) model [11] and show that it is possible
to increase the message delivery probability by tuning the
parameters of the underlying SIR model. In [12] a detailed
general framework is proposed in order to capture the relative
performances of different adaptive strategies. None of these
two papers formalize a specific optimization problem. In [5]
and its follow-up [6], the authors assume the presence of a set
of special mobile nodes, the ferries, whose mobility can be
controlled. Algorithms to design ferry routes are proposedin
order to optimize network performance. Works more similar
to ours are [13], [14], [15]. In [13] the authors consider buffer
constraints and derive, based on some approximations, buffer
scheduling policies in order to minimize the delivery time.The
optimization goal in [14] can be considered a relaxed version
of our problem (e.g., the weighted sum of delivery time and
energy consumption), also in this case the optimal policy isa
threshold one. Also, under a fluid model approximation, the
work in [15] provides a general framework for the optimal
control of a broad class of so called monotone relay strategies.



2

Apart from the differences in the optimization functions, most
of the above works do not address the problem of online
estimation of optimal policies; an attempt is done in [12], [13]
based on some heuristics for the estimation.

Finally, to the best of our knowledge, this is the first
formulation of a game with competing nodes in a DTN
scenario.

The remainder of the paper is organized as follows. The
system model is introduced in Sec. II. The structure of optimal
control policies is derived in Sec. III. Methods for optimization
in the presence of unknown system’s parameters are presented
in Sec. IV. The multiclass case is introduced in Sec. V.
Numerical results are presented in Sec. VI. Sec. VII concludes
the paper.

II. SYSTEM MODEL

Consider a network ofN + 1 mobile nodes, each equipped
with some form of proximity wireless communications. The
network is assumed to be sparse, so that, at any time instant,
nodes are isolated with high probability. Communication op-
portunities arise whenever, due to mobility patterns, two nodes
get within mutual communication range. We refer to such
events as “contacts”.

The time between subsequent contacts of any pair of nodes
is assumed to follow an exponential distribution with param-
eter λ > 0. The validity of this model for synthetic mobility
models (including, e.g., Random Walk, Random Direction,
Random Waypoint) has been discussed in [16]. There exist
studies based on traces collected from real-life mobility [17]
that argue that inter-contact times may follow a power-law
distribution. Recently, the authors of [18] have shown that
these traces and many others exhibit exponential tails after
a cutoff point. For this reason, we choose to stick with
the exponential meeting time assumption, which makes our
analysis tractable.

There can be multiple source-destination pairs, but we as-
sume that at a given time there is a single message, eventually
with many copies, spreading in the network1. For simplicity
we consider a message originated at timet = 0. We assume
that the message that is transmitted is relevant during some
time τ . This applies, e.g., to environmental information or data
referring to events of transient nature (e.g., happenings). The
message contains a time stamp reporting its generation time, so
that it can be deleted at all nodes when it becomes irrelevant.
We do not assume any feedback that allows the source or other
mobiles to know whether the message has been successfully
delivered to the destination within the timeτ .

We focus on a set of relaying strategies that can be defined
as probabilistic two-hop routing strategies. At each encounter
between the source and a mobile that does not have the
message, the message is relayed with some probability taking
values inU = [umin, umax]. If a mobile different from the

1Results in sections III and IV are valid even for multiple messages at the
same time, but we assume that the bandwidth and the buffer arelarge enough
to assure that the different propagation processes are independent.

source has a copy of the message then it transfers it only to
the destination.

We adopt a discrete time model, considering a time slot
duration∆. The n–th slot corresponds to interval[n∆, (n +
1)∆) and the number of slots is equal toK = ⌊τ/∆⌋.
In this discrete time model, we assume that a mobile that
receives a copy during a time slot can forward it starting from
the following time slot. Moreover the forwarding probability
during [n∆, (n + 1)∆) is a constant and it is denoted byun.

Let Xn be the number of mobiles, not including the desti-
nation, that have a copy of the message at timen∆ (i.e. at the
beginning of then–th slot),X0 = 1. Under the assumptions
above,Xn is a Markov chains with possible states1, 2, · · ·N .
The transition rates depend on the forwarding probability
used by the source in each time slot, so a natural way to
optimize performance system is to control such forwarding
probabilities.

The problem we address in this paper is tomaximize the
probability to deliver the messageby the K-th time slot,
under a constraint on the expected number of infected nodes.
The number of infected nodes is related to the total energy
consumption. In particular they are simply proportional if
we assume that i) for each transmission a constant amount
of energy is consumed, ii) all the other activities require a
negligible amount of energy. We want to determine optimal
time-dependant forwarding policies the source can implement.
More formally we define a forwarding policy (control policy)
as a functionµ : {0, 1, 2, · · ·K − 1} → U .

In what follows a key role will be played by two types of
forwarding policies,static and thresholdpolicies, defined as
follows:

Definition 2.1: A policy µ is astaticpolicy if µ is a constant
function, i.e.µ(n) = p ∈ U, for n = 0, 1, 2, K − 1. A policy
µ is a thresholdpolicy, if there existh ∈ {0, 1, 2, · · ·K − 1}
(the threshold) such that

µ(n) =

{

umax, if n < h

umin, if n > h
(1)

Observe that static and threshold policies are identified bya
few parameters: the controlp for static policies, and the thresh-
old h and the corresponding valueµ(h) for dynamic policies,
which leads to a simple implementation. With static policies,
at each communication opportunity, the message is forwarded
with a constant probabilityp. Conversely, with threshold
policies, each time a mobile has a forwarding opportunity,
it checks the timet elapsed since the message generation time
and it forwards the message with some probabilityu(t), i.e.
they require a dynamic approach2.

It is worth noticing that static and threshold policies are
defined based on few parameters only, i.e., the controlp for
static policies, and the thresholdh and the corresponding
value µ(h) for dynamic policies, which leads to a simple
implementation.

2Incidentally, timet can be traced just summing up the time elapsed at
each node with no need for nodes’ synchronization.
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Symbol Meaning
N + 1 number of nodes
λ pairwise intermeeting intensity
τ timeout value
K ⌊τ/∆⌋
∆ time slot
Xn number of nodes having a copy of the message at timen∆
Ψ maximum expected number of infected nodes
FD(n) probability that the message is delivered by timen∆
µ(·) control policy
un value taken by the control variable (i.e., forwarding probabil-

ity) at time n∆
p value taken by the control variable under static policy
h time threshold
θ =

PK−1
k=0 uk

β θ value for the optimal policy
ζn,m(j) indicator that thej–th mobile, among theN − Xn ones that

do not have the message at timen∆, receives it during the
next m slots

Qn,m probability that a mobile does not receive the message during
time slotsn, n + 1, ..., n + m − 1

γn(s) = E[exp(−sξ0,n(1)]
X∗

n(s) Laplace-Stieltjes transform ofXn

Xm estimate of E[XK ] at the m-th round of the stochastic
approximation algorithm

ΠH(u) projection of the valueu on the intervalH
{·}(i) superscrit indicates that the quantity refers to thei-th class of

mobile nodes

Y
(i)
n number of classi infected nodes that can transmit to the

destination during then-th time slot
Sn total number of infected nodes that can transmit to the desti-

nation during then-th time slot

S
(−i)
n total number of infected nodes that can transmit to the desti-

nation during then-th time slot but classi ones

TABLE I
NOTATION USED THROUGHOUT THE PAPER

In the following section we characterize optimal static and
threshold policies. Then in Sec. IV we show how the source
can learn online the optimal policy. In Table I the notation
used throughout the paper is reported.

III. C HARACTERIZATION OF OPTIMAL POLICIES

We defineFD(n) the probability that a message generated
at time0 is received beforen∆, i.e. FD(·) is the CDF of the
message delay (considering the messages not delivered byτ
as delivered att = ∞).

We want to derive policies that maximizeFD(K), while
satisfying the following constraint on the expected numberof
infected nodes: E[XK ] ≤ Ψ.

We first characterize the evolution ofXn. Let ζn,m(j) be
the indicator that thej–th mobile among theN −Xn mobiles
that do not have the message at timen∆, receives the message
during (n∆, (n + m)∆]. Then we have

Xn+m = Xn +

N−Xn
∑

j=1

ζn,m(j). (2)

Variablesζn,m(j) are i.i.d. Bernoulli random variables with
expected value:

E [ζn,m(j)] = 1 − exp(−λ∆

m−1
∑

k=n

uk) = 1 − Qn,m, (3)

where Qn,m is then the probability that a mobile does not
receive the message in time slotsn, n + 1, ..., n + m − 1.
We observe thatζn,m(j) are stochastically increasing in the
control actionsuk (see [19] for definition and properties of
usual stochastic order). More formally, given a policyµ,
consider the policyµ′ such thatµ′(n) = µ(n) for n 6= k
and µ′(k) > µ(k), and denote asζ′n,m(j), X ′

n and F ′
D()̇

respectively the indicator variables, the number of infected
nodes and the delivery probability function when policyµ′ is
applied, then

ζ′n,m(j) >st ζn,m(j) ∀n < k andm > k.

Moreover being that the number of infected nodesXn (X ′
n)

can be obtained as sum of the indicator variablesζ0,n(j)
(ζ′0,n(j)) (Eq. (2)), it holds

X ′
n >st Xn, ∀n > k.

This formalizes the intuition that the higher the forwarding
probability the higher the number of infected nodes (the same
conclusion can be reached through a simple sample path
reasoning).

From the previous equations we can easily derive the
expected value ofXn, that will be used in the next section:

E[Xn] = X0 + (N − X0) (1 − Q0,n) (4)

Using the Laplace Stieltjes Transform ofXn, X∗
n(s) :=

E[exp(−sXn)], we can derive the following useful formula
for FD(n):

FD(n) = 1 −
n−1
∏

i=0

X∗
i (λ∆). (5)

In order to prove (5), let us defineG(n) = 1 − FD(n∆),
then it follows

G(n + 1)= G(n) Pr{no delivery in the n-th slot|Xn}

= G(n) E
[

Pr
{

no delivery in the n-th slot|Xn

}

]

= G(n) E
[

exp(−λ∆Xn)
]

= G(n)X∗
n(λ∆)

=

n
∏

i=0

X∗
i (λ∆) (6)

From Eq. (5), and above considerations on stochastic or-
derings, it follows that the delivery probability and the final
number of infected nodes are increasing in the control actions
uk. Formally,

Proposition 3.1:Given two policiesµ and µ′, defined as
above, it holds:FD(K) < F ′

D(K), E[XK ] < E[X ′
K ].

A consequence of this proposition is the following corollary:
Corollary 3.1: If an optimal policy exists, either it is the

static policyµmax with µmax(n) = umax, ∀n, or it saturates
the constraint, i.e. E[XK ] = Ψ.
The proofs of the above statements are reported in [20].

We observe that the set of admissible policies could be
empty. It can be verified that this happens if and only if
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the static policyµmin(n) = umin∀n, does not satisfy the
constraint.

In what follows we are going to assume that admissible
policies exist and we are going to characterize policy optimal-
ity. To this purpose it is useful to derive an explicit formula
for the Laplace Stieltjes transform. Let us introduce

γn(s) := E[exp(−sζ0,n(1))] = (1 − Q0,n) exp(−s) + Q0,n

= e−s − (1 − e−s) exp

(

−λ∆
n
∑

k=0

uk

)

(7)

Then X∗
n(s) can be expressed as a function ofγn(s) as

follows:

X∗
n(s) = E[e−sXn ] = E

[

exp

(

−s

(

X0 +

N−X0
∑

i=1

ζ0,n(i)

))]

= e−sX0 (E [exp(−ζ0,n(1))])
N−X0 =

= e−sX0γn(s)N−X0 (8)

We can now introduce the main result of this section.
Theorem 3.1:There exists an optimal threshold policy. A

non threshold policy is not optimal.
Proof: The existence of an optimal policy follows from

elementary properties of Markov decision processes (see for
example [21]). We need simply to prove that a non threshold
policy cannot be optimal.

Let us consider a non threshold policyµ that satisfies the
constraint (E[XK ] ≤ Ψ), then there exists some timek < K
and someǫ > 0 such thatuk < umax−ǫ anduk+1 > umin+ǫ.

Let µ′ be the policy obtained fromµ by settingu′
k = uk +ǫ

andu′
k+1 = uk+1 − ǫ (the other components are the same as

those ofµ). We denote withX ′
n, γ′

n(s), X ′∗
n(s) and F ′

D(·)
the quantities corresponding toµ′.

We notice thatγ′
n(s) = γn(s) for n 6= k and γ′

k(s) =
γk(s) exp(−λ∆ǫ) < γk(s). Then from Eq. (8), it follows that
X ′∗

n(s) = X∗
n(s) for n 6= k, while X ′∗

k(s) < X∗
k (s), which

in turn bringsF ′
D(n∆) > FD(n∆) for n ≥ k. Moreover

X ′∗
K(s) = X∗

K(s) implies that E[X ′
K ] = E[XK ] ≤ Ψ,

then the new policy satisfies the constraint and improves the
delivery probability. Hence a non threshold policyµ cannot
be optimal.

Let us now determine the optimal threshold policy. Due
to Corollary 3.1, the optimal policy isµmax if it satisfies
the constraint. Otherwise, the constraint has to be saturated
and we can obtain the threshold value from Eq. (4), imposing
E[XK ] = Ψ:

Q0,K =
N − Ψ

N − X0
.

Hence
K−1
∑

k=0

uk = −
1

λ∆
log

(

N − Ψ

N − X0

)

=: β (9)

This directly yields the thresholdh∗ of the optimal policy,
by considering thatun = umax for n < h∗ and un = umin

for n > h∗ while satisfying Eq. (9). Thenh∗ = max{h ∈ N :
v(h) = h ·umax +(K −h) ·umin ≤ β}, anduh∗ = β− v(h∗).

In the particular case ofumin = 0, this reduces toh∗ = ⌈β⌉
andv(h∗) = β − ⌊β⌋.

The same reasoning can be applied to determine the best
static policy. In particular it isµmax, if µmax satisfies the
constraint (and in such case the best static policy is also the
optimal one), otherwise Eq. (9) holds, and imposinguk = p∗

for all k, we obtainp∗ = β/K.

IV. STOCHASTIC APPROXIMATIONS FORADAPTIVE

OPTIMIZATION

In this section we introduce methods for achieving the opti-
mal control policies in the case where some parameters (i.e., N
andλ) are unknown. We show that simple iterative algorithms
may be implemented at each node, allowing them to discover
the optimal policy in spite of the lack of information on such
parameters3.

Our approach is based on stochastic approximation theory
[22]. This framework generalizes Newton’s method to de-
termine the root of a real-valued function when only noisy
observations of such function are available.

We consider the two optimization problems:

• Static control: find the constantp∗ ∈ [umin, umax] such
that the policyµ = p∗ has the best performance among
all static policies.

• Dynamic control: find the thresholdh∗ ∈ {0, 1, · · · , K−
1} andµ(h∗) characterizing the optimal policy.

We can approach online estimation of static and dynamic
control in the same way. Let us denoteθ =

∑K−1
k=0 uk, the

sum of the controls used over theK time slots.θ is univocally
determined from the policyµ, but it also identifies univocally
a static or a threshold policy. In fact for the static policy
is µ(n) = p = θ/K, while for the threshold policy it is
h = max{h ∈ N : v(h) = h · umax + (n − h) · umin ≤ θ},
and µ(h) = θ − v(h). Note that if θ = β, then the two
policies are the best static policy and the optimal (threshold)
policy determined in the previous section. Then in both cases
our policy estimation problem comes down to estimateβ.
Again mobiles do not know quantities such asλ, N , etc.,
so that they can not computeβ a priori using Eq. (9). The
stochastic approximation algorithm will estimateβ looking for
the unique solution of a certain function ofθ in the interval
H = [θmin, θmax] = [K · umin, K · umax].

The algorithm works in rounds. Each round corresponds
to the delivery of a set of messages. During a given round, a
policy is used. Let us denote byµm the policy adopted at round
m andθm =

∑K−1
k=0 µm(k) the correspondingθ value. At the

end of each round an estimate of E[XK ] can be evaluated by
averaging the total number of copies made during the round
for each different message. LetXm denote such average.Xm

is used to updateθ, according to the following formula:

θm+1 = ΠH

(

θm + am(Ψ − Xm)
)

, (10)

3Note that the estimation ofN and λ is per se non-trivial in the lack of
persistent connectivity.
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where

ΠH(θ) =







θmax if θ ≥ θmax

θ if θmin ≤ u ≤ θmax

θmin if θ ≤ θmin

is the projection ofθ on the intervalH . As discussed above,
the new policyµm+1 is univocally determined fromθm+1.
Note that the length of a round affects the variability of the
estimatesXm and hence ofθm, but the following convergence
results holds independently from round length.

Theorem 4.1:If the sequence{am} is chosen such that

am ≥ 0 ∀m,
+∞
∑

m=0
am = +∞ and

+∞
∑

m=0
a2

m < +∞, the

sequence of policiesµm converges to the optimal policy with
probability one.

Proof: On the basis of the considerations at the begin of
this section we only need to prove thatθm converges with
probability one toβ. The proof is divided in two parts. First
we prove that the sequenceθm converges to some limit set of
the following Ordinary Differential Equation (ODE)

θ̇ = Ψ − E[XK |θ]. (11)

For this reason the Eq. (10) is said to be the stochastic
approximation of Eq. (11). The convergence is a consequence
of Theorem 2.1 in [22] (page 127). In [20] we show that all
the hypotheses of that theorem hold in our case.

In the second part we show that the solution of such ODE
converges toβ as time diverges.

We observe that from Eq. (4) and Eq. (3)

E[Xm|θm] = E[XK |θm] = N − (N − X0)e
−λ∆θm

so that Eq. (11) can be written as

θ̇ = Ψ − N + (N − X0) e−λ∆θm . (12)

We now need to show that the ODE (12) converges as time
diverges to an asymptotically global fixed point and this isβ.

First, it is easy to check thatθ∗ = β is an equilibrium point
of (12).

Second, asE[XK |θ] is strictly monotonic inθ, the equilib-
rium point is unique. In order to demonstrate the stability of
the estimator, we use the Lyapunov functionV (θ) = (θ−θ∗)2.
Then, we have:

V̇ (θ) = 2(θ − θ∗) · θ̇ = 2

[

θ +
1

λ∆
log

(

N − Ψ

N − X0

)]

·

·
[

Ψ − N + (N − X0) e−λ∆θ
]

< 0 for θ 6= θ∗ (13)

Asymptotic global stability follows in both cases from Lya-
punov’s theorem.

Remark 4.1:Roughly speaking, Theorem 2.1 in [22] shows
that the θm converges to the solutionθ(t) of Eq. (11) for
t ≈ tn, where{tn}n≥0 is the sequence defined as follows:

t0 = 0, tm = tm−1 + am, for m > 0. (14)

By comparing Eq. (10) and Eq. (14), we can observe that
a trade-off arises, typicale of stochastic approximation algo-
rithms in the form (10). In fact, sequences{an} vanishing

slower guarantee a faster convergence to the ODE trajectory
because the series

∑

an diverges faster and thentn in Eq. (14)
is larger. At the same time the corresponding estimation is
noisier since they have weaker filtering capabilities in the
iterates equation (10).

Remark 4.2:After some cumbersome derivation, the closed
form solution of Eq. (12) is:

θ(t) =
1

λ∆
ln
{

eλ∆[(Ψ−N)t+θ(0)]+

+
N − X0

N − Ψ

[

1 − eλ∆(Ψ−N)t
]

}

(15)

In Section VI we will provide numerical evidence of the
convergence of the “tail” of the iterates to the ODE dynamics.

In the description of the algorithm above we have suggested
that the online estimation of the optimal control is obtained
by using in Eq. (10) the estimationXm obtained from
real message transmission. However, in the case of two-hop
routing, we may circumvent this constraint by using a sort
of “virtual messages”: indeed, the stochastic approximation
technique works also if the source simply keeps track of the
number of mobiles itwould infect during the a time window of
durationτ if it hada message to transmit. Then the source can
simply register the contacts and “virtually” apply the policy
keeping track of the nodes it would have infected if it had a
message. If a real message has to be transmitted, the current
policy estimation can be used.

A. Choice of the Sequence{an}

The performance of the stochastic approximation algorithm
(10) is known to depend heavily on the choice of the sequence
{an} [23].

A standard choice isan = C
n ; the optimal value of

C that guarantees the smallest asymptotic variance is [22]
C = ∂E[X(τ)|θ]

∂θ

∣

∣

∣

θ=θ∗

. In general, however,C is unknown (as

it depends on the unknown functionE[X(τ)|θ]) and cannot
be set a priori.

Another possible approach to improve the performance of
(10) is to use techniques such as Polyak’s averages [22], [24].
The idea is to use slower decreasing sequences to let the
iterates converge faster, while using averages to smooth actual
estimates.

In Polyak’s method, we may use a sequencean = O(n−1),
and in particular one that satisfies the conditionan/an+1 =
1 + o(an) and use as estimation ofβ

Θn =
1

n

n
∑

k=1

θk. (16)

In Section VI we will show that using Polyak’s averaging
techniques may obtain advantages in terms of convergence
time to the optimal control.

B. Constant Step Approximations

In a real DTN implementation, we may be interested in
tracking changing conditions. This can be done through by
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considering constant step approximations, i.e., iteratesof the
form:

θa
m+1 = ΠH

(

θa
m + a(Ψ − X

a

m)
)

. (17)

In this way, the system does not “get stuck” at a given
θ∗ but keeps on modifying its behaviour, in an open–ended
fashion. Also for such case, results on convergence can be
derived [20]. In particulaf for small enough step sizea, the
limit process is, with arbitrary high probability, concentrated
in an arbitrary small neighbourhood of the optimal controlθ∗.
This is important in ensuring that the approximation obtained
is close to the optimal control policy.

V. THE MULTICLASS CASE

In this section we model the decentralized stochastic control
problem in the presence of several competing DTNs as a
weakly coupled stochastic game, introduced in [8], [9].

A. The model

Consider a network that containsM classes of mobiles.
There areNm mobile nodes in classm. In each class there is
a source and a mobile of classi stores and forwards only
messages originating from the source of that class. Nodes
adopt two-hop routing. All sources generate messages for the
same destination. Here we assume that message transmission
time is equal to a time slot duration and meetings occur at the
begin of a time slot. The transmission technique uses receiver
based codes, and an arbitration procedure can avoid collisions
among the members of the same class, so that collisions occur
if and only if two or more nodes from different classes are
trying to deliver their messages to the destination at the same
time. We also study the case when the arbitration procedure is
coherently applied from all nodes, so that when many nodes
have the possibility to transmit a message to the destination,
one of them is successful.

We consider two different traffic generation models. In
both cases each source has a single relevant message at a
given time instant. In the first traffic generation model sources
synchronously generate messages with lifetime equal toτ . In
the second one, after a message is delivered or timeτ has
elapsed since its generation, the source can stay idle for a
random amount of time after which a new message will be
generated. Hence sources operate asynchronously.

As in the previous section, it may not be desirable for a
source to transmit a copy of its message at each opportunity it
has since this consumes expensive network resources such as
energy, hence the source can decide to forward the message
with a given probability. Due to interactions among different
mobile classes, a problem of non-cooperative control of those
probabilities arises.

Our problem falls into a category of stochastic games that
was recently introduced in [8], [9], in which each player
control an independent Markov chain and knows only the state
of that Markov chain. The interaction between the players is
due to their utilities or costs which depend on the states and
actions of all players. Indeed in our framework each source

can infect mobile of its own class independently from the
other sources and the only coupling derives from collisions
when transmitting to the destination. The possibility of having
collisions affects the delivery probability.

A different problem is a classless model where a relay
node can be infected by all the available source nodes. In
this case the state needs in general to specify which messages
are carried by each node. Nevertheless if we consider the
synchronous traffic generation model and performance metrics
only depending on the delivery of the first message among the
competing ones, the problem can be addressed in the same
framework [20].

B. A Weakly Coupled Markov Game Formulation

Let X
(i)
n be the number of mobiles of classi that are

infected at timen∆. We consider the following discrete time
stochastic game.

• The players: theM classes of mobiles that act indepen-
dently.

• The actions. If at time n∆ class-i source encounters
a mobile, it attempts transmission with probabilityu

(i)
n .

µ(i) is the time-dependant policy of class-i source. In
this game theoretical framework we refer toµ(i) also as
the strategy of class-i, while µ(−i) denotes the set of
strategies adopted by the other classes.

• The performance index.The utility of each player/class
is the probability of successful delivery,F (i)(K∆). Each
class has also a constraint on the expected number of
infected nodes, i.e.E[X

(i)
K ] ≤ Ψ(i).

• Information. Sourcei is assumed to know onlyX(i)
n and

not knowX
(j)
n for j 6= i. But it knows its statistics. The

precise knowledge ofX(i)
n is possible since the source

i knows exactly to how many mobiles it transmitted the
message for relay. Note that it is not assumed to know if
the message was delivered to the destination.

Let us defineY (i)
n as the number of infected nodes of class

i that can transmit to the destination during then- th time slot
(0 ≤ Y

(i)
n ≤ X

(i)
n ), S

(−i)
n =

∑

j 6=i Y
(j)
n andSn =

∑

j Y
(j)
n =

Y
(i)
n + S

(−i)
n .

A recurrence law analogous to Eq. (6) can be derived for
the CDF of the delivery time of messages of each class. For
example when inter-class collisions at destination cannotbe
avoided, for each classi it holds [20]:

G(i)(n + 1) = G(i)(n)





∏

j

X(j)∗
n (λ∆) +



1 −
∏

j 6=i

X(j)∗
n (λ∆)







 .

For the case of a cross-class arbitration procedure, then one
needs to take into account the possibility that a node of class i
succeeds even in presence of other nodes. In a fair arbitration
scheme this will happen with probabilityY (i)

n /(Y
(i)
n +Y

(−i)
n ).
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Fig. 1. Delay CDF in the case of a) optimal control policy (dashed line) b)
static control (dot-dashed line) and c)p = 1 (dotted line).

We can then derive the following expression forG(i)(n) [20]:

G(i)(n + 1)=G(i)(n)

(

Pr{Sn = 0} +

(1 − Pr{Sn = 0}) E

[

S
(−i)
n

Sn
| Sn > 0

])

.

We observe thatG(i)(n+1) depends on the vectors of control
actions(u(1)

k , u
(2)
k , . . . u

(M)
k ), for k ≤ n−1. Before stating our

main results we introduce the following observation (the proof
is in [20]).

Proposition 5.1:For both the arbitration procedures,G
(i)
n+1

is decreasing in the control actionu(i)
n−1.

Theorem 5.1:If ∀n G(i)(n+1) is decreasing in the control
actionu

(i)
n−1, then the optimal threshold policy for the single-

class case is also the best response to all the possibleµ(−i).
Proof: The proof follows the same steps of that of

Theorem 3.1: given a non-threshold policyµ(i), we build in
the same way a new policyµ′(i). In fact equations (3), (4) and
(8) hold also for each specific classi and the hypothesis on
G

(i)
n permits to conclude thatµ′(i) has better performance.
Remark 5.1:We observe that the result above applies to

both the arbitration schemes and the traffic generation models
considered. In fact the different traffic models, for a givenclass
i, only have an effect on the probability distributions ofX

(−i)
n

andY
(−i)
n , but they not change the best response strategy for

classi.
From the theorem above the following result follows:
Corollary 5.1: The considered game has a unique Nash

equilibrium. This Nash equilibrium is obtained when each
class adopts its optimal singleclass threshold policy.

Proof: The optimal threshold policies are mutual best
responses, so they are a Nash Equilibrium. Moreover whatever
a different set of strategies cannot be a Nash equilibrium,
because at least one class can improve its performance by
adopting the optimal singleclass threshold policy.
In some sense this corollary shows how the single class
optimal policy is also “robust” towards competition with other
classes of nodes. An interesting question is if this Nash

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

S
am

pl
e 

X
m

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

F
D
(τ

)

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Round index

C
on

tr
ol

 pc)

b)

a)

Fig. 2. The dynamics of the stochastic approximation algorithm applied to
the static forwarding policies.

Equilibrium is also Pareto optimal, i.e. if it is also a global
optimum in the sense that there is no other set of strategies
that can guarantee at least the same performance to all the
classes and strictly better performance to at least one class.
Our simulation results in Sec. VI show that this is not the
case.

VI. N UMERICAL RESULTS

Numerical results have been obtained simulating the
discrete-time system with Matlab.

The intensityλ of the pairwise meeting process has been
selected considering a standard Random Waypoint (RWP)
mobility scenario. In fact it is known [16], that for the
RWP where nodes move with constant velocityλ = 8wRv

πL2 ,
whereL is the playground size,R the communication range,
w = 1.3683 is a constant andv is the scalar speed of nodes.
Here, we have chosenL = 5000 m, N = 200, R = 15 m and
v = 5 m/s. The corresponding value isλ = 1.0453×10−5 s−1.
Unless otherwise specified, results have been obtained with
∆ = 10s, τ = 20000, Ψ = 20, umin = 0 andumax = 1.

A. Discrete control policies

In the first set of experiments, we simulated the discrete con-
trol policies in order to evaluate their relative performances. In
Fig. 1 we reported the comparison of the optimal control policy
and the best static control policy. For the considered setting,
we obtainh∗ = 911 for the optimal threshold policy, and
p∗ = 0.46 for the static policy. It can be noticed that the static
policy attains a much lower success probability, whereas, as
expected, the delay CDFs under the optimal control and under
the policyµ(n) = 1 coincide at times smaller thanh∗∆.

B. Stochastic Approximation

In the following we consider the stochastic approximation
algorithm described in Sec. IV and we show that it is able to
learn the optimal control both for static and dynamic controls.
The setting is similar to what described above, but in this
case several rounds are performed (see Sec. IV). Basically,
the source performs for each round a sample measurement of
Xm, based on30 different estimates of the number of infected
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Fig. 3. The dynamics of the stochastic approximation algorithm applied to
the optimal forwarding policies.

nodes at timeτ . At the end of the round, a novel policy
is generated and is employed in the following run. Unless
otherwise specified, results in this section have been obtained
with am = 1/(10 · m).

Fig 2 illustrates a specific run for the case when the source
estimates the parameterp∗ of the best static policy. The figure
shows that the estimatesXm evaluated by the source are
noisy, due to the limited number of samples per estimate.
Nevertheless, the convergence of the algorithm is evident
from the dynamics of the controlp, i.e. the static forwarding
probability, which stabilizes after about 20 rounds around
the optimal valuep∗ (the horizontal line). For the sake of
completeness, we also reported the time evolution ofFD(K),
obtained during the run of the algorithm (Fig 2b)).

We repeated the same experiment in the case of the optimal
threshold policies. In this case, the source tries to estimate
the optimal thresholdh∗, and the dynamics of the estimated
parameter is depicted in Fig 3c). We observe that the conver-
gence time is similar to that measured in the case of the static
policies. This is due to the fact that in both cases the stochastic
approximation algorithm estimates the same parameterβ and
even if the distribution ofXm (but not its expected value)
is different for static and threshold policies, the sequence of
estimates converges with probability one to the solution ofthe
same ODE, as mentioned in Sec. IV.

Concerning this issue, Fig. 4 shows the dynamics of a prop-
erly rescaled version (according to considerations in Remark
4.1) of the controlled variable for the static control case against
the solutions of the ODE (Eq. (15)). We averaged the trajectory
over10 runs of the algorithm. It can be observed that, after an
initial transient phase, the trajectory of the control mimics the
original ODE; we superimposed the maximum and minimum
values of the trajectories for the sake of completeness. This
pictorial representation confirms that the convergence speed
of the algorithm is basically dictated by the dynamics of the
related ODE solutions.

1) Polyak’s averages:As mentioned in Sec. IV, a slowly
decayingan obtains a fast convergence to the ODE asymptotic
value, i.e. in our case toβ. The price to pay is a lower rejection
to noise, with larger oscillations. Here, we show the benefit
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Fig. 4. The convergence of the dynamics of the control variable against the
reference ODE; at the time scaletn and averaged over10 sample trajectories
in the case of static control. Thin dash-dotted lines delimit the maximum and
minimum values attained by the estimate trajectories.
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of the Polyak-like averaging technique, as we choose a larger
sequence,an = 1/(10 · n2/3), from which we expect faster
convergence but a more noisy estimate.

Again, in Fig. 5 we reported the results of the stochastic ap-
proximation procedure: we superimposed the plain stochastic
estimation ofθn, based on the chosenan coefficients, and
the output, obtained using the control from (16). We note
the smoothing performed by the Polyak averaging over the
estimated optimal control values, both in the case of static
policies and in the case of threshold policies. Although this is
a particular case, it shows, as anticipated in Sec. IV that itis
possible to increase the speed of convergence of the algorithm
by means of faster sequences, i.e. approaching faster the tail
of the ODE dynamics, while reducing at the same time the
estimation noise by averaging.

2) Nash Equilibrium: In the game theoretical framework,
the result on the existence of a Nash equilibrium poses the
question whether such equilibrium is Pareto optimal. The
answer is not straightforward since the success probability
depends on the number of nodes involved, on the number of
classes and on the underlying encounter process.

For such reason, we resorted to numerical simulations in
order to get better insight. In particular, we considered a two-
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player game where each DTN hasN1 = N2 = 5, 6, 7 nodes,
and we rescaled the reference playground side toL = 100
m. Also, τ = 200 s in this experiments. We repeated game
rounds in order to measure the impact of the different strategies
under the collision model. As depicted in Fig. 6, at the Nash
equilibrium, the success probability is smaller than the one
experienced in isolation by single players using the optimal
threshold policy. This was expected, due to the effect of
collisions. But, as shown in Fig. 6, if each class adopts the
best static policy, the social outcome can be improved. We
observe that this is not an equilibrium, because a class would
find more convenient to switch to its optimal threshold policy,
but it provides numerical evidence that the Nash equilibrium
is not Pareto optimal.

VII. C ONCLUSIONS

In this paper we introduced a discrete time model for
the control of mobile ad hoc DTNs. We provided closed
form expressions for static and dynamic policies for two-hop
routing. Based on such results, we provided an algorithm,
based on the theory of stochastic approximations, that enables
all nodes in the DTN to tune independently and optimally the
parameters of static and dynamic optimal forwarding policies,
adapting to the current operating conditions of the system.
This algorithm does not require message exchanges to operate
and, more important, it guarantees convergence to optimal
policies without the need to estimate global parameters of
the DTN, such as the number of nodes or the intermeeting
intensities. We believe that these features are very appealing
for DTNs scenarios, where the estimation of global parameters
is extremely challenging due to the absence of persistent
connectivity.

Finally, the discrete model has been applied to the case of
competing DTNs: we studied a class of cost coupled Markov
games where players are different groups of mobiles, and
the coupling occurs because of interference at a common
destination node. We have shown that the single class optimal
policy supports the only possible Nash Equilibrium of this
game.
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