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Abstract

We introduce Markov Decision Evolutionary Games with
N players, in which each individual in a large population
interacts with other randomly selected players. The states
and actions of each player in an interaction together de-
termine the instantaneous payoff for all involved players.
They also determine the transition probabilities to move to
the next state. Each individual wishes to maximize the to-
tal expected discounted payoff over an infinite horizon. We
provide a rigorous derivation of the asymptotic behavior
of this system as the size of the population grows to infin-
ity. We show that under any Markov strategy, the random
process consisting of one specific player and the remaining
population converges weakly to a jump process driven by
the solution of a system of differential equations. We char-
acterize the solutions to the team and to the game prob-
lems at the limit of infinite population and use these to con-
struct almost optimal strategies for the case of a finite, but
large, number of players. We show that the large popu-
lation asymptotic of the microscopic model is equivalent
to a (macroscopic) Markov decision evolutionary game in
which a local interaction is described by a single player
against a population profile. We illustrate our model to de-
rive the equations for a dynamic evolutionary Hawk and
Dove game with energy level.

1. Introduction

We consider a large population of players in which fre-
quent interactions occur between small numbers of chosen
individuals. Each interaction in which a player is involved
can be described as one stage of a dynamic game. The state
and actions of the players at each stage determine an imme-
diate payoff (also called fitness in behavioral ecology) for
each player as well as the transition probabilities of a con-
trolled Markov chain associated with each player. Each
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player wishes to maximize its expected fitness averaged
over time.

This model extends the basic evolutionary games by in-
troducing a controlled state that characterizes each player.
The stochastic dynamic games at each interaction replace
the matrix games, and the objective of maximizing the ex-
pected long-term payoff over an infinite time horizon re-
places the objective of maximizing the outcome of a matrix
game. Instead of a choice of a (possibly mixed) action, a
player is now faced with the choice of decision rules (called
strategies) that determine what actions should be chosen at
a given interaction for given present and past observations.

This model with a finite number of players, called a
mean field interaction model, is in general difficult to ana-
lyze because of the huge state space required to describe the
sate of all players. Then taking the asymptotics as the num-
ber of players grows to infinity, the whole behavior of the
population is replaced by a deterministic limit that repre-
sents the system’s state, which is fraction of the population
at each individual state that use a given action.

In this paper we study the asymptotic dynamic behav-
ior of the system in which the population profile evolves in
time. For large N, under mild assumptions (see Section 3),
the mean field converges to a deterministic measure that
satisfies a non-linear ordinary differential equation for un-
der any stationary strategy. We show that the mean field
interaction is asymptotically equivalent to a Markov deci-
sion evolutionary game. When the rest of the population
uses a fixed strategy u, any given player sees an equivalent
game against a collective of players whose state evolves ac-
cording to the ordinary differential equation (ODE) which
we explicitly compute. In addition to providing the ex-
act limiting asymptotic, the ODE approach provides tight
approximations for fixed large N. The mean field asymp-
totic calculations for large N for given choices of strategies
allows us to compute the equilibrium of the game in the
asymptotic regime.

Related Work. Mean field interaction models have al-
ready been used in standard evolutionary games in a com-
pletely different context: that of evolutionary game dynam-
ics (such as replicator dynamics) see e.g. [8] and refer-
ences therein. The paradigm there has been to associate
relative growth rate to actions according to the fitness they
achieved, then study the asymptotic trajectories of the state



of the system, i.e. the fraction of users that adopt the dif-
ferent actions. Non-atomic Markov Decision Evolutionary
Games have been applied in [9] to firm idiosyncratic ran-
dom shocks and in [1] to cellular communications.

Structure. The remainder of this paper is organized as
follows. In next section we present the model assumptions
and notations. In Section 3 we present some convergence
results of the ODE in the random number of interacting
players. In Section 4 a resource competition between ani-
mals with two types of behaviors and several states is pre-
sented. All the sketch of proofs are given in Appendix.
Section 5 concludes the paper.

2. Model description

2.1. Markov Decision Evolutionary Process With
N Players

We consider the following model, which we call Markov
Decision Evolutionary Game with N players.
• There are N ∈ N players.
• Each player has its own state. A state has two compo-

nents: the type of the player and the internal state. The type
is a constant during the game. The state of player j at time
t is denoted by XN

j (t) = (θ j,SN
j (t)) where θ j is the type.

The set of possible states X = {1, . . . ,Θ}×S is finite.
• Time is discrete, taking values in N

N := {0, 1
N , 2

N , . . .}.
• The global detailed description of the system at time

t is XN(t) = (XN
1 (t), . . . ,XN

N (t)).
Define MN(t) to be the current population profile i.e

MN
x (t) = 1

N ∑
N
j=1 1{XN

j (t)=x}. At each time t, MN(t) is in

the finite set {0, 1
N , 2

N , . . . ,1}]X . and MN
θ ,s(t) is the frac-

tion of players who belong to population of type θ (also
called subpopulation θ ) and have internal state s. Also let
M̄N

θ
= N ∑

N
s∈S MN

θ ,s(t) be the size of subpopulation θ (inde-
pendent of t by hypothesis). We do not make any specific

hypothesis on the ratios M̄N
θ

N as N gets large (it may be con-
stant or not, it may tend to 0 or not).
• Strategies and local interaction: At time slot t, an

ordered list BN(t), of players in {1,2, . . . ,N}, without rep-
etition, is selected randomly as follows. First we draw a
random number of players K(t) such that

P(K(t) = k|MN(t) = ~m) = JN
k (~m)

where the distribution JN
k (~m) is given for any N, ~m ∈

{0, 1
N , 2

N , . . . ,1}]X . Second, we set BN to an ordered list
of K(t) players drawn uniformly at random among the
N(N− 1)...(N−K(t)+ 1) possible ones. By abuse of no-
tation we write j ∈BN(t) with the meaning that j appears
in the list BN(t).

Each player such that j ∈BN(t) takes part in a one-shot
event at time t, as follows. First, the player chooses an

action a in the finite set A with probability uθ (a|s) where
(θ ,s) is the current player state. The stochastic array u is
the strategy profile of the population, and uθ is the strategy
of subpopulation θ . A vector of probability distributions u
which depend only on the type of the player and its internal
state is called stationary strategy.

Second, say that BN(t) = ( j1, . . . , jk). Given the actions
a j1 , ...,a jk drawn by the k players, we draw a new set of
internal states (s′j1 , ...,s

′
jk) with probability LN

θ ;s;a;s′(k,~m),

where θ = (θ j1 , ...,θ jk), s = (s j1 , ...,s jk)
a = (a j1 , ...,a jk), s′ = (s′j1 , ...,s

′
jk)

Then the collection of k players makes one synchronized
transition, such that

SN
ji(t +

1
N

) = s′ji i = 1, . . . ,k

Note that SN
j (t + 1

N ) = SN
j (t) if j is not in BN(t).

It can easily be shown that this form of interaction has
following properties: (1) XN is Markov and (2) players can
be observed only through their state.

The model is entirely specified by the probability distri-
butions JN , the Markov transition kernels LN and the strat-
egy profile u. In this paper, we assume that JN and LN are
fixed for all N, but u can be changed and does not depend
on N (though it would be trivial to extend our results to
strategies that depend on N, but this appears to be unneces-
sary complication). We are interested in large N.

It follows from our assumptions that

1. MN(t) is Markov.

2. for any fixed j ∈ {1, . . . ,N}, (XN
j (t),MN(t)) is

Markov. This means that the evolution of one spe-
cific player XN

j (t) depends on the other players only
through the occupancy measure MN(t).

2.2. Payoffs

We consider two types of instantaneous payoff and one
discounted payoff:
• Instant Gain: This is the random gain GN

j (t) obtained
by one player whenever it is involved in an event at time t.
We assume that it depends on this player’s state just before
the event and just after the event, the chosen action, and on
the states and actions of all players involved in this event.
Formally, if player j ∈BN(t)

GN
j (t) = gN(x j,a j,x′j,xBN(t)\ j,aBN(t)\ j,x

′
BN(t)\ j)

where x j = XN
j (t), a j is the action chosen by player j, x′j =

XN
j (t + 1

N ), xBN(t)\ j [resp. x′
BN(t)\ j] is the list of states at



time t [resp. at time t + 1
N ] of players other than j involved

in the event, aBN(t)\ j is the list of their actions and g() is
some non random function defined on the set of appropriate
lists. Whenever j is not in BN(t), GN

j (t) = 0. We assume
that GN

j (t) is bounded, i.e. there is a non random number
C0 such that, with probability 1: for all j, t: |GN

j (t)| ≤C0
• Expected Instant Payoff: It is defined as the expected

instant gain of player j, given the state x of j and the popu-
lation profile ~m. By our indistinguishability assumption, it
does not depend on the identity of a player, so we can write
it as

rN(u,x,~m) := E
(
GN

j (t)
∣∣XN

j (t) = x,MN(t) = ~m
)

Note that this conditional expectation contains the case
when j is not in BN(t), i.e. when GN

j (t) = 0.
• Discounted Long-Term Payoff: It is defined as the ex-

pected discounted long term payoff of one player, given the
initial state of this player and the population: r̄N(u;x,~m) :=

E(
∞

∑
t=0 step 1/N

e−β tGN
j (t)|X j(0) = x,MN(0) = ~m)

where β is a positive parameter (existence follows from
the boundedness of GN

j ). The fact that it does not depend
on the identity j of the player, but only on its initial state x
and the initial population profile ~m, follows from the indis-
tinguishability assumption.

We defined the Discounted Long-Term Payoff in terms
of the instant gain, as this is the most natural definition. The
following proposition shows that the alternative definition,
by means of the expected instant payoff, is equivalent.

Proposition 2.2.1. For all player state x and population
profile ~m

r̄N(u;x,~m) = E(
∞

∑
t=0 step 1/N

e−β trN(u,XN
j (t), ~MN(t))

|X j(0) = x,MN(0) = ~m)

2.3. Focus on One Single Player

We are interested in the following special case (here we
make the dependency on the strategy explicit). There are
two types of players, i.e. Θ = 2. There is exactly one player
(the player of interest) with type 1. All other players have
type 2. In this case we use the notation RN(u1,u2;s,~m)
for the discounted long-term payoff obtained by the player
in type 0, when her strategy is u1 and all other players’s
strategy is u2, given that this player’s initial internal state is
s and the initial type 2 subpopulation profile is ~m. Note that

RN(u1,u2;s,~m) = r̄N(u1,u2;(1,s),~m′)

with m′1,s′ =
1
N 1s=s′ and m′2,s′ = m2,s′ for all s′ ∈S .

Markov Decision Evolutionary Game

Player j may choose a strategy u j. We look for a (Nash)
equilibrium u such that if all players use u then no player
has an incentive to deviate from u. For any finite N one can
map this into a standard Markov game. This is true for both
the case where the number of players is known and in the
case it is unknown when taking a decision. Therefore we
know that a stationary equilibrium exists in the discounted
case. A stationary equilibrium is solution of the fixed point
equation:

∀ j, u j,θ ∈ argmax
v j,θ

RN(v j,θ ,u− j;s,m)

By assuming symmetry per type we can show that a sta-
tionary equilibrium exists which is a solution of the fixed
point equation

∀θ ,uθ ∈ argmax
vθ

RN(vθ ,u;s,m)

Markov Decision Evolutionary Team

We wish to find a stationary u that maximizes RN aver-
aged over all players.

u = (u1, . . . ,uΘ) ∈ argmax
v

RN(v;s,m)

3. Main Results

3.1. Scaling Assumptions

We are interested in the large N regime and obtain that,
for any fixed j, (XN

j ,MN) converges weakly to a simple
process. This requires the weak convergence of MN(0) to
some ~m0.

We assume that the parameters of the model and the pay-
off per time unit converge as N→ ∞, i.e.

JN
k (~m)→ Jk(~m)

LN
θ ;s;a;s′(k,~m)→ Lθ ;s;a;s′(k,~m)

rN(u,x,~m)→ r(u,x,~m)
(1)

Our main scaling assumption is

H1 ∑k k2Jk(~m) < ∞ for all ~m ∈ ∆. This ensures that the
second moment of the number of players involved in
an event per time slot is bounded.

Note that H1 excludes the case where the number of play-
ers involved in an event per time slot scales like N (i.e. syn-
chronous transitions of all players at the same time). There
may be large N asymptotic results for such cases [10] but
the limit is not given by an ODE. In contrast, H1 is auto-
matically true if the number of players involved in an event



per time slot is upper bounded by a non random constant.
We also need some technical assumptions, which are usu-
ally true and can be verified by inspection.

H2 ∑k Jk(~m) > 0 for all ~m ∈ ∆ (∆ is the simplex {~m :
mθ ,s ≥ 0,∑θ ,s mθ ,s = 1}). This ensures that the mean
number of players involved in an event per time slot,
∑k≥0 kJk(~m) is non zero.

Define the drift of MN(t) as

~f N(u,~m) = E
(

MN(t +
1
N

)−MN(t)|MN(t) = ~m
)

Note that we make explicit the dependency on the strategy
u but not on J and L, assumed to be fixed.

It follows from our hypotheses that

lim
N→∞

N f N(u,~m) := f (u,~m) (2)

exists.

H3 We assume that the convergence in Equation (2) is uni-
form in ~m and the limit is Lipschitz-continuous in ~m.
This is in particular true if one can write, for every
strategy u, f N(u,~m) = 1

N φu( 1
N ,~m), with φu defined on

[0,ε]×∆ where ε > 0 and Φu is continuously differ-
entiable.

H4 P(XN
j (t + 1/N) = y|XN

j (t) = x,MN(t) = m,MN(t +
1/N) = m′) converges uniformly in ~m,~m′ and the
limit is Lipschitz-continuous in ~m,~m′. This is in par-
ticular true if one can write, for every strategy u, as
ξu,x;y(1/N,m,m′). with ξ defined on [0,1]×∆×∆ and
ξu,x;y is continuously differentiable.

Our model satisfies the assumptions in [2], therefore we
have the following result:

Theorem 3.1.1 ([2]). Assume that limN−→∞ MN(0) = ~m0
in probability. For any stationary strategy u, and any time
t, the random process MN(t) = 1

N ∑
N
j=1 δXN

j (t) converges in
distribution to the (non-random) solution of the ODE

~̇m(t) = f (u,~m(t)) (3)

with initial condition ~m0.

3.2. Convergence results

We focus on one player, without loss of generality we
can call her player 1, and consider the process (XN

1 ,MN).
For any finite N, XN

1 and MN are not independent, however
in the limit we have the following:

Theorem 3.2.1. Assume that limN−→∞ MN(0) = ~m0 and
limN−→∞ XN

1 (0) = x0 = (θ1,s0) in probability. The dis-
crete time process (XN

1 (t),MN(t)) defined for t ∈ N
N , con-

verges weakly to the continuous time jump and drift pro-
cess (X1(t),~m(t)), where ~m(t) is solution of the ODE Equa-
tion (3) with initial condition ~m0 and X1(t) is a continuous
time, non homogeneous jump process, with initial state x0.
The rate of transition of X1(t) from state x1 = (θ1,s1) to
state x′1 = (θ1,s′1) is

A(x1,x′1;~m(t),u) = ∑
k≥1

Jk(~m)Ak(s1,s′1;~m(t),u)

with Ak(s1,s′1;~m(t),u) =

∑
θ ;s;a;s′

Lθ1,θ ;s,s;a;s′,s′(k,~m(t))
k

∏
j=1

uθ j(a j|s j)
k

∏
j=2

mθ j ,s j(t)

where θ = (θ2, ...,θk),s = (s2, ...,sk)
a = (a1, ...,ak),s′ = (s′2, ...,s

′
k)

Note that, contrary to results based on propagation of
chaos, we do not assume that the distribution of player
states at time 0 is exchangeable. In contrast, we will use
Theorem 3.2.1 precisely in the case where player 1 is dif-
ferent from other players. Theorem 3.2.1 motivates the fol-
lowing definition.

Definition 3.3. To a game as defined in Section 2.1 we
associate a “Macroscopic Markov Decision Evolutionary
Game”, defined as follows. There is one player, (player 1),
with state X1(t) and a population profile ~m(t). The initial
condition of the game is X1(0) = x, ~m(0) = ~m0. The popu-
lation profile is solution to the ODE (3) and X1(t) evolves
as a jump process as in Theorem 3.2.1.

Further, let r̄(u;x,~m) be the discounted long-term payoff
of player 1 in this game, given that X1(0) = x and ~m(0) =
~m0, i.e. r̄(u;x,~m) =

E
(∫

∞

0
e−β tr(u,X1(t),m(t))|X1(0) = x,~m(0) = ~m0

)
We also consider, as in Section 2.3, the case with Θ =

2 types and define by analogy R(u1,u2;s,~m) as the dis-
counted long-term payoff when player 1 starts in state s
and the population profile starts in state ~m, with player 1
using strategy u1 and other players strategy u2.

In order to exploit the convergence in distribution of the
process focused on one player, we need that the payoff be
continuous in the topology of this convergence. This is
stated in the next theorem.



Theorem 3.3.1. Let E = S ×∆ and DE [0,∞) the set of
cadlag functions from [0,∞) to R, equipped with Skoro-
hod’s topology. The mapping

DE [0,∞) → R

(s,m) 7→
∫

∞

0
e−β tr(u,s(t),m(t)) dt

is continuous.

Using Theorem 3.2.1 and Theorem 3.3.1 we obtain the
following, which is the main result of this paper. It says
that when N goes to infinity, the Markov Decision Evolu-
tionary Game with N(t) of players becomes equivalent to
the associated Macroscopic Markov decision evolutionary
game. This reduces any multi-player problem into an ef-
fective one-player problem.

Theorem 3.3.2 (Asymptotically equivalent game). When
N goes to infinity we have (a) the discrete time process XN

1
converges in distribution to the continuous time process
X1 (b) r̄N(u;x,~m)→ r̄(u;x,~m) and (c) RN(u1,u2;s,~m)→
R(u1,u2;s,~m)

3.4. Case with Global Attractor

Assume that, for some strategy u, the ODE (3) has a
global attractor ~m∗ (this may or may not hold, depending
on the ODE). If in addition the model with N players is
irreducible, with stationary probability distribution ϖN for
MN , then limN−→∞ ϖN = δ~m∗ where δ~m∗ is the Dirac mass
at ~m∗ (follows from [2]). i.e. the large time distribution of
MN(t) converges, as N→ ∞, to the attractor ~m∗.

Also, (XN
j (t),MN(t)) converges to a continuous time,

homogeneous Markov jump process with time-independent
transition matrix:

A(x1,x′1;u) = ∑
k≥1

Jk(~m)Ak(s1,s′1;~m∗,u)

Assume that the transition matrix A(x1,x′1;u) is also irre-
ducible and let π() be its unique stationary probability.
Also let πN be the first marginal of the stationary prob-
ability of (XN

1 ,MN). It is natural in this case to replace
the definition of the long term payoffs RN(u1,u2;s,~m) and
RN(u1,u2;s,~m) by their stationary counterparts

RN
st(u1,u2) := ∑

s
π

N(s)RN(u1,u2;s,~m∗)

Rst(u1,u2) := ∑
s

π(s)R(u1,u2;s,~m∗)

3.5. Single player per type selected per time slot

Consider the special case where at each time slot, only
one player per type between the N is randomly selected and
has a chance to change its action, i.e. ]BN = 1 w.p 1.

Thus H1 and H2 are automatically satisfied. The result-
ing ODE (see [3]) becomes

d
dt

mx(t) = ∑
x′

mx′Lx′,x(~m,u,Θ)−mx ∑
x′

Lx,x′(~m,u,Θ)

The term ∑x′mx′Lx′,x(~m,u,Θ) is the incoming flow in to
x and the outgoing flow from x is mx ∑x′ Lx,x′(~m,u,Θ).

We then obtain a large class of state-dependent evolu-
tionary game dynamics. Note that in general the trajecto-
ries of the mean dynamics need not to converge. In the case
of single player selected in each time slot of 1/N and lin-
ear transition in m, the time averages under the replicator
dynamics converge its interior rest points or the boundaries
of the simplex.

3.6. Equilibrium and optimality

Let Us be the set of strategies. Consider the optimal
control problems

(OPTN)
{

Maximize RN(u,u;s,~m0)
s.t u ∈Us

(OPT∞)
{

Maximize R(u,u;s,~m0)
s.t u ∈Us

The strategy u is an ε−optimal strategy for the N-optimal
control problem if

RN(u,u;s,~m0)≥−ε + sup
v

RN(v,v;s,~m0).

Also consider the fixed-point problems

(FIXN)
{

find u ∈Us such that
u ∈ argmaxv∈Us{RN(v,u;s,~m0)}

(FIX∞)
{

find u ∈Us such that
u ∈ argmaxv∈Us{RN(v,u;s,~m0)}

A solution to (FIXN) or (FIX∞) is a ( Nash)
equilibrium. We say that u is an ε−equilibrium
for the game with N [resp. N → ∞] players
if RN(u,u;s,~m0) ≥ supv RN(v,u;s,~m0) − ε [resp.
R(u,u;s,~m0)≥ supv R(v,u;s,~m0)− ε].

Note that the definition of equilibrium and optimal strat-
egy may depend on the initial conditions. If, for any u∈Us,
the hypotheses in Section 3.4 hold, then we may relax this
dependency.

Theorem 3.6.1 (Finite N). For every discount factor β > 0
the optimal control problem (OPTN) (resp. the fixed-point
problem (FIXN)) has at least one 0−optimal strategy (resp.
0−equilibrium). In particular, there a εN-optimal strategy
(resp. εN−equilibrium) with εN −→ 0.



Theorem 3.6.2 (Infinite N). Optimal strategies (resp. equi-
librium strategies) exist in the limiting regime when N→∞

under uniform convergence and continuity of RN → R.
Moreover, if {UN} is a sequence of εN−optimal strategies
(resp. εN−equilibrium strategies) in the finite regime with
εN −→ ε , then, any limit of subsequence Uφ(N) −→U is an
ε− optimal strategy (resp. ε−equilibrium) for game with
infinite N.

4. Illustrating example

We present in this section an example of a dynamic ver-
sion of the Hawk and Dove problem where each individual
has three energy levels. We derive the mean field limit for
the case where all users follow a given policy and where
possibly one player deviates. We then further simplify the
model to only two energy states per player. In that case
we are able to fully identify and compute the equilibrium
in the limiting MDEG. Interestingly, we show that the ODE
converges to a fixed point which depends on the initial con-
dition.

Consider an homogenous population of N animals. An
animal plays the role of a player. Occasionally two animals
find themselves in competition on the same piece of food.
Each animal has three states x = 0,1,2 which represents its
energy level. An animal can adopt an aggressive behavior
(Hawk) or a peaceful one (Dove, passive attitude). At the
state x = 0 there is no action. We describe the fitness of an
animal (some arbitrary player) associated with the possi-
ble outcomes of the meeting as a function of the decisions
taken by each one of the two animals. The fitnesses repre-
sent the following:

• An encounter Hawk-Dove or Dove-Hawk results in
zero fitness to the Dove and in v̄ of value for the
Hawk that gets all the food without fight. The
state of the Hawk (the winner) is incremented a =
1{x′H=min(xH+1,2)} and the state of the Dove is b =
1{x′D=max(xD−1,0)}.

• An encounter Dove-Dove results in a peaceful, equal-
sharing of the food which translates to a fitness of v̄

2 to
each animal and the state of each animal change with
the sum of the two distributions 1

2 a+ 1
2 b

• An encounter Hawk-Hawk results in a fight in which
with p = 1/2 chances, one (resp. the other) animal
obtains the food but also in which there is a pos-
itive probability for each one of the animals to be
wounded 1/2 . Then the fitness of the animal 1 is
1
2 (v̄− c)+ 1

2 (−c) = 1
2 v̄− c, where the −c term repre-

sents the expected loss of fitness due to being injured.

i\ j (gN
i ,gN

j ) XN
i (t + 1

N ),XN
j (t + 1

N )
D−D ( v̄

2 , v̄
2 ) 1

2 δmin(x1−1,0),max(x2+1,2)
+ 1

2 δmax(x1+1,2),min(x2−1,0)
D−H (0,v) (min(x1−1,0),max(x2 +1,2))
H−H 1

2 v− c 1
2 δmin(x1−1,0),max(x2+1,2)

+ 1
2 δmax(x1+1,2),min(x2−1,0)

The vector of frequencies of states at time t is given by
MN

x (t) = 1
N ∑

N
j=1 1{XN

j (t)=x} for x = 0,1,2 and the action set

is Ax = {H,D} in each state x 6= 0, A0 = {}.
The assumptions in Section 3 are satisfied (pairwise in-

teraction, ]BN(t) = 2) and the occupancy measure MN(t)
converges to m(t).

4.1. ODE and Stationary strategies

Consider the following fixed parameters µ1 = L0,1, µ2 =
L0,2. The population profile is denoted by ~m = (m0,m1,m2)
and the stationary strategy is described by the parameters
v1,v2 where v1 := u(H|1), v2 = u(H|2)

ṁ2 = m0L0,2 +m1L1,2(u,m)−m2L2,1(u,m)
ṁ1 = m0L0,1 +m2L2,1(u,m) −m1L1,2(u,m)−m1L1,0(u,m))
ṁ0 = m1L10(u,m)− (µ1 + µ2)m0

where L12(u,m) =

m0 + v1

(v1m1

2
+(1− v1)m1 +

v2m2

2
+(1− v2)m2

)
+(1− v1)

(
(1− v1)m1

2
+

(1− v2)m2

2

)
L2,1(u,m) = v2

(v1m1

2
+

v2m2

2

)
+(1− v2)

(
(1− v1)m1

2
+ v2m2 +

(1− v2)m2

2

)
L10(u,m) := v1

(v1m1

2
+

v2m2

2

)
+ (1− v1)

(
v1m1 +

(1− v1)m1

2
+ v2m2 +

(1− v2)m2

2

)
,

For BN = { j1, j2}, x′j,xi ∈ {0,1,2},

d
dt

mx = ∑
x1,x2,x′2

mx1mx2Lx1,x2;x,x′2
(u,~m)

+ ∑
x1,x2,x′1

mx1mx2Lx1,x2;x′1,x(u,~m)

−mx ∑
x2,x′1,x′2

mx2Lx,x2;x′1,x′2
(u,~m)

−mx ∑
x1,x′1,x′2

mx1Lx1,x;x′1,x′2
(u,~m)

4.2. Computation of R(u1,u2;s,~m).

We want to compute the value

V (u1,u2,x) := Ex

∫
∞

0
e−β tr(u1,u2,x(t),m(t)) dt



s.t. ṁ(t) = f (u2,m(t)),m(0) = m0, x(0) = x.

V (u1,u2,x) = Ex

∫
∆

0
e−β tr(u1,u2,x(t),m(t)) dt

+Ex

∫
∞

∆

e−β tr(u1,u2,x(t),m(t)) dt

= Ex

∫
∆

0
e−β tr(u1,u2,x(t),m(t)) dt

+Exe−β∆V (u1,u2,x(∆))

This implies that

0 = Ex
1
∆

∫
∆

0
e−β tr(u1,u2,x(t),m(t)) dt

+
e−β∆−1

∆
ExV (u1,u2,x(∆))

+
ExV (u1,u2,x(∆))−V (u1,u2,x)

∆
(4)

Using Ito’s formula and Lebesgue integration proper-
ties, we obtain that: ExV (u1,u2,x(∆))−V (u1,u2,x)

∆
goes to

∑x′Dmx′V (u1,u2,x′) d
dt mx′ , where Dmx′V is the derivative of

V in a weak sense, e−β∆−1
∆
−→−β , and the term

Ex
1
∆

∫
∆

0
e−β tr(u1,u2,x(t),m(t)) dt −→ r(u1,u2,x,m0)

when ∆ goes to zero. Thus, we obtain

βV (u1,u2,x) = r(u1,x,u2,x,x,m)+∑
x′

(Dmx′V (u1,u2,x′)) fx′(u2,m) (5)

where ui,x = ui(H|x).
The global optimality is then given by the Hamilton-

Jacobi-Bellman equation obtained by maximizing the
right-hand side of the equation (5) over the action set.

βΨ(x) = max
u1,x,u2,x

{r(u1,x,u2,x,x,m)+∑
x′

(Dmx′Ψ(u1,u2,x′)) fx′(u2,m)}

and optimality conditions of the best response to u2 is
given by

βΦ(u2,x) = max
a∈{H,D}

{r(a,u2,x,x,m)+∑
x′

(Dmx′Φ(u2,x′)) fx′(u2,m)}

Theses equations are in general difficult to solve and the
solutions are not necessarily regular (e.g. viscosity solu-
tions). Numerical approaches based on multi-grid tech-
niques of Hamilton-Jacobi-Bellman-Issacs equations can
be found [5].

4.3. The case of two energy levels

In order to derive closed form expressions for solutions
of our ODE, we consider two states, i.e., each animal has

two states x = 1,2 which represents its energy levels. Thus,
the ODE can be expressed as follows:

ṁ2(t) = (1−m2(t))L1,2(u,m)−m2(t)L2,1(u,m) (6)

which can be rewritten as

ṁ2(t) = a1 +a2m2(t)+a3(m2(t))2 (7)

with a1 = 1, a2 = u2
2 −2 < 0, a3 = 1−u2

2 > 0.
Let m[u,m0](t) be the solution of the ODE given u and

a initial distribution m(0) = m0. We distinguish two cases:

Case 1 u2 = 1 (fully aggressive when it is possible): the ODE
becomes ṁ2(t) = 1− 3

2 m2(t) and the solution has the
form

m2[1,m0](t) =
2
3
[1− c1e−

3
2 t ] (8)

with c1 = 1− 3
2 m0 and m1[u,m0](t) = 1−m2[u,m0](t)

Case 2 u2 6= 1, (less aggressive in state 2)

m2[u,m0](t) = γ−(u)+
γ+(u)− γ−(u)

1− c2e(γ+(u)−γ−(u))a2t
(9)

where c2 = 1+
γ+(u)− γ−(u)
m2(0)− γ−(u)

,

γ−(u) =
2−u2/2− (2+u2

2/4)
1
2

1−u2
< 1,

γ+(u) =
2−u2/2+(2+u2

2/4)
1
2

1−u2
> 1

Note that in both cases there is a unique strategy-dependent
global attractor.

lim
t−→∞

m2[u,m0](t) =
{

γ−(u) if u2 6= 1
2/3 if u2 = 1

The expected instant payoff of a player using the station-
ary strategy v when the population profile is m[u,m0](t), is
given by

r(v,u,2,m[u,m0](t)) = v[v̄−cm2u2]+(1−v)r(v,u,1,m[u,m0](t))

r(v,u,1,m[u,m0](t)) =
1
2
(1−m2[u,m0](t)u2)v̄

where m2[u,m0](t) is given by (8) (resp. (9)) for u2 = 1
(resp. u2 6= 1). Now, we can compute explicitly the best
response against u for a given initial m0. Let

β2(u,2,m0, t) = r(H,u,2,m[u,m0](t))− r(D,u,2,m[u,m0](t)).

The best response, BR(x,u,m[u,m0](t)), against u at t is

BR(x,u,m[u,m0](t))=
{

play Hawk if β2(u,x,m0, t) > 0
play Dove if β2(u,x,m0, t) < 0



This implies that it is better to play Hawk for v̄
2c > γ

1+γ

where γ = max(2/3,m0). Since the solution of the ODE is
strictly monotone in time for each stationary strategy, there
is at most one time for which β2 is zero. It is easy to see
that if v̄

2c > 2
3 then the strategy which to play Hawk in state

2 and Dove in state 1 is an equilibrium.

Figure 1. Global attractor for u2 = 1

Figure 2. Global attractor for u2 = 0.2

5. Concluding remarks

The goal of this paper has been to develop mean field
asymptotic of interactions with large number of players us-
ing stochastic games. Due to the curse of the size of the
population, the applicability of atomic stochastic games
has been severely limited. As an alternative, we proposed
a method for Markov decision evolutionary games where
players make decisions only based on their own state and
the global system state. We have showed under mild as-
sumptions convergence results, where asymptotics were
taken in the number of players. The population state profile
satisfies a system of non-linear ordinary differential equa-
tions. We have considered very simple class of strategies

that are functions only of player’s own state and the popu-
lation profile. We applied to Hawk-Dove interaction with
several energy level and formulated the ODEs. We show
that the best response depends on the initial conditions.

Appendix

Sketch of proof of Proposition 2.2.1

Let τN be the first time after t = 0 that XN
j (t) hits in

some given state. We show that

r̄N =
1
N

E
τN

∑
s=0 step 1/N

e−β trN (XN
j (s),MN(s)

)
(10)

Define for t ∈ N/N:

ZN
t =

t

∑
s=0 step 1/N

e−β s (GN(s)− rN (XN
j (s),MN(s)

))
we have, for 0≤ s≤ t:

Q := E
(

ZN
t −ZN

s |F N
s

)
=

t

∑
u′=0

step 1/N

e−βu′E
(

GN(u′)− rN
(

XN
j (u′),MN(u′)

)
|F N

s

)

which can be written as

t

∑
u′=0

step 1/N

e−βu′E
(
E
(

GN(u′)− rN
(

XN
j (u′),MN(u′)

)
|F N

u′

)
|F N

s

)
= 0

thus ZN
t is an F N

t − martingale. Now τN is a stopping
time with respect to the filtration F N

t thus, by Doob’s stop-
ping time theorem: EZN

t∧τN = EZN
0∧τN = 0 Further, ZN

t∧τN ≤
K|τN | for some constant K. Since τN is almost surely fi-
nite and has a finite expectation, we can apply dominated
convergence (with t→ ∞) and obtain EZN

τN = 0.

Sketch of Proof of Theorem 3.2.1

To prove the weak convergence of ZN , we check the fol-
lowing steps: Without loss of generality, we took the set
of states as S = {0,1,2, . . . , ]S } XN

j has a jump r with
probability

qN
i,i+r(M

N(k)) =
1
N

LN
i,i+r(M

N(k),u))

and MN is the continuous process with drift f N .



• We introduce of X̃N
j by scaling with step size 1

N . Then,
ZN = (XN ,MN) is approximate in some sense by a
discrete time process Z̃N = (X̃N , m̃N) where m̃N(k) =
m(bNtc) m solution of the ODE with X̃N

j is the discrete
time jump process with transition matrix

qN
i,i+r(m̃

N(k)) =
1
N

LN
i,i+r(m(

k
N

),u)).

We show that d(XN
j , X̃N

j ) −→ 0 for any compact of
time intervals.

•
Z̃N = (X̃N , m̃N) =⇒ (X̃ , m̃)

MN([Nt]) −→ m(t). We derive the weak convergence
of ZN to (X ,m) where m is deterministic and X is ran-
dom.

Approximation by a discrete time process
The following lemma follows from the lemma 1 and 3 in

Benaim and Weibull (2003,2008), in which we incorporate
behaviorial strategies.

Lemma 5.0.1. For every t > 0 there exists a constant c
such that for every ε > 0 and N large enough one has

P( sup
0≤τ≤T

||MN(τ)−m(τ)||> ε|MN(0) = m0,u)≤ 2(]S)e−ε2CN

for all m0 ∈ ∆d , all every stationary strategy u.

Since C is independent of N, and (e−ε2C)N is summable,
we can use the dominated convergence theorem: for all ε >
0,

∑
N

P
(

sup0≤τ≤T ‖MN(τ)−m(τ) ‖∞> ε|MN(0) = m0,u
)

< ∞,

By Borel-Cantelli’s lemma, for every fixed t < ∞, the ran-
dom variable νN,t := sup0≤τ≤t ‖ MN(τ)−m(τ) ‖∞ con-
verges almost completely towards 0. This νN,t implies that
converges almost surely to 0.

We introduce of X̃N
j by scaling with step size 1

N . Then,
ZN = (XN ,MN) is approximate in some sense by a discrete
time process Z̃N = (X̃N , m̃N) where m̃N(k) = m(bNtc) m
solution of the ODE where X̃N

j is the discrete time jump
process with transition matrix

qN
i,i+r(m̃

N(k)) =
1
N

Li,i+r(m(
k
N

),u)).

Using the lemma 5.0.1 and uniform Lipschitz continuity of
of LN , we obtain that

sup
i, j

sup
0≤τ≤t

‖ qN
i, j(M

N(τ))−qi, j(m(τ)) ‖

≤ K(εN + sup
0≤τ≤t

‖MN(τ)−m(τ)‖).

Hence, we can write ‖MN(τ)−m(τ)‖ ≤ K(εN + 1
N2 ) over

set of event Ωε = {‖MN(τ)−m(τ)‖ ≤ ε} and P(Ωε) ≥
1−2(]S)e−ε2CN → 1. Thus,

P(XN
j,|[0,t] = X̃N

j,|[0,t]|k transitions)≥ E(εBin( 1
N ,Nt))

E(εBin( 1
N ,Nt)) = (1− 1

N
+

1
N

ε)Nt

P(XN
j,|[0,t] = X̃N

j,|[0,t]|k transitions)≥ eε

and this holds for any ε arbitrary small. We de-
fine d(X ,Y ) = ∑k=0

1
2k d(Xk,Yk) where d(Xk,Yk) = 1Xk 6=Yk .

Then, d(XN
j,|[0,t], X̃N

j,|[0,t])−→ 0 when N goes to infinity.
Convergence of the discrete time process To prove the
weak convergence of (X̃N

j ,M̃N), we check the following
steps:

• the discrete time empirical measures M̃N are tight (fol-
lows from Sznitman for finite states) and converges to
a martingale problem. The limit m̃ is deterministic
measure and is solution of ODE which has the unique
solution m (given m0,u). Thus, m̃ = m.

• Conditionally to M̃N , X̃N
j converges to a martingale

problem. The jump and drift process X̃ with time de-
pendent transition is given by the limit of the marginal
of AN(.|M̃N ,m0,x0,u). We derive the weak conver-
gence of (X̃N

j ,M̃N) to (X̃ , m̃) where m̃ is deterministic
and X̃ is random. For this we use the Theorem 17.25
and its discrete time approximation in Theorem 17.28
pages 344-347 in Kallenberg.

Sketch of Proof of Theorem 3.3.1

Since Skorohod’s topology is induced by a metric, it is
sufficient to show that whenever (XN

j ,mN)→ (x,m) in Sko-
rohod’s topology, we have:

lim
N−→∞

∫
∞

0
e−β trN(v,XN

j (t),mN(t))dt

=
∫

∞

0
e−β tr(v,x(t),m(t))dt

By [4], page 117, there is some sequence of increasing
bijections λn: [0,∞)→ [0,∞) s.t.

λn(t)−λn(s)
t− s

→ 1 uniformly in t and s

and ‖ yn(t)− y(λn(t)) ‖→ 0 uniformly in t

over compact subsets of [0,∞). Fix ε > 0, arbitrary and
consider



hN := |
∫

∞

0
e−β trN(XN(t),v,mN(t))dt

−
∫

∞

0
e−β tr(x(t),v,m(t))dt|

≤
∫

∞

0
e−β t |rN(xN(t),v,mN(t))− r(x(t),v,m(t))|dt

First let K = supx∈S ,v,m∈∆ |r(x,v,m)|< ∞ by hypothesis,
and pick some time T large enough such that e−βT K/β ≤
ε/3. Thus

hN ≤ ε/3+
∫ T

0
e−β t |r(xN(t),v,mN(t))− r(x(t),v,m(t))|dt

(11)
Second, we use the distance on E defined by

d((x,m),(x′,m′)) =‖ m−m′ ‖+1x 6=x′ (12)

Let K′ = sup
x∈S ,v,m∈∆d

|r(x,v,m)− r(x′,v,m′)|
‖ m−m′ ‖

< ∞

by hypothesis. It is easy to see that for all x,x′ ∈ S and
m,m′ ∈ ∆d :

‖ r(x,v, ,m)− r(x′,v,m′) ‖≤ K′d((x,m),(x′,m′)) (13)

Thus, by Equation (11):

hN ≤ ε/3+K′
∫ T

0
e−β td

(
(xN(t),mN(t)),(x(t),m(t))

)
dt

(14)
By [4], page 117, there is some sequence of increasing

bijections λ N : [0,∞)→ [0,∞) s.t.

λ N(t)−λ N(s)
t− s

→ 1 uniformly in t and s

and d
(
(xN(t),mN(t), (xN(λ N(t)),mN(λ N(t)))

)
→ 0

uniformly in t over compact subsets of [0,∞). Thus there
is some N0 ∈ N such that for N ≥ N0 and t ∈ [0,T ]:

d
(
(xN(t),mN(t), (xN(λ N(t)),mN(λ N(t)))

)
≤ εβeβT

3K′
(15)

Thus, by the triangular inequality for d: hN ≤

≤ ε

3
+K′

∫ T

0
e−β td

(
(xN(t)mN(t)),(x(λ N(t)),m(λ N(t))

)
dt

+K′
∫ T

0
e−β td

(
(x(λ N(t)),m(λ N(t))),(x(t),m(t)

)
dt

≤ 2ε

3
+K′

∫ T

0
e−β td

(
(x(λ N(t)),m(λ N(t))),(x(t),m(t))

)
dt

(16)

Third, let D be the set of discontinuity points of (x,m).
Since (x,m) is cadlag, D is enumerable, thus it is negligible
for the Lebesgue measure and∫ T

0
e−β td

(
(x(λ N(t)),a,m(λ N(t))),(x(t),a,m(t)

)
dt

=
∫ T

0
e−β td

(
(x(λ N(t)),m(λ N(t))),(x(t),m(t)

)
1t /∈Ddt

Now limN−→∞ λ N(t) = t and thus for t /∈ D

lim
N−→∞

d
(
(x(λ N(t)),m(λ N(t))),(x(t),m(t)

)
= 0

and thus by dominated convergence

lim
N−→∞

∫ T

0
e−β td

(
(x(λ N(t)),m(λ N(t))),(x(t),m(t))

)
dt = 0

(17)
and for N large enough the second term in the right-hand
side of Equation (16) can be made smaller than ε/3. Fi-
nally, for N large enough, hN ≤ ε . This completes the
proof.

Sketch of Proof of Theorem 3.3.2

Define the discounted stochastic evolutionary game with
random number of interacting players in each local interac-
tion in which each player in x with the mixed action u(.|x)
receives r(u,x,m(t)) where m(t) is the population profile
at t, which evolves under the dynamical system (3) and the
between states follows the transition kernel L. Then, a strat-
egy of a player is the same as in the microscopic case and
the discounted payoffs

R(u1,u2,s0,m0) =
∫

∞

0
e−β tr(s(t),u1,m[u2](t))dt

is the limit of RN(u1,u2,s0,m0) when N goes to in-
finity, where m[u2] is the solution of the ODE ṁ =
f (u2,m),m(0) = m0 . It follows that the asymptotic regime
of the microscopic game and the Markov decision evolu-
tionary game (macroscopic game) are equivalent.

Sketch of Proof of Theorem 3.6.1

We show that for every discount factor β > 0 the opti-
mal control problem (OPTN) (resp. the fixed-point prob-
lem (FIXN)) has at least one 0−optimal strategy. It fol-
lows from the existence of equilibria in stationary strate-
gies for finite stochastic games with discounted payoff:
The set of pure strategies is a compact space in the prod-
uct topology (Tykhonov theorem). Thus, the set of behav-
ioral strategies Σ j is a compact space and also convex as
the set of probabilities on the pure strategies. For every
player j and every strategy profile σ the marginal of the



payoffs and constraints functions are continuous for any
β > 0 : α j 7−→ RN

j (α j,σ− j,s,m0). Moreover, the stationary
strategies is convex, compact and upper and lower hemi-
continuous (as a correspondence). Define

γ j(s,m0,σ) = arg max
α j∈Us

RN
j (α j,σ− j,s,m0).

Then, γ j(m0,σ)⊆ Σ j is a non-empty, convex and compact
set and the product correspondence

γ : σ 7−→ (γ1(s,m0,σ), . . . ,γN(s,m0,σ))

is upper hemi-continuous (its graph is closed). We now
use the Glicksberg generalization of Kakutani fixed point
theorem, and there is a stationary strategy profile σ∗ such
that

σ
∗ ∈ γ(s,m0,σ

∗).
Moreover, if the game has symmetric payoffs and strate-
gies for each type, there is a symmetric per type stationary
equilibrium. This completes the proof.

Sketch of Proof of Theorem 3.6.2

Let (UN)N be a sequence of solution of (FIXN) i.e
equilibrium in the system with N players. Choose a subse-
quence Nk such that UNk converges to some point u when k
goes to infinity. We can write RNk(UNk ,UNk)−R(U,U) =
RNk(UNk ,UNk) − RNk(U,U) + RNk(U,U) − R(U,U).
Since RN(., .) is continuous and converges uni-
formly to R(., .), RNk converges uniformly to R,
the second term RNk(U,U) − R(U,U) −→ 0 when
Nk −→ ∞ and the first term RNk(UNk ,UNk)− RNk(U,U)
can be rewritten as RNk(UNk ,UNk) − RNk(U,U) =
RNk(UNk ,UNk)−R(UNk ,UNk) + R(UNk ,UNk)−R(U,U) +
R(U,U)−RNk(U,U). Each term goes to zero by continuity
of R, convergence of UNk to U, and by uniform conver-
gence of RN to R. Let UN be a εN−equilibrium. Then,
RN(UN ,UN) ≥ RN(v,UN)− εN , ∀v. Then any limit U of
a subsequence of UN satisfies R(U,U) ≥ R(v,U)− ε, ∀v.
Similarly, if

RN(UN ,UN)≥ RN(v,v)− εN , ∀v

then any omega-limit U of the sequence of UN satisfies
R(U,U) ≥ R(v,v)− ε, ∀v i.e U is an ε−optimal strat-
egy. In particular if (UN)N is a sequence of εN−equilibria
(resp. optimal strategies) with εN −→ 0 when N goes
to infinity then any accumulation point U of (UN)N is a
0−equilibrium (resp. 0−optimal strategy).
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